E835 results on excited $S=1$ states of charmonium

Roberto Mussa (on behalf of E835)

ICHEP 2002, Amsterdam, July 24-31

Outline

$$
\begin{aligned}
& \text { ©Total } \chi_{\mathrm{c} 0} \text { Width } \\
& \text { eRadiative Transitions } \\
& \quad \chi_{\mathrm{c}} \rightarrow \gamma \mathrm{~J} / \psi \\
& \text { e } \Gamma\left(\chi_{\mathrm{c} 0,2} \rightarrow \gamma \gamma\right) \\
& \text { eBR }\left(\chi_{\mathrm{c} 0} \rightarrow \pi \pi, \eta \eta\right) \\
& \text { e }^{\prime} \rightarrow \mathrm{J} / \psi \gamma \gamma, \mathrm{e}^{+} \mathrm{e}^{-}, \ldots
\end{aligned}
$$

Charmonium sources

Precise measurements of charmonium spectroscopy in the last 2 decades were done using the following processes:

1) $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations (Mark-III, Crystal Ball, DM2, BES ... CLEO-c):

- directly only $\mathrm{J}^{\mathrm{PC}}=1^{-}$;
- access to hadronic and EM decay modes ;
- Initial state radiation

2) $\gamma \gamma, \gamma^{*}$ scattering, from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma \gamma$ (CLEO,LEP,B factories)

- Only on states with positive C

3) $\overline{\mathrm{p}} \mathrm{p}$ annihilations (R704 at CERN, E760/835 at Fermilab)

- direct on all J^{PC};
- only EM decay modes (huge hadronic background)
- Very good $\delta \mathrm{p} / \mathrm{p}$ (stochastic cooling)

4) B decays, via $b->c \overline{c s s}$ (B factories)
5) $e^{+} e^{-}$annihilations in double charmonia (Belle) \square

E760+E835 data samples on P states

The table summarizes the samples collected by E760/E835 in the channels $\overline{\mathbb{P}} \mathrm{p} \rightarrow \chi_{\mathrm{col,1,2}} \rightarrow \gamma \mathrm{~J} / \psi \rightarrow \gamma \mathbf{e}^{+} \mathrm{e}^{-}$ From each resonance scan, 3 observables are extracted: Mass, Total Width Γ tot, and the product $\Gamma \mathrm{Bo}=\Gamma$ tot*BRin*BRout. If Γ tot \gg Гbeam, $\sigma_{\text {peak }} \sim$ BRin*BRout. If Γ tot $\sim \Gamma$ beam, the correlation between Γ tot and Brin*BRout depends on the scanning strategy.

Experiment	Resonance	$\mathbf{L d t} / \mathbf{n b}{ }^{\mathbf{- 1}}$	Nevents	Γ tot/MeV	Fractional error		$\Gamma * B /$ eV Fractional error			Mass/MeV/c2	Error on Mass	
					Stat.	Syst		Stat	Syst		Stat	Syst
E760												
	CHI2	1160	585	1.98	$9 \% \oplus$		1.67	5\% \oplus		3556.15	$0.07{ }^{\oplus}$	0.12
	CHI1	1030	513	0.88	13\% \oplus		1.29	9\% \oplus	10\%	3510.53	$0.04{ }^{\oplus}$	0.12
E835/96												
	$\begin{aligned} & \text { CHI2 } \\ & \text { CHI1 } \end{aligned}$	$\begin{array}{r} 12392 \\ 7256 \end{array}$	$\begin{array}{r} \sim 7000 \\ \sim \\ \sim \end{array} \mathbf{3 5 0 0}$	Data used for Angular Distributions and $\Gamma\left(\chi_{c 2} \rightarrow \gamma\right)$ only: large syst. errors in the Beam Energy Calibration								
	CHIO	2573	69	16.6	31\%		2.7	23\%		3417.4	$1.9{ }^{\oplus}$	0.2
E835/00												
	CHI2	1053	~ 300	2.39	12\% \oplus		1.63	$15 \% \oplus$		(preliminary		
	CHI1	1330	~ 1250	0.91	7\% \oplus	10\%	1.11	$4 \% \oplus$		(preliminary		
	CHIO	32785	392	9.9	10\% \oplus	1\%	1.7	$\mathbf{9 \%} \oplus$	4\%	3415.4	$0.4{ }^{\oplus}$	0.2

Total width and Mass of $\chi_{c 0}$

弍E835/00 sample $=6 x$ E835/97
Bagnasco et al., Phys.Lett.B533(2002),237

- Increased statistics (x 6)

χ_{ct} mass

Multipole structure of the $\chi_{\mathrm{c} 1,2}$ radiative decay

When $J_{i} \otimes J_{f} \neq 0$, higher multipoles can be measured, through the interference terms in angular distributions:

$$
\text { e.g.: } d \Gamma(\Omega) / d \Omega=|E 1|^{2} f_{E l}(\Omega)+E 1 * M 2 f_{12}(\Omega)+E 1 * E 3 f_{13}(\Omega)+\ldots
$$

Measurements exist for the processes:
From $\overline{\mathrm{p}} \mathrm{p} \rightarrow \chi_{\mathrm{c} 1,2} \rightarrow \gamma \mathrm{~J} / \psi \rightarrow \gamma \mathbf{e}^{+} \mathbf{e}^{-}$
R704: C.Baglin et al., Phys.Lett. B195,85 (1987)
E760: T.Armstrong et al., Phys.Rev. D48,3037 (1993)
E835: M.Ambrogiani et. al., Phys.Rev.D65:052002 (2002)
From $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi^{\prime} \rightarrow \gamma \chi_{\mathrm{cl}, 2} \rightarrow \gamma \gamma \mathrm{~J} / \psi \rightarrow \gamma \gamma \mathrm{e}^{+} \mathrm{e}^{-}$
Crystal Ball: M.Oreglia et al., Phys.Rev.D25,2259(1982).

- Angular distributions allow also the extraction of the helicity zero contribution to $\Gamma\left(\chi_{\mathrm{c} 2} \rightarrow \overline{\mathrm{p}} \mathrm{p}\right)$.

Multipole structure of the $\chi_{c 1,2}$ radiative decay: results

The anomalous magnetic moment of the charm quark, κ_{c}, can be extracted from the fractional M2 amplitude, using the expressions:

$$
\begin{gathered}
a_{2}\left(X_{c l}\right)=-\left(1+\kappa_{c}\right) \frac{E_{\gamma}}{4 m_{c}} \\
a_{2}\left(X_{c 2}\right)=-\left(1+\kappa_{c}\right) \frac{3}{\sqrt{5}} \frac{E_{\gamma}}{4 m_{c}}
\end{gathered}
$$

The ratio $\mathrm{a}_{2}\left(\chi_{\mathrm{c} 1}\right) / \mathrm{a}_{2}\left(\chi_{\mathrm{c} 2}\right)$ should then be 0.68 , canceling out any κ_{c} or m_{c} dependence.

Helicity zero contribution to $\Gamma\left(\chi_{c 2} \rightarrow \overline{\mathrm{p}} \mathrm{p}\right)$ is measured to be $\mathrm{B}_{0}{ }^{2}=13 \pm 8 \%$.

$\Gamma\left(\chi_{\mathrm{c}, 2} \rightarrow \gamma\right)$

*E835/97 measurement of

$$
R_{\gamma \gamma}\left(\chi_{c J}\right)=\frac{B R\left(\chi_{c J} \rightarrow \gamma \gamma\right)}{B R\left(\chi_{c J} \rightarrow \gamma \psi\right)}
$$

Ambrogiani et al., Phys.Rev.D62(2000):052002

$$
\begin{aligned}
& \mathrm{R}_{\gamma}\left(\chi_{c 0}\right)=(24.4 \pm 12.5) * 10^{-2} \\
& \mathrm{R}_{\gamma}\left(\chi_{c 2}\right)=(1.67 \pm 0.30) * 10^{-2}
\end{aligned}
$$

*Analysis of the $2000 \chi_{\text {co }}$ data set is in progress(> 6x more statistics).
*The global refit in PDG 2002 reduces the discrepancy on $\Gamma\left(\chi_{c 2} \rightarrow \gamma \gamma\right)$ between $\overline{\mathrm{p} p}$ and $\mathrm{e}^{+} \mathrm{e}^{-}$experiments.

* Recent result from $\gamma \gamma \rightarrow \chi_{c 2} \rightarrow \gamma \mathrm{~J} / \psi$ at Belle is \sim consistent with the new average.

Abe et al., hep/ex-0205100 (2002)

$\mathrm{BR}\left(\chi_{\mathrm{c} 0} \rightarrow \pi \pi\right)$

* Despite the large hadronic continuum cross-section, the interference between resonant and continuum behavior gives a sizeable signal, at $\cos \vartheta_{\mathrm{cm}} \sim 0$, at the $\chi_{\mathrm{c} 0}$ peak energy.
* $*$ The angular distribution at the peak is shown in the figure, and illustrates the separate contributions from interfering (helicity 0), non interfering (helicity 1), resonant amplitudes. The excess of events above the red curve is due to the interference between resonant and continuum behaviour.
*The distribution is given by the expression:

$$
\frac{d \sigma}{d z}(x, z)=\left|\frac{-A_{R}}{x+i}+A_{I}(x, z) e^{i \delta_{I}(z)}\right|+\left|A_{N I}(x, z)\right|^{2}
$$

where

$$
x=2 \frac{\left(E_{C M}-M_{R}\right)}{\Gamma_{R}}, z=\cos \left(\theta_{c n}\right)
$$

$\mathrm{BR}\left(\chi_{\mathrm{c} 0} \rightarrow \pi \pi\right)$

* The interference between resonant and continuum behavior gives a sizeable, asymmetric, signal: the figure describes cross section vs energy, for $|\cos \theta|<0.125$.
* The expected contribution from the pure resonance (symmetric Breit-Wigner) is shown also, magnified by 20.
*From the fit to this data set, we can extract a measure of the product of branching fractions:

$$
\mathrm{BR}\left(\chi_{\mathrm{c} 0} \rightarrow \pi^{0} \pi^{0}\right) * \mathrm{BR}\left(\chi_{\mathrm{c} 0} \rightarrow \overline{\mathrm{p}}\right)=(5.09 \pm 0.81) * 10^{-7} \text { (preliminary) }
$$

$B R\left(\chi_{c 0} \rightarrow \eta \eta\right)$

*Analysis of the $\eta \eta$ channel is under way the phase looks opposite to $\pi^{0} \pi^{0}$

$\psi^{\prime} \rightarrow \mathrm{J} / \psi \gamma$

* Samples:

Experiments	Events	PSI' produced
CRYSTAL BALL	2920	$0.8(+1) M$
E835/96+00	2080	1.0 M
BES		4.0 M

- Access to $\gamma \chi_{c}, \psi \pi^{0}, \psi \eta$.
- ECAL:NaI(C.Ball), PbG(E835)
- Analysis under way in E835:
$\star \operatorname{BR}\left(\psi^{\prime} \rightarrow \gamma \chi_{c 0}\right) * \operatorname{BR}\left(\chi_{c 0} \rightarrow \gamma \mathrm{~J} / \psi\right)$
* angular distributions
\rightarrow Further studies on 2000 data: $\psi^{\prime} \rightarrow \mathrm{J} / \psi \pi \pi, \mathrm{e}^{+} \mathrm{e}^{-}, \gamma \phi \phi$

Conclusions

$*$ The study of charmonium P states in $\bar{p} \bar{p}$ is close to completion; only a new generation of experiments can reduce the current statistical and systematic errors.
$* 33 \mathrm{pb}^{-1}$ of data were taken by E835 in year 2000 at the $\chi_{\mathrm{c} 0}$ energy, yielding samples of $\psi \gamma, \gamma \gamma, \pi \pi, \eta \eta$ events.
\rightarrow The total width of the $\chi_{\mathrm{c} 0}$ is now known at 10% level.
\rightarrow The first charmonium signal in pure hadronic channels ($\mathrm{p} \overline{\mathrm{p}} \rightarrow \pi \pi, \eta \eta$) was observed, exploiting interference in scattering at 90° in CM frame.
*The study of $\chi_{\mathrm{c} 1,2}$ and ψ^{\prime} angular distributions shed light in the multipolarity of radiative transitions, and on the helicity structure of the $\overline{\mathrm{p}}$ coupling to charmomium.
*To fully exploit the stat accuracy of $\mathrm{p} \overline{\mathrm{p}}$ measurements on products of BR's, new $\mathrm{e}^{+} \mathrm{e}^{-}$data on their ratios are needed.

Extra slides

Nhem
3
328

Global refitting in PDG 2002

The PDG 2002 shows a substantial change in the overall pattern of branching ratios and radiative widths of P states as a result of a global refitting of all χ_{c} and ψ^{\prime} data , accounting correctly for all the correlations between different experiments. The variety of sources of exclusive charmonium data provides a powerful set of crosschecks, which is crucial to allow the extraction of parameters about a single process from data who normally involve 2 or more reactions. (see also C.Patrignani,Phys. Rev. D 64(2001) 034017)

Global refitting in PDG 2002

The PDG 2002 shows a substantial change in the overall pattern of branching ratios and radiative widths of P states as a result of a global refitting of all χ_{c} and ψ^{\prime} data, accounting correctly for all the correlations between different experiments. The variety of sources of exclusive charmonium data provides a powerful set of crosschecks, which is crucial to allow the extraction of parameters about a single process from data who normally involve 2 or more reactions.
(see also C.Patrignani,Phys. Rev. D 64(2001) 034017)
PDG2002

Syst errors from inclusive photon spectra

- All $\mathrm{BR}\left(\eta_{\mathrm{c}}, \chi_{\mathrm{c}} \rightarrow\right.$ hadrons $)$ measured from e+e- annihilations depend on BR(J/ $\left./ \Psi, \psi^{\prime} \rightarrow \gamma+\ldots\right)$, measured by Crystal Ball. Gaiser et al. Ph. Rev. D34,711 (1986)
- Crystal Ball's charged tracking inefficiency: 20% syst error on $\operatorname{BR}\left(\psi^{\prime} \rightarrow \gamma \chi_{c}\right)$?
- Low statistics of M1 transitions: 30% stat error on BR(J/ $\left.\psi, \psi^{\prime} \rightarrow \gamma \eta_{c}\right)$

$\Gamma\left(\chi_{c 2} \rightarrow \gamma\right)$

The determination of this quantity depends directly from two processes:
$* \mathrm{pp} \rightarrow \chi_{\mathrm{c} 2} \rightarrow \gamma \gamma:$ R704,E760,E835/97 (Ambrogiani et al., Phys.Rev.D62(2000):052002)
$* \gamma \gamma \rightarrow \chi_{\mathrm{c} 2} \rightarrow \gamma \mathrm{~J} / \psi$, hadrons : CLEO, L3, OPAL, BELLE (new: Abe et al., hep/ex-0205100 (2002))
And indirectly from various other quantities, deduced from :
${ }_{*}^{*} \psi^{\prime} \rightarrow \gamma+\chi_{c} \rightarrow \gamma \gamma \mathrm{~J} / \psi$

* $\psi^{\prime} \rightarrow \pi \pi \mathrm{J} / \psi$
* $\mathrm{P} \mathrm{p} \rightarrow \chi_{\mathrm{c} 2} \rightarrow \gamma \mathrm{~J} / \psi$

PDG 2000 outlined a big discrepancy between the measurements coming from different reactions.

$\Gamma\left(\chi_{\mathrm{c} 2} \rightarrow \gamma \gamma\right)$

The determination of this quantity depends directly from two processes:
$\star \mathrm{pp} \rightarrow \chi_{\mathrm{c} 2} \rightarrow \gamma \gamma:$ R704,E760,E835/97 (Ambrogiani et al., Phys.Rev.D62(2000):052002)
$\star \gamma \gamma \rightarrow \chi_{\mathrm{c} 2} \rightarrow \gamma \mathrm{~J} / \psi$, hadrons : CLEO, L3, OPAL, BELLE (new:Abe et al., heplex-0205100 (2002))
And indirectly from various other quantities, deduced from :

* $\psi^{\prime} \rightarrow \gamma+\chi_{c} \rightarrow \gamma \gamma \mathrm{~J} / \psi$
* $\psi^{\prime} \rightarrow \pi \pi \mathrm{J} / \psi$
* $\mathbb{P} p \rightarrow \chi_{\mathrm{c} 2} \rightarrow \gamma \mathrm{~J} / \psi$

The global fit of all previous data (PDG 2002) substantially reduces the discrepancy between the measurements from the two different processes, as the
$\operatorname{BR}\left(\chi_{\mathrm{c} 2} \rightarrow \gamma \mathrm{~J} / \psi\right)$ is raised
from 13.6% to 18.7% (38% increase)

η_{c} mass and width

*Quasi recent data from:
CLEO: Brandenburg et al. Phys.RevLett. 85 (2000) 3095
BES: Bai et al. Phys.Rev.D60(1999) 072001
DELPHI: Abreu et al., Phys.Lett. B441(1998) 479

* Still preliminary data from E835

Studying syst errors from energy dependence of $\mathrm{pp} \rightarrow \pi^{0} \pi^{0}+\pi^{0} \gamma$ feeddown .

η_{c} mass and width

*Quasi recent data from:
CLEO: Brandenburg et al. Phys.RevLett. 85 (2000) 3095
BES: Bai et al. Phys.Rev.D60(1999) 072001
DELPHI: Abreu et al., Phys.Lett. B441(1998) 479
*Still preliminary data from E835
Energy dependence of $\mathrm{pp} \rightarrow \pi^{0} \pi^{0}+\pi^{0} \gamma$ feeddown.
Interference with $\gamma \gamma$ continuum?
*New data from B factories look promising but statistically still poor:

BaBar: Aubert et al. Phys.RevLett. 85 (2000) 3095
Belle: Choi et al. Hep-ex/0206002 (2002)
Belle: Abe et al. Hep-ex/0205104 (2002)

η_{c} mass and width

*Recent data:
E835,BES,CLEO,LEP,BELLE,BABAR

- MASS:

Hyperfine splitting:

$$
\mathrm{M}(\mathrm{~J} / \psi)-\mathrm{M}\left(\eta_{\mathrm{c}}\right)=117 \pm 2 \mathrm{MeV} / \mathrm{c}^{2}
$$

Bad overall χ^{2} on PDG:

$$
\mathrm{M}(\mathrm{pp})>\mathrm{M}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) ?
$$

- TOTAL WIDTH= $\Gamma\left(\eta_{c} \rightarrow g g\right)$

BES-I data from ψ and ψ ' sample
$\delta \Gamma / \Gamma \sim 25 \%$?? Bad χ^{2} casts doubts on PDG2000

η_{c} Total Width

${ }^{1} \mathbb{P}_{1}($ a.k.a. $\boldsymbol{h})$ search

*E760 data: $16 \mathrm{pb}^{-1}$ in the $\mathrm{M}_{\text {cog }}$ region
> Observed a state at $\mathrm{M}=3526.2 \pm 0.15 \pm 0.20$

$$
\text { in } \mathrm{pp} \rightarrow \mathrm{~h}_{\mathrm{c}} \rightarrow \mathrm{~J} / \psi \pi^{0}
$$

$>$ Not seen in $\mathrm{pp} \rightarrow \mathrm{h}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \pi \pi$, and

$$
\mathrm{pp} \rightarrow \mathrm{~h}_{\mathrm{c}} \rightarrow \gamma \eta_{\mathrm{c}} \rightarrow \gamma \gamma
$$

$>$ Large amount of cross-calibration data: $\chi_{\mathrm{cl}, 2}$ scans, $\mathrm{J} / \psi, \psi^{\prime}$ double scans.

- E835 data: $47 \mathrm{pb}^{-1}$ (in 96-97) and $50 \mathrm{pb}^{-1}$ (in 2000) in the $M_{\text {cog }}$ region
> Careful study on the stability of $\mathrm{E}_{\text {beam }}$ measurements (at a level of few hundred keV) under way .

FIG. 2. Number of events per integrated luminosity vs center-of-tnass energy; data are binned in $150-\mathrm{keV}$ intervals in the average center-of-mass energy.

$\eta_{c}{ }^{\prime}$ searches

* $\mathrm{A}^{1} \mathrm{~S}_{0}(\mathrm{n}=2)$ candidate at $3594 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}$ wasobserved by Crystal Ball in

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma+\mathrm{X}
$$

Edwards et al., Phys.Rev.Lett.48(1982),70
... but never confirmed

$\eta_{c}{ }^{\prime}$ searches

* $\mathrm{A}^{1} \mathrm{~S}_{0}(\mathrm{n}=2)$ candidate at $3594 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}$ wasobserved by Crystal Ball in

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma+\mathrm{X}
$$

Edwards et al., Phys.Rev.Lett.48(1982), 70
... but never confirmed

- DELPHI: did not find it in
$\gamma \rightarrow \eta_{\mathrm{c}}{ }^{\prime} \rightarrow$ hadrons
Abreu et al., Phys.Lett.B441(1998), 479

$\eta_{c}^{\prime}{ }^{\prime}$ searches

* $\mathrm{A}^{1} \mathrm{~S}_{0}(\mathrm{n}=2)$ candidate at $3594 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}$ wasobserved by Crystal Ball in

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma+\mathrm{X}
$$

Edwards et al., Phys.Rev.Lett.48(1982),70
... but never confirmed

- DELPHI: did not find it in
$\gamma \gamma \rightarrow \eta_{\mathrm{c}}{ }^{\prime} \rightarrow$ hadrons
Abreu et al., Phys.Lett.B441(1998),479
- E760-E835: did not find it in $\mathrm{pp} \rightarrow \eta_{\mathrm{c}}{ }^{\prime} \rightarrow \gamma \gamma(3576<\mathrm{Ecm}<3660 \mathrm{MeV})$ Ambrogiani et al.,Phys.Rev.D64(2001),052003
Upper limits at $90 \% \mathrm{CL}$ on $\mathrm{BR}(\mathrm{pp}) * \mathrm{BR}(\gamma \gamma)$ with $\Gamma=5,10,15 \mathrm{MeV}$ are given.

$\eta_{\mathrm{c}}{ }^{\prime}$ searches

$* \mathrm{~A}^{1} \mathrm{~S}_{0}(\mathrm{n}=2)$ candidate at $3594 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}$ wasobserved by Crystal Ball in

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma+\mathrm{X}
$$

Edwards et al., Phys.Rev.Lett.48(1982),70
... but never confirmed

- DELPHI: did not find it in

$$
\gamma \rightarrow \eta_{c}^{\prime} \rightarrow \text { hadrons }
$$

Abreu et al., Phys.Lett.B441(1998),479

- E760-E835: did not find it in
$\mathrm{pp} \rightarrow \eta_{\mathrm{c}}{ }^{\prime} \rightarrow \gamma \gamma(3576<\mathrm{Ecm}<3660 \mathrm{MeV})$
Ambrogiani et al.,Phys.Rev.D64(2001),052003
*BELLE: finds it at $3654 \pm 6 \pm 8 \mathrm{MeV} / \mathrm{c}^{2}$
$\mathrm{B} \rightarrow \eta_{\mathrm{c}}{ }^{\prime} \mathrm{K} \rightarrow\left(\mathrm{K}_{\mathrm{S}} \mathrm{K}^{-} \pi^{+}\right) \mathrm{K}$
Choi et al. Hep-ex/0206002 (2002)

$\eta_{c}^{\prime}{ }^{\prime}$ searches

* $\mathrm{A}^{1} \mathrm{~S}_{0}(\mathrm{n}=2)$ candidate at $3594 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}$ wasobserved by Crystal Ball in

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma+\mathrm{X}
$$

Edwards et al., Phys.Rev.Lett.48(1982),70
... but never confirmed

- DELPHI: did not find it in

$$
\gamma \rightarrow \eta_{c}^{\prime} \rightarrow \text { hadrons }
$$

Abreu et al., Phys.Lett.B441(1998),479

- E760-E835: did not find it in
$\mathrm{pp} \rightarrow \eta_{\mathrm{c}}{ }^{\prime} \rightarrow \gamma \gamma(3576<\mathrm{Ecm}<3660 \mathrm{MeV})$
Ambrogiani et al.,Phys.Rev.D64(2001),052003
*BELLE: finds it at $3654 \pm 6 \pm 8 \mathrm{MeV} / \mathrm{c}^{2}$
$\mathrm{B} \rightarrow \eta_{\mathrm{c}}{ }^{\prime} \mathrm{K} \rightarrow\left(\mathrm{K}_{\mathrm{s}} \mathrm{K}^{-} \pi^{+}\right) \mathrm{K}$
Choi et al. Hep-ex/0206002 (2002)
..... and/or at $3622 \pm 12 \mathrm{MeV} / \mathrm{c}^{2}$!?!
in $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow J / \psi+X$
Abe et al. Hep-ex/0205104 (2002)

Roberto Mussa , ICHEP 2002, Amsterdam, July 24-31
Quarkonium Working Group
The Genoa mini-workshop on charmonium, in June 2001, has triggered a very
constructive and collaborative effort between experimentalists and theoreticians,
who are eager to fully benefit from the wealth of heavy quarkonium data who
are becoming available in the present and near future.
During the winter, N.Brambilla and myself, with help from A. Vairo(CERN),
A.Boehrer (Siegen), , .Kraemer(Edinburgh) and D.Gromes (Heidelberg), wrote
down a proposal for the formation of a
Joint experimental-theoretical working group on
heavy quarkonium physics, aiming to a unified
QCD-based formalization of all the aspects of its
dynamics: production, decays, spectroscopy,
interactions with nuclear matter.
The proposal, circulated in February-March, received a wide-spread enthusiastic support from most theoreticians and/but a cooler response from experimenters. Nevertheless, we succeeded to get responses from at least 1 person of each running or future experiment.
We are now preparing for a first workshop to be held at CERN in November,
and requested funding for a second workshop in Turin, June 03 . Visit our website at http://alephwww.physik.uni-siegen.de

