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Middle '60

In high-energy particle collisions (p,e) many
hadrons were created with larger and larger invari-
ant mass.
Theorists were at work to find a consistent descrip-
tion and classification of hadrons. Two possible
ways:

@ Quark Model (— QCD, middle '70)

@ Hagedorn’'s Model (1965), based on
statistical properties
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Hagedorn's approach

Self-similar scheme for the composition and decay of hadrons and their
resonances ( “fireballs”) (Statistical Bootstrap Model)

A heavy particle is a resonant state formed by lighter particles, in a self
similarity pattern:

a fireball consists of fireballs, which in turn consist of fireballs,
and so on...!

System of non-interacting particles, in which the formation and decay of
resonances simulates the interaction.

'R. Hagedorn: “Statistical thermodynamics of strong interactions at high
energies”, Nuovo Cim. Suppl. 3, 147 (1965)
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Self-similarity in mathematics

@ Sierpinski Triangle (1915)

Vv

@ Benoit Mandelbrot: “Les bJects Fractals: Frme, Hazard et

Dimension” (1975)

@ Number theory: how many ways are there of decomposing an integer
into a sum of integers?

1=1 p(l)=1=2""1
2=2,1+1 p(2) =2=2""1
3= 3, 2+1, 142, 14+1+1 p(3) =4=2""1
4= 4, 3+1, 1+3, 242, 2+1+1, 14241, 14+1+42, 1+1+1+1 p(4) =8=2""1

There are p(n) = 2n—1 — % e"'"2 ways of partitioning an integer n
into ordered partitions: p(n) grows exponentially in n.
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The Statistical Bootstrap Model

Let us consider a system of non-interacting particles with momentum g,
mass m., energy € = y/Pa + m?; let vy, be their multiplicity.
The total energy of the system is:

oo
oy

The Grand-Partition Function (Grand-canonical description with 1 = 0) is:

1 O
2Z(V,T)= Zexp {—? Zyavgav}
ay

{v}

or, in the continuum limit,

o0

Z(V,T) = /J(E, V) exp{—g} dE

0
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Short-hand notation: X, = exp { =% }:

=Y exp {—— 5 WM} > [T <11 [Z Xm,,w}

{v} {v} oy {v}

_ _ _ Vag = 0,1,2,... Bosons
with the occupation numbers: v, = )
Vagp = 0,1 Fermions
1
g af af

log Z(V, T) = > _log(1 + xag) — Y log(1 — xu5)

ag
o0
% 5 0
log Z(V,T) = ﬁ/p dp /0 pr(m)log(1l + xp m)dm
0
(0.0}
— [ pa(m)tog(1 — xp.m)dm
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Iog(l:l:x)::I:x—X;:i:X;—... (x=exp{—%} = 0<x<1)
log Z(V, T) 2sz / _dpdm
where
Xpm = oxp {7\ fp2 + m2 p(m; n) = pa(m) — (~1)"pr(m)

By integrating over momenta ([J):

Z(V, T)—exp{g/cziz/,:p(m n) m? K2(n7r_n> dm}
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We have obtained two expressions for Z:
T E
Z(V,T) = /U(E, V) exp{—7}dE
0
VT &1 [ 5 nm

=1 Mo

Hagedorn imposed the logaritm bootstrap condition (“weak condition”)

log p(m; n) 1

7

|oga(m, \/0) m— oo

i.e. asymptotic equality of entropies.

o and p differ by som algebraic factor in m: o(E) counts all the states of
the system in Vj, including, for instance, those whit very large angular
momentum (=collective motion) which are not “fireballs” and therefore
are not counted in p.
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Hagedorn solved this equation by iterations:

p0 s z(0) _ 50
log o(® = log p(1)
o) — 2z 5(1)
log o) = log ,0(2)

Starting from a simple p(o)(m), in a few iterations one gets an exponential
behaviour:

p(m) = Am?e™/ TH o(m) = BmPe™/ TH
The logaritm bootstrap condition is satisfied:

logp(m;n)  m/Ty+ alogm+log A .
loga(m,Vo)  m/Ty+blogm+logB .~
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Hagedorn's solution: a = _g
pH(m) = A m—53/2am/TH

with Ty ~ 150 — 180 MeV.
A few years later, Nahm? solved the equation analytically (with a “strong”
condition, conservation laws), and found a = —3:

p(m) = Am=3e™/ Tr

with:

voT,E,<m0)2 (m0>
PH ) Ky [ == ) =2log2 — 1
2 \T,) "2\ T, 8

For mg = m,: Ty ~ 150 MeV.

2W. Nahm: “Analytical solution of the statistical bootstrap model”, Nucl.

Phys. B 45, 525 (1972)
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Experimental estimate of Ty

J.Orear “Universality of Transverse Momentum distribution in High Energy
Physics”, Phys. Rev. Lett. 13, 190, (1964)

102 [ ]
&8 - N\ Perl70GeV/E :::m;,.:::,‘:’:::"::’m Finally we discuss the transverse momentum
4 0 o Cornell-BNL distribution of secondaries produced in P-P col-
Iy \iu lisions of fixed energies. In 1961, Cocconi,
i \5.0 Koester and Perkins pointed out that the distribu-
28l B tion function @
1 dN/dp, =« p, exp(-ap,), where 1/a = 165 MeV/c
E I 74 fits the 10 to 30 GeV pion production data from
“‘5 . Fit to Cornell-BNL Data CERN and Brookhaven as well as cosmic ray data
o oL up to 105 GeV [15]. We note that egs. (1) or (2)
3 yields the same transverse momentum distribu-
‘:{" 31 tion function for elastically scattered protons as
Shelon long as we keep away from angles near 90°. The
0 [ ]
0ok the plots are consistent with eq. (4) and a value of
1/a ~ 160 MeV/c.
a8 No firm theoretical explanation has yet been given
of why a simple exponential, exp(-ap,) should ap-
4 L \ pear to dominate high energy physics. Recent
T 3
P sin 8 (Gev/c)
s foevse Hagedorn calculated the transverse
Fig. 1. Plot of large angle p-p elastic scattering data momentum distribution in its model
vs. transverse momentum. The line is the least squares .
fit of eq. (2) to the 29 points of the Cornell-Brookhaven and fou nd a natu ral expla natlon I
group.
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A closer look...

Let us study the high-temperature limit of the Hagedorn's partition
function (only n =1):

log Z(T,V) =~ VT/ m?p(m, 1)K, (;) dm

272 g
VIl [~ , T m
X 53 - m%m?e™/ H K, (?> dm

for z — 0o: Ka(z) ~ (/£e %+ O(z72)
™ TH K, (;) ~ e_m(%_%”>

Z diverges exponentially if T > Ty !
Hagedorn: Ty is the limiting temperature for hadronic matter
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A new phase

Phys.Lett. B59 (1975) 67-69
EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N. CABIBBO

Istituto di Fisica, Universitd di Roma,
Istituto Nazionale di Fisica Nucleare, Sezione di Rome, Italy

G. PARISI

Istituto Nazionale di Fisica Nucleare, Frascati, Italy
Received 9 June 1975

The exponentially increasing spectrum proposed by Hagedorn is not necessarily connected with a limiting tempera-
ture, but it is present in any system which undergoes a second order phase transition. We suggest that the “observed”
exponential spectrum is connected to the existence of a different phase of the vacuum in which quarks are not confined.

f

¥

Fig. 1. Schematic phase diagram of hadronic matter. pp is the
density of baryonic number. Quarks are confined in phase I

and unconfined n phse 1. This is the current interpretation of Ty
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Conclusions

@ Hagedorn's Model was proposed and studied between 1965 and 1975.
It was abandoned in favor of the QCD.

@ It was recovered in the middle of '90, when it was observed that the
total multiplicity of hadronic particles produced in high energy
collisions (et —e™, p— p, ...) could be accurately described by
thermal models: N o e™'T, with T ~ 150 MeV.

@ At present, its modern version (the Hadron Resonance Gas Model) is
widely used to study the hadronic phase in the heavy-ion collisions.
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