

- R. Hagedorn: "Statistical thermodynamics of strong interactions at high energies", Nuovo Cim. Suppl. 3, 147 (1965)
- R. Hagedorn: "Thermodynamics of strong interactions", CERN-Report 71-12 (1971)
- K. Redlich, H. Satz: "The legacy of Rolf Hagedorn: Statistical Bootstrap and Ultimate Temperature", arXiv:1501.07523
- N. Cabibbo, G. Parisi "Exponential Hadronic Spectrum and Quark Liberation", Phys.Lett. B59 (1975) 67-69

Middle '60

In high-energy particle collisions (p,e) many hadrons were created with larger and larger invariant mass.

Theorists were at work to find a consistent description and classification of hadrons. Two possible ways:

- Quark Model (\rightarrow QCD, middle '70)
- Hagedorn's Model (1965), based on statistical properties

Self-similar scheme for the composition and decay of hadrons and their resonances (*"fireballs"*) (Statistical Bootstrap Model)

A heavy particle is a resonant state formed by lighter particles, in a *self similarity pattern*:

a fireball consists of fireballs, which in turn consist of fireballs, and so on... 1

System of non-interacting particles, in which the formation and decay of resonances simulates the interaction.

¹R. Hagedorn: "Statistical thermodynamics of strong interactions at high energies", Nuovo Cim. Suppl. 3, 147 (1965)

Self-similarity in mathematics

• Sierpinski Triangle (1915)

- Benoît Mandelbrot: "Les Objects Fractals: Forme, Hazard et Dimension" (1975)
- Number theory: how many ways are there of decomposing an integer into a sum of integers?

 $\begin{array}{ll} 1=1 & p(1)=1=2^{n-1} \\ p(2)=2=2^{n-1} \\ p(3)=4=2^{n-1} \\ p(4)=8=2^{n-1} \end{array}$

There are $p(n) = 2^{n-1} = \frac{1}{2} e^{n \ln 2}$ ways of partitioning an integer *n* into ordered partitions: p(n) grows exponentially in *n*.

Hagedorn's Model

April 6th, 2016 5 / 15

The Statistical Bootstrap Model

Let us consider a system of non-interacting particles with momentum \vec{p}_{α} , mass m_{γ} , energy $\varepsilon_{\alpha\gamma} = \sqrt{\vec{p}_{\alpha}^2 + m_{\gamma}^2}$; let $\nu_{\alpha\gamma}$ be their multiplicity. The total energy of the system is:

$$E = \sum_{lpha\gamma}^{\infty}
u_{lpha\gamma} arepsilon_{lpha\gamma}$$

The Grand-Partition Function (Grand-canonical description with $\mu = 0$) is:

$$\mathcal{Z}(V, T) = \sum_{\{\nu\}} \exp\left\{-\frac{1}{T}\sum_{\alpha\gamma}^{\infty} \nu_{\alpha\gamma}\varepsilon_{\alpha\gamma}
ight\}$$

or, in the continuum limit,

$$\mathcal{Z}(V,T) = \int_{0}^{\infty} \sigma(E,V) \exp\left\{-\frac{E}{T}\right\} dE$$

Short-hand notation: $x_{\alpha\gamma} \equiv \exp\left\{-\frac{\varepsilon_{\alpha\gamma}}{T}\right\}$:

$$\mathcal{Z}(V,T) = \sum_{\{\nu\}} \exp\left\{-\frac{1}{T}\sum_{\alpha\gamma}^{\infty}\nu_{\alpha\gamma}\varepsilon_{\alpha\gamma}\right\} = \sum_{\{\nu\}}\prod_{\alpha\gamma}x_{\alpha\gamma}^{\nu_{\alpha\gamma}} = \prod_{\alpha\gamma}\left[\sum_{\{\nu\}}x_{\alpha\gamma}^{\nu_{\alpha\gamma}}\right]$$

with the occupation numbers: $\nu_{\alpha\gamma} \Longrightarrow \begin{cases} \nu_{\alpha\beta} = 0, 1, 2, \dots & \text{Bosons} \\ \nu_{\alpha\phi} = 0, 1 & \text{Fermions} \end{cases}$

$$\mathcal{Z}(V,T) = \prod_{lpha\phi} (1+x_{lpha\phi}) \prod_{lphaeta} rac{1}{1-x_{lphaeta}}$$
 $\log \mathcal{Z}(V,T) = \sum_{lpha\phi} \log(1+x_{lpha\phi}) - \sum_{lphaeta} \log(1-x_{lphaeta})$

$$\log \mathcal{Z}(V,T) = \frac{V}{2\pi^2} \int_0^\infty p^2 \mathrm{d}p \left[\int_0^\infty \rho_F(m) \log(1+x_{p,m}) \mathrm{d}m - \int_0^\infty \rho_B(m) \log(1-x_{p,m}) \mathrm{d}m \right]$$

$$\log(1\pm x) = \pm x - \frac{x^2}{2} \pm \frac{x^3}{3} - \dots \qquad (x \equiv \exp\{-\frac{\varepsilon}{T}\} \Rightarrow 0 < x < 1)$$
$$\log \mathcal{Z}(V, T) = \frac{V}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\infty} p^2 \rho(m; n) x_{p,m}^n \, \mathrm{d}p \, \mathrm{d}m$$

where

$$x_{p,m}^{n} \equiv \exp\left\{-\frac{n}{T}\sqrt{p^{2}+m^{2}}\right\}$$
 $\rho(m;n) = \rho_{B}(m) - (-1)^{n}\rho_{F}(m)$

By integrating over momenta (>):

Hagedorn's Model

$$\mathcal{Z}(V,T) = \exp\left\{\frac{VT}{2\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2}\int_{m_0}^{\infty}\rho(m;n)\,m^2\,\mathcal{K}_2\left(\frac{nm}{T}\right)\,\mathrm{d}m\right\}$$

April 6th, 2016

7 / 15

We have obtained two expressions for \mathcal{Z} :

$$\begin{aligned} \mathcal{Z}(V,T) &= \int_{0}^{\infty} \sigma(\boldsymbol{E},V) \exp\left\{-\frac{\boldsymbol{E}}{T}\right\} d\boldsymbol{E} \\ &= \exp\left\{\frac{VT}{2\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{m_{0}}^{\infty} \rho(\boldsymbol{m};\boldsymbol{n}) \, \boldsymbol{m}^{2} \, \mathcal{K}_{2}\left(\frac{\boldsymbol{n}\boldsymbol{m}}{T}\right) \, d\boldsymbol{m}\right\} \end{aligned}$$

Hagedorn imposed the *logaritm bootstrap condition* ("weak condition")

$$\frac{\log \rho(m; n)}{\log \sigma(m, V_0)} \xrightarrow[m \to \infty]{} 1$$

i.e. asymptotic equality of entropies.

 σ and ρ differ by som algebraic factor in m: $\sigma(E)$ counts all the states of the system in V_0 , including, for instance, those whit very large angular momentum (=collective motion) which are not "fireballs" and therefore are not counted in ρ .

Hagedorn's Model

April 6th, 2016 9 / 15

Hagedorn solved this equation by iterations:

$$\rho^{(0)} \longrightarrow \mathcal{Z}^{(0)} \longrightarrow \sigma^{(0)}$$
$$\log \sigma^{(0)} \equiv \log \rho^{(1)}$$
$$\rho^{(1)} \longrightarrow \mathcal{Z}^{(1)} \longrightarrow \sigma^{(1)}$$
$$\log \sigma^{(1)} \equiv \log \rho^{(2)}$$
$$\dots$$

Starting from a simple $\rho^{(0)}(m)$, in a few iterations one gets an exponential behaviour:

$$\rho(m) = Am^{a} e^{m/T_{H}} \qquad \qquad \sigma(m) = Bm^{b} e^{m/T_{H}}$$

The logaritm bootstrap condition is satisfied:

$$\frac{\log \rho(m; n)}{\log \sigma(m, V_0)} = \frac{m/T_H + a \log m + \log A}{m/T_H + b \log m + \log B} \quad \xrightarrow[m \to \infty]{} 1$$

Hagedorn's solution: $a = -\frac{5}{2}$

$$\rho_H(m) = A m^{-5/2} e^{m/T_H}$$

with $T_H \sim 150 - 180$ MeV.

A few years later, Nahm² solved the equation analytically (with a "strong" condition, conservation laws), and found a = -3:

$$\rho(m) = A m^{-3} \mathrm{e}^{m/T_H}$$

with:

$$\frac{V_0 T_H^3}{2\pi^2} \left(\frac{m_0}{T_H}\right)^2 K_2 \left(\frac{m_0}{T_H}\right) = 2\log 2 - 1$$

For $m_0 = m_\pi$: $T_H \simeq 150$ MeV.

²W. Nahm: "Analytical solution of the statistical bootstrap model", Nucl. Phys. B 45, 525 (1972)

April 6th, 2016 11 / 15

Experimental estimate of T_H

J.Orear "Universality of Transverse Momentum distribution in High Energy Physics", Phys. Rev. Lett. 13, 190, (1964)

Fig. 1. Plot of large angle p-p elastic scattering data vs. transverse momentum. The line is the least squares fit of eq. (2) to the 29 points of the Cornell-Brookhaven group. [...] Finally we discuss the transverse momentum distribution of secondaries produced in P-P col-

lisions of fixed energies. In 1961, Cocconi, Koester and Perkins pointed out that the distribution function (4)

 $dN/dp_{\perp} \propto p_{\perp} \exp(-ap_{\perp})$, where 1/a = 165 MeV/c

fits the 10 to 30 GeV pion production data from CERN and Brookhaven as well as cosmic ray data up to 10^5 GeV [15]. We note that eqs. (1) or (2) yields the same transverse momentum distribution function for elastically scattered protons as long as we keep away from angles near 90° . The

the plots are consistent with eq. (4) and a value of $1/a \approx 160 \ {\rm MeV}/c.$

No firm theoretical explanation has yet been given of why a simple exponential, $\exp(-ap_1)$ should appear to dominate high energy physics. Recent

Hagedorn calculated the transverse momentum distribution in its model and found a natural explanation!

Hagedorn's Model

A closer look...

Let us study the high-temperature limit of the Hagedorn's partition function (only n = 1):

$$\log \mathcal{Z}(T, V) \simeq \frac{VT}{2\pi^2} \int_{m_0}^{\infty} m^2 \rho(m, 1) K_2\left(\frac{m}{T}\right) \mathrm{d}m$$
$$\propto \frac{VT}{2\pi^2} \int_{m_0}^{\infty} m^2 m^a \mathrm{e}^{m/T_H} K_2\left(\frac{m}{T}\right) \mathrm{d}m$$

for $z \to \infty$: $K_2(z) \sim \sqrt{\frac{\pi}{2z}} e^{-z} + \mathcal{O}(z^{-2})$

$$\mathrm{e}^{m/T_H} K_2\left(rac{m}{T}
ight) \sim \mathrm{e}^{-m\left(rac{1}{T}-rac{1}{T_H}
ight)}$$

Z diverges exponentially if $T > T_H$! Hagedorn: T_H is the limiting temperature for hadronic matter

Hagedorn's Model

April 6th, 2016 13

13 / 15

A new phase

Phys.Lett. B59 (1975) 67-69 EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N. CABIBBO

Istituto di Fisica, Universitá di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Rome, Italy

G. PARISI

Istituto Nazionale di Fisica Nucleare, Frascati, Italy

Received 9 June 1975

The exponentially increasing spectrum proposed by Hagedorn is not necessarily connected with a limiting temperature, but it is present in any system which undergoes a second order phase transition. We suggest that the "observed" exponential spectrum is connected to the existence of a different phase of the vacuum in which quarks are not confined.

PR Т

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

This is the current interpretation of T_H

Hagedorn's Model

April 6th, 2016

14 / 15

Conclusions

- Hagedorn's Model was proposed and studied between 1965 and 1975. It was abandoned in favor of the QCD.
- It was recovered in the middle of '90, when it was observed that the total multiplicity of hadronic particles produced in high energy collisions ($e^+ e^-$, p p, ...) could be accurately described by thermal models: $N \propto e^{m/T}$, with $T \sim 150$ MeV.
- At present, its modern version (the Hadron Resonance Gas Model) is widely used to study the hadronic phase in the heavy-ion collisions.

Hagedorn's Model

April 6th, 2016 $$ 15 / 15