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Most particles produced in nucleus-nucleus collisions have momenta in the
GeV range or less, and the partons involved in the production process have
momentum fraction:

x =
mT√

s
e

±y mT =
√

m2 + p2
T .

At RHIC energies mT ∼ 1 GeV correspond to x ∼ 10−2 at y = 0, at LHC
x ∼ 10−4 (smaller values at forward rapidities).
These values are comparable to the values probed at HERA in deep
inelastic collisions on protons.

Understanding such collisions at high energies requires a good knowledge
of that part of the nuclear wave functions that describes low x degrees of
freedom.

It is well established that in this regime of small x , the gluons dominate
the hadron wave functions. The gluon density is large and grows with
lowering x , but this growth eventually saturates: one reaches then the
regime of ‘parton saturation’,
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x -evolution of the gluon, sea quark and valence quark distributions for
Q2 = 10 GeV2 measured at HERA
[H1 Collab., Eur. Phys. J. C 64 (2009) 561]
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Saturation leads to a simple structure in the plane (log 1
x
, log Q2), a line

separates dense and dilute parton systems.

each disk represents a parton with transverse area ST ∼ 1/Q2 and
longitudinal momentum k+ = xP+
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Partons with transverse momentum kT ≫ Qs are in the dilute regime,
those with kT . Qs are in the dense, saturated regime.

In the vicinity of saturation perturbation theory breaks down: the large
gluon density compensates for the weakness of the coupling, making the
effective expansion parameter of order unity.

There is a balance between the inverse processes of gluon splitting and
recombination:

g ↔ gg

Non-linear effects are important!

The Color Glass Condensate (CGC) is a QCD-inspired effective theory, in
which the classical fields are given a prominent role (high density).
The CGC aims at a complete description of the small x part of hadron
wave functions that can be used to calculate many processes dominated by
small x partons.
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The wave function of a hadron at high energy

The wave function of a hadron is commonly characterized in terms of
‘partons’ carrying momentum k = (kz , ~kT ), with the longitudinal
momentum kz given as a fraction x of the momentum of the parent
hadron, kz = xPz .
Light cone coordinates are commonly used: x± = (t ± z)/

√
2

In these coordinates, a right mover parton has momentum k+ = xP+.

The basic phenomenon that controls the evo-
lution of the wave functions is the branching
of partons: q(g) → q(g)g .

This process, which corresponds to the radiation of a soft gluon from
either a quark or a gluon, occurs with a probability

dP ≃
αsCR

π2

d2kT

k2
T

dx

x
,

with CR = CA = Nc for the radiation from a gluon, and CR = CA = N2
c −1

2Nc

for a radiation from a quark.
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The state of a hadron is built up from successive splittings of partons
starting from the valence quarks.
For just a valence quark, leading order perturbation theory yields the
integrated gluon distribution xG(x ;Q2) as

xG(x ;Q2) =
αsCF

π
log

(

Q2

Λ2
QCD

)

.

xG(x ;Q2) counts the number of gluons in the hadron wave function (here
the valence quark) with longitudinal momentum xP+ and localized in the
transverse plane to a region of size ∆xT ∼ 1/Q.

The parton description ceases to make sense for partons that have
wavelengths larger than the typical confinement scale r0 ∼ 1/ΛQCD .
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We define the unintegrated parton distribution ϕ(x , ~kT ), which gives the
density in the transverse plane of gluons with transverse momentum kT

and a definite spin and color:

xG(x , Q2)

πR2
=

∫ Q

d2~kT
dN

dyd2~kT

with dy = dx/x and

dN

dyd2~kT

=
2(N2

c − 1)

(2π)3
ϕ(x , ~kT ) .
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The density of partons in the cloud of gluons that surrounds a valence quark is not a
fixed quantity but a quantity that depends on the resolution with which one is probing
the gluon cloud. If one increases the resolution, by increasing Q2, one sees more and
more partons, i.e., the parton density increases.

When log Q2 becomes large (even with small αs) leading order perturbation theory is
not enough: successive branchings must be included.

When αs log Q2 becomes of order unity, higher order terms become significant and must
be resummed. This resummation is achieved by the DGLAP equation
(Dokshitzer,Gribov,Lipatov,Altarelli,Parisi), which we write schematically as

Q
2 ∂

∂Q2
G(x , Q

2) =
αs(Q

2)

2π

∫ 1

x

dz

z
P(x |z)G(z, Q

2)

where P(x |z) is the ‘splitting function’ and gives the probability that a daughter parton
with momentum x is produced by the splitting of a parent parton with momentum z.
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The DGLAP equation leads to an increase of the parton density with increasing Q2.
However, this increase is slow, involving typically log Q2. Since the size of the added
partons decreases as 1/Q2, the area occupied by these new partons in the transverse
plane eventually decreases with increasing Q2. Thus, even though the density increases,
the system of partons produced by the DGLAP evolution is more and more dilute with
the partons effectively weakly coupled. As Q2 grows (with x kept not too small)
perturbation theory becomes more and more reliable in describing the changes in the
hadron wave functions.

log(Q 2)

log(x -1)

Λ
QCD

DGLAP =⇒

B
F

K
L
=

⇒

n
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p
er

t.
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BFKL Equation

When one increases the rapidity (or equivalently the energy), x decreases and one
eventually reaches a regime where new corrections become important: when αs log(1/x)
becomes of order unity, the corresponding large logarithms need to be resummed.
This new resummation is achieved by the BFKL equation (Balitsky, Fadin, Kuraev,
Lipatov): (equation for the unintegrated gluon density (y = log(1/x))):

∂ϕ(y , ~kT )

∂y
= ᾱs

∫

d2~pT

π

~k2
T

~p2
T (

~kT − ~pT )2

[

ϕ(y ,~pT ) −
1

2
ϕ(y , ~kT )

]

.

The most remarkable feature of the BFKL evolution is the exponential growth that it
predicts for the gluon density as a function of y :

ϕ(y , ~kT ) ∼ e
ωᾱs y

with ω = 4 log 2 (at leading order).
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It was recognized early on that this growth of the gluon density, predicted by the linear
BFKL equation, could not go on for ever, and various mechanisms leading to a
‘saturation’ of the process have been looked for. The early approaches to saturation
invoked a non linear contribution to the evolution equation and leads (schematically) to
an equation of the form

∂2

∂ log(1/x)∂ log Q2
xG(x , Q

2) = ᾱsxG(x , Q
2) −

9

16
ᾱs

2π2 [xG(x , Q2)]2

R2Q2

where the second term in the r.h.s accounts for ‘gluon recombination’.

This “kinetic” vision of gluon saturation suggests immediately the existence of a
characteristic momentum scale Qs at which the processes of gluon emission and gluon
recombination balance each other:

Q
2
s ∼ αs(Q

2
s )

xG(x , Q2
s )

πR2
.

At saturation the phase space density of modes with k2
T . Q2 is large, of order 1/αs .
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The saturation scale Qs

Consider a boosted nucleus interacting with an ex-
ternal probe
Transverse area of a parton: 1/Q2

Cross-section: σ ∼ αs /Q2

Parton density: n = xG(x , Q2)/πR2
A

Partons start to overlap when SA = πR2
A ≃ NAσ,

nσ ∼ 1 (NA= number of partons=xG(x , Q2))

The parton density saturates at the scale: Q2
S ∼ αs(Q

2
s )NA/πR2 ∼ A1/3

At saturation NA is proportional to 1/αs

Q2
s is proportional to the density of participating nucleons; larger for heavy nuclei.
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Color dipoles

Another view of saturation is based on a picture commonly used in the analysis of
lepton-hadron deep-inelastic scattering (DIS). In an appropriate frame, one can describe
the interaction of the virtual photon with the hadron as the interaction of a color qq̄

dipole (emerging form the photon) with the color field of the hadron.

The factor in the interaction cross section that is
relevant is σdip(x ;~rT ), the total dipole-hadron cross-
section, which can be calculated in the eikonal approx-
imation (the size rT of the dipole remains unchanged
during the interaction). In this approximation, the
S-matrix for the scattering of a quark moving in the
negative z direction is given by the Wilson line

U(~xT ) = Pexp

{

−ig

∫ ∞

−∞

dz
−

A
+(z−,~xT )

}

where P denotes an ordering along the x− axis, and A+ is the classical (frozen) color
field of the hadron moving close to the speed of light in the +z direction.
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The S-matrix for the scattering of the dipole contains another, complex conjugate,
Wilson line. We can write the total dipole cross section as

σdip = 2

∫

d~b(1 − S(~b,~rT ))

with

S(~b,~rT ) =
1

Nc

Tr

〈

U

(

~b +
~rT

2

)

U
†

(

~b −
~rT

2

)〉

It is also customary to define S = 1 − N, with N denoting the imaginary part of the
forward scattering amplitude.

The total cross section will depend on the ratio between rT and another length scale,
call it rs , that is determined entirely by the dynamics of the field with which the dipole
interact. For the S-matrix one finds:

S(~rT ) = e
−r2

T
/4r2

s = e
−Q2

s r2
T

/4

with Qs = 1/rs (the factor 4 is conventional). The S-matrix exhibits a change of regime
in the interaction of the dipole with the field of the hadron. A small dipole, with
rT ≪ rs , is little affected (color transparency), and its scattering amplitude measures
directly the gluon density. A large dipole (rT ≫ rs ) is strongly absorbed: its cross
section saturates to the black disk limit, and it is not capable to resolve the parton
structure of the field in which it propagates.
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This allows one to view saturation as resulting from the multiple scatterings that the
dipole undergoes as it traverses the hadron.

We note that all the dependence on the wave function is contained in the scale rs that
characterizes the change of regime between the dilute regime and the saturated one.
The energy dependence of rs is determined by the dynamics of gauge fields; we expect rs

to appear in the cross section only in the ratio r2
T /r2

s = r2
T Q2

s .

A very simple model for the dipole cross-section has been proposed by Golec-Biernat and
Wüsthoff with the parameterization

σdip(x ,~rT ) = σ0

[

1 − e
− 1

4
Q2

s (x)r
2
T

]

.

with Q2
s (x) = Q2

0 (x0/x)λ. This model gives a very good description of HERA data at
x < 10−2 and moderate Q2.
The fact that the x dependence of the cross section enters only in the definition of the
basic scale rs has been called ‘geometrical scaling’.
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The cross section σ(γ∗p) as a function of the scaling variable τ = Q2/Q2
s
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The saturation momentum Qs is determined by the dynamics of the gauge fields, i.e.
from QCD. In particular the energy dependence of Qs follows non-linear evolution
equations.
In the dipole picture, the evolution is due to the emission of a gluon by a color dipole.

The original dipole turns into a dipole-gluon system, whose propagation, in the hadron
field, is different from that of the original dipole.

Correlator of two Wilson lines:

∂Y 〈Tr(U†
x Uy )〉Y = −

αs

2π2

∫

d
2
z

(x − y)2

(x − z)2(y − z)2
〈NcTr(U†

x Uy ) − Tr(U†
x Uz)Tr(U†

z Uy )〉

The Balitsky-Kovchegov (BK) equation is obtained by assuming

〈Tr(U†
x Uz)Tr(U†

z Uy )〉 ≈ 〈Tr(U†
x Uz)〉〈Tr(U†

z Uy )〉

justified for large Nc .
By writing N = 1 − S the BK eq. can be written for the scattering amplitude:

∂Y Nxy = −
αsNc

π

∫

d2z

2π

(x − y)2

(x − z)2(y − z)2
(Nxz + Nzy − Nxy − Nxy Nzy )
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Color Glass Condensate

Near saturation the color fields are ’strong’, with amplitude A ∼ 1/g , and they provide a
natural description of highly occupied, strongly coupled, modes.

The Color Glass Condensate formalism puts these classical fields at the heart of all
considerations. Its goal is to provide a complete description of the small x component of
the nuclear wave functions, thereby allowing the calculation of observables that control
the early stages of nucleus-nucleus collisions.

The effective degrees of freedom in this framework are color sources ρ at large x and
gauge fields Aµ at small x . At high energies, because of time dilation, the former are
frozen color configurations on the natural time scales of the strong interactions and are
distributed randomly from event to event. The latter are dynamical fields coupled to the
static color sources. It is the stochastic nature of the sources, combined with the
separation of time scales, that justify the “glass” appellation. The “condensate”
designation comes from the fact that saturated gluons have large occupation numbers
O(1/αs), with typical momenta peaked about a characteristic value k⊥ ∼ Qs .
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Mathematical definition of the CGC

It is based on the observation that the separation between charges and fields involves a
dividing scale between degrees of freedom: the field describes degrees of freedom with
some particular value of x , while the color charge, and their correlations, are determined
from degrees of freedom with x-values x ′ > x .
The CGC is defined mathematically by a path integral

Z =

∫

X0

DA Dρ exp{iS[A, ρ] − WY [ρ]}

where X0 is the cut-off.
Small-x gluons (A) are described as the classical colour fields radiated by colour sources
at higher rapidity. Partons with large-x (ρ) act as a source.
As we move to lower and lower values of x more and more degrees of freedom are
treated as random charges, and the corresponding correlators are modified.
The requirement that observables should remain independent of the dividing scale can
be implemented (to leading logarithm accuracy) as a renormalization group equation for
the distribution WY [ρ].
This renormalization group equation is the JIMWLK1 equation.
In the low-density limit it reduces to DGLAP and BFKL.

1JIMWLK ≡ Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner.
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Phenomenology

The saturation scale depends on energy and
on impact parameter:

Q
2
s = Q

2
s0(x/x0)

λ , Q
2
s0(b) = Q

2
s0(0)TA(b)

where TA(b) =
∫

dzρ(b, z), λ ≃ 0.28.

The energy dependence of Qs can be ob-
tained by solving the BK eq.
The unintegrated gluon distribution, ob-
tained as solution of BK, has the tipical
shapes shown in the figure.

A crude approximation consists in assuming:

ϕ(kT ) ≃

{

1/αs kT < Qs(x)
Q2

s (x)/k2
T kT > Qs(x)

J.L. Albacete et al, Phys. Rev. Lett 92 (2004)
082001, hep-ph/0307179

[Initial conditions: GBW (solid lines), MV with Q2
S

=

4 GeV2 (dashed lines), MV with Q2
S
= 100 GeV2 (dot-

ted lines); The three sets corresponds to y = 0, 5, 10
(left to right)]
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The Structure Function F2

Using the dipole description of the virtual photon wavefunction, the structure function
F2 can be related to the gluon distribution function which arises from the CGC.

There are 3 unknown parameters in this description: the hadron size, the scale x0 and
the quark mass. In addition, the parameter λ which controls the energy dependence of
the saturation momentum is determined by experiment but it is in good agreement with
theoretical calculations:

Q
2
s = Q

2
s0(x/x0)

λ λ ≃ 0.28

The results for the description of the data are remarkably good for x ≤ 10−2 and
Q2 ≤ 45 GeV 2, as shown in the next plots.

One should note that this description includes both the high and low Q2 data.
Descriptions based on DGLAP evolution can describe the large Q2 points. The CGC
description is very economical in the number of parameters which are used.
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E. Iancu, K. Itakura, S. Munier, Phys.Lett. B590 (2004) 199-208
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Introduction to Saturation Physics April 4th, 2016 26 / 32



CGC in Heavy Ion Collisions

The collision of two ultrarelativistic heavy ions can be visualized as the scattering of two
sheets of colored glass.

At very early times after the colli-
sion the matter is at very high en-
ergy density and in the form of a
CGC. As time goes on, the matter
expands. As it expands the density
of gluons decreases, and gluons be-
gin to propagate with little interac-
tion. At later times, the interaction
strength increases and there is suffi-
cient time for the matter to thermal-
ize and form a Quark Gluon Plasma.
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Multiplicity

The CGC allows for a direct computation
of the particle multiplicity in hadronic
collisions. If one naively tries to compute
jet production, the total multiplicity is
infrared divergent. This follows because
of the 1/p4

T nature of the perturbative
formula for gluon production.
In the CGC, when pT ≤ Qsat the pertur-
bative divergence is suppressed.
The total gluon multiplicity goes as

1

πR2

dN

dy
∼

1

αs

Q
2
sat
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Also, the dependence of the multiplicity on the number of participants can also be
computed, realizing that the saturation momentum should be (for not too small x)

proportional N
1/3
part . This leads to

dN

dy
∼

1

αS

(1)

so that we have a very slow logarithmic dependence on the number of participants. This
was a prediction of the CGC [KLN model] and it agreed with experiment.
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Limiting Fragmentation

The rapidity distribution dN/dY in the vicinity of the beam rapidity
Ybeam = log(

√
s/m) (i.e. in the fragmentation region) is independent of

the collision energy.
In the CGC picture: dN

dy
∝ x1G(x1, Q2) (the projectile is dilute, the target

is dense).
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Limiting fragmentation and the RHIC data.
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Initial condition for Hydrodynamical evolution

The multiplicity density (in the transverse plane) is estimated as

dN

d2s dy
∝ min

{

Q2
s1, Q2

s2

}

,

where Q2
s1, Q2

s2 are the saturation scales of the two nuclei, evaluated at the
position ~s:

Q2
s1 ∝ TA(~s) , Q2

s2 ∝ TB(~b −~s) .

In contrast, in the Glauber picture the local density is assumed to be
proportional to the local density of participants TA(~s) + TB(~b −~s).
Therefore the eccentricity predicted by the CGC initial conditions is larger
than that obtained with Glauber initial conditions. This affects in
particular elliptic flow calculation (v2).
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Conclusions

Saturation is a generic property of QCD in the regime of high parton
densities.

Non linear evolution equations can be derived from QCD, based on weak
coupling approaches, the non perturbative aspects of saturation arising
from the large density of partons.

The CGC relies on a separation of degrees of freedom into color charge
and color fields, and on a renormalization group equation that copes with
the arbitrariness in the choice on the separation scales.

The CGC, or related approaches, have led to a systematic and successful
phenomenology based on a few basic ingredients: Qs and its dependence
on energy, size of the system, centrality of the collision.

It is essential to know the initial state effects to correctly interpret the
experimental data. The problem is: how to separate initial- and final-state
effects? Data on p-A and e-A are extremely useful.
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