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0.1 Shape function for semileptonic decays

We write the matrix element of the forward scattering amplitude for B —

X 7 as:
hyw = [=gwk-v+ kv, + kv, — i€uapk®v”] x
1 2\ </ 2km\"
—(BIb| —— ——— | blB
w0 () 35 (5)

So, for each of the three structure functions:
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We then write:
1

%(Bﬁm(m oo Ty b — traces [B) = ap (vy, ... vy, — traces)
and define the shape function via its moments:
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where index ¢ enumerates the three structure functions.
Now:
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Then:
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To the leading approximation:

(1 _ %) ~1, (10)

And we find the form of the convolution:

k 2
Wi(qo, ¢%) = /dk+ Fi(ky,q*) WP [qO - <1 - %) ,qﬂ (11)
b
To the leading order we can substitute (1 —q?/m3) by (1—¢*/mympg). With
such a prescription the hadronic kinematics is automatically satisfied, i.e.
the maximum allowed value for gy turns out to be:

gor =T (L € ) mt e mptd (12)
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which is the correct endpoint for the hadronic decay. (Remember that
k7 = mp — my). Hence, the convolution reads:

T k 2
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We then assume the latest equation, derived at leading order, to be valid
also for higher orders.

Our method to determine the shape functions is to match their moments
with (central) go-moments of the structure functions as predicted by the
HQE:
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The L.h.s. of eq. (14) can be calculated including power corrections and we
denote it by:

MR - /dqa(qo —a)" Wilgo, ), (17)
While the r.h.s. can be written as:
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where the last step is due to vanishing of all central moments of the bare
structure functions, with n > 0. If we denote:

I§O)7bare _ /qu ‘/Vibare(QO;QZ), (19)

we finally find the expression for the moments of the shape functions:
) 2 n I(’n),HQE
/dk+ Ky Fi(ky,q7) = (Z) W (20)

0.2 Perturbative form factors

We write the triple differential distribution using the ensemble (qo, ¢%, E):
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After introducing normalized variables:
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the most general form for each structure function is:

Wilao,a%) = my* [WF"(do, @) + W™ (do, ¢°)
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with n12 = —1 and ngz = —2.

Power corrections, up to O(1/mj}) are encoded in W/ and are quoted
in Appendix B. After the divergence has been subtracted and the gluon
mass has been set to zero, the perturbative part, to first order in ay, reads:

xrper ~ Og =~ R N
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Soft terms have been already subtracted to form factors of the real emission
and inserted in f/((jQ). The “tilde” points out that perturbative corrections
are meant here in the on-shell scheme.

The chosen normalization is such that:

Wik@) =1-¢*  Wik@) =4, Wit =2 (24)

The NLO soft-virtual form factors read:
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And the real gluon emission terms:
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where @ = 1 — 24y + ¢°.

Plus distributions are defined in order to factorize ¢ (1 + 4% — 2qu) in
front of In A and In? \ singularities. This allows one to cancel it with the
corresponding virtual term. Given a smooth function G(do,§?) the plus

prescription is such that:
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0.3 Wilsonian scale separation

The framework of the Wilsonian scale separation is based on the idea of
including into the Feynman integrals only gluons with energies larger than



a cutoff p around 1 GeV. Contributions of gluons below this scale are reab-
sorbed in the definitions of heavy quark parameters. Physical quantities are,
of course, independent of the cutoff. This ensures a better convergence and
reliability of the perturbative series, as divergences coming from soft gluons
are factorized.

We restrict the dissertation to O(as) corrections. The extension to the
BLM case is straightforward.

Inserting a cutoff on the gluon energy means integrating over the gluon
momentum k with an extra factor 8(ko — p)). Eq. (23) is modified to:

WP a0, aPm) = [WIH@) + Cro2Vi(d? m)| 601 + 62 = 240)
+ O Rildo.6n) 01+ 4 — 2do)
+ Cp=Bui(@’m) (L4 = 24). (33)
where:
n = p/my (34)

and we have assumed 0 < 7 < 1/2. The effect of the cutoff is to soften the
divergence of the form factors near the endpoint, eliminating the infrared
divergence in the spectrum. The growth softens but the form factors are
still divergent due to collinear effects.

We were able to perform the explicit calculation in the presence of the
cutoff for the real gluon emission, finding the analytic result for R;(go, §%,n):

Ri(do,d%,m) = Ri(do,d*) 0 (s — do) + RS (G0, 4%, ) 0 (4o — 5) (35)

where s = s(¢%,1) = 1/2—n+¢%/(2—4n). It is easy to see that for G > 1—2n
the above relation reduces to:

Ri(qA()v(jQ’T/) = Ri(qAO’qAQ)v (36)

in the whole allowed ¢y domain. Expressions of Rf“t are collected in Ap-
pendix A.

The direct calculation of the n-dependence of (soft) virtual form factors
would be much more cumbersome, but we can still infer their expressions
from the requirement that physical quantities and, in particular, the integral
over qg of each form factor must be independent of the cutoff. That is:

+oo +oo
/ dgoWi(qo, ¢*,0) = / dgoWi(qo, 4%, 1) + O(a?), (37)

—0 —00

where, as already stated:

Wi(q07 q27 H) = m;)h |:Wip@7"t(qo7 (_?2, 77) + Wipower(q07 627 77)] . (38)



Renormalization of non perturbative parameters and of m; yield a cutoff-
dependence of the form:

- (12 (0)] et
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p2(0) = 2 (n) = [ () ]pert (40)
pb(0) = ph(n) = [pH(1)]pert (41)
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- 4 . as

[A('u)] pert - gCF?U

[ ()] ey = Cp%vf
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We write the perturbative contributions to form factors, with the Wilsonian
scale separation, in the following way:

Ri(do,d%n) = Ri(do,d) + 0Ri(do, ¢, m), (43)
Vi(@®n) = Vi(d®) +Vi(d®,m). (44)

According to def. (35), 0R; is simply:
SR, ) = [ R (o, 4%.m) — Raldo, 8%)] 0ldo—s)  (45)

It is simple to verify that the matching condition (37) is satisfied iff:
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There is one point left to clarify in eq. (23), namely the presence of a ¢’
term. This is related to the difference that occurs between the “rest-energy”
kinetic mass of the b quark and the mass that really enters in the decay. Such
a difference appears as a shift in the endpoint, which is the interpretation of
the derivative of the Dirac delta:

a2 = [t + ] (1- ) - 2 (19)

mj mp
Again, we can infer the expressions of B;; without an explicit calculation,
but requiring cutoff-independence of the first ¢y central moment (which is

clearly the only one affected by the presence of a §’). A procedure very
similar to the one described for the virtual corrections yields in the end:

2

Cras B1i(gn) =2 mbflfm'(l — QQ){ [A(n)]pert + %}M;O),TL(QQ)
a2 {0 e + (O g )
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Hence:
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Bual@m) = 30— n+2 0P +2(=7+5¢) " 61)

0.4 Convolution with the shape function

We now want to convolute the shape functions with the perturbative kernel,
including corrections up to second order BLM. It is instructive to see how
the convolution is performed in the simpler case of B — X, before moving
to semileptonic decays.

0.4.1 B — X,y

The expression of the convolution for the radiative decay can be derived from
eq. (13), by taking the ¢ — 0 limit and replacing the form factor with the
photon energy spectrum:

er k
dE, ) T dE,




Which, in terms of a-dimensional variables ({ = 2E, /my, &k = k1 /my), reads:

dr) _ e I (€ — k)
Moments of the shape function are then constrained to be:
1 drore
[ Py = [ dg (€~ 1" rom (54)
where:
1 drore ) "
[OPE g = 6(1—&) +A10°(1—¢) + A20"(1 = §), (55)
2,2 5 3 7 3
Al — P éj’G o PD 3pLS (56)
2my, 6my
2 2,3 _ 3
A, = /Jfr2 _ %PD SPLS (57)
6m;; 6m;,

Note that eq. (54) is only valid for n > 1, as in this context, opposite to the
case of semileptonic decays, we don’t need the exact normalization of the
shape function (namely n = 0). We will simply normalize to the convoluted
spectrum to its integral over the whole domain.

Eq. (55) implies:

/dli kK F(k) = A (58)
/ dr k? F(k) = 24, (59)

Once the shape function is determined, one can proceed in two equivalent
ways to obtain the hadronic spectrum. The common starting point is the
perturbative kernel, that we will now treat in the on-shell scheme. Even-
tually, modifications due to the introduction of a Wilsonian cutoff will be
pointed out. At NLO the perturbative spectrum has the general expression:

1 dIPt  Cra,
T'pert dg -

S1(§) 6(1 =€) 0(6) + A o6(1 - ¢), (60)

where A = 14+ (Cras/m)Vi and can be fixed after regularization and cancella-
tion of infrared and collinear divergences (e.g. introducing plus-distributions
as done in the previous chapter).

Using eq. (53) one immediately finds the convoluted spectrum to be:

min(A,€)
L Cras /g dr G(r) fi(E—r),  (61)
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where we have explicited the #-function contained in F'(x). Namely:

~

F(k) = G(r) O(A — r). (62)

The latter equation requires explicit knowledge of A, thus the introduction
of a subtraction-scheme for divergences. The method we are now showing
allows one to bypass the direct calculation of A.

We define, for z < 1:

[e%¢) deert Crao x
o(z) = / de ) _ pper {1 _ Cros / de LB — )|, (63)
T dé Q 0
which, by definition, is such that:
do(z)  dIPet(z)
— = . 4
dz dz (64)
After a shift of the integration variable (k = £ —t), eq. (53) can be re-written
as:
1 dr +oo de(t)

We then integrate the latter by parts. All surface terms vanish and the final
expression for the convolution reads:

1 dr
mplPert d¢ -

—A

+o0o a t
—/ dt G'(¢ ~ 1)1 - Cr / dz (2001 —2)], (66)
3 T 0

The lower limit of integration over ¢ is fixed by the #-function in (62). The
pre-factor 1/m,I'P®"* cancels in the normalization:

1+A
/+ dge L&y (67)

Note that the domain is now extended to the hadronic kinematics.

0.4.2 B — X,e 7. in the on-shell scheme

The analog of eq. (61) for each form factor of the b — w decay is obtained,
in the on-shell scheme, from egs. (13) and (23). It reads:

14+n; ~ ~2
m R Crog~ . 2G0 — 1 —q¢° .
Wilan?) = [k + e (R )
.CFOé A R ~ “ A R
+ mi—i—anS /2@0—1—62 dk Gi(’%v q2) RZ <QO - E’%v q2> )
A

~

where A = A(G2) = (14+ A — ¢ /(1 + A), as defined in (16).
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Equivalently, one can employ the second method of convolution, namely
the one involving the derivative of the shape function, which yields:

4t oo 2(go — 1)
. 2y b / 0 ~2
WZ(QO?Q) - A2 /%erz[ A 7q:|
Cra r ~
K(¢?) — s (2. 62 2
x [ @)= [ e R 001+ 2z>] ,
(69)
where r = §o — A /2 and:
+oo
Kild®) = [ de W (e g?) (70)
A2

q

Note that the support of the form factors goes down to —oo, but in egs. (69)
and (70) we chose, for convenience, 1/¢2 as the lower limit of integration.
This seems to be the most reasonable value, as it is the minimal kinematical
value allowed for the energy of the W boson, but it is important to stress that
it is just a reference value, unsignificant in the subtraction of (69). Using
the normalization of eq. (21):

X 1-¢*) C 1 . R
Kl(q2) _ ( 2q ) + I;_as{24(j2 |:(6 —|—7T2) q4 _ 12(q2)3/2
+12(3¢% - DLiz (V@) ¢*

— 6(¢” + DLi2(¢))¢° - 3 (~12 +7%) ¢* — 30v/¢?
+ 6 (44" +¢* = 5) log (1 - V&)

—12(¢* + ¢* — 2) log(1 — q2)] } (71)
Ka(§®) = 2+ CTS {% [612 +8y/¢% — 241og (1 _ \/q_2)

—48Lis (\/q_2) — 4n? 4 27] }
K3(@?) = 1+ CFO‘S{ ! [42 (—181og (1 . \/q7) 16/ — w2 +3)

T 11242
+ 6(¢% — 1) log(1 - ¢%) + 6¢* (Lia(®) - 6Tix (V@) ) |}
(72)

An important difference from the case of the radative decay is that now we
want each form factor to have the exact normalization, thus we also need a
constraint on the zeroth moment of the shape function (namely n = 0 in eq.
(20)) and all pre-factors in egs. (68) and (69) must be properly taken into
account.
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0.4.3 B — X,e 7. in the kinetic scheme

The procedure for the convolution is exactly the same, provided the pertur-
bative form factors in (23) are substituted with those of (33). The analogue
of (68) is slighlty more complicated:

14+n;

m o Cpas . 200 —1—-¢*
Wi(g0,4*) = —5— [Wz‘TL(q2) + QVZ-(qQ,??)] G (=57
A m A
14+n; ~ 52
my " Crag . R S
- T B G (Of,f)
A .
_ B o = (.. A AA .
+ méJFnzC’F—a/ dk Gi(/@ q2) RZ <q0 — —K, q2) 0|— +s— QO]
T 2 (60— 2 2
A(QO s)
Cra. [min(AZ(G0—9)) A
14n; CFOs ) 22\ peut [~ = 22
+ m; T/Q‘fo_Al_‘jQ dr Gi(k,q°) Ry <QO 514 »77> - (73)

Moreover, expression (69) is modified to:

4 14+n; 400 2éin —
Wi(go, ¢2) = — —2% / _dr G [7@0 ") 622] X
g

)
-2 A

R Crasg min(r,s) _ R .
{mita m) - L2 /ﬁ dz Rilz.q%) 001+ ¢ - 22)
q
_ Cras / dz R§“(2,¢%,m) O(r — s) 0(1 + ¢* — 22)}
1+n; S 42
. omy, " Orag 9 s (2q0—1—q4°
A Buildn) G <7A N (74)

Both (73) and (74) are valid for ¢ < 1— 2. For higher ¢2 one has to employ
the corresponding expressions derived in the on-shell scheme, but still adding
the term proportional to By ;(¢%,7).

The cutoff-dependence of K;(G%, 1) can again be derived, to the third
order in 7, from power corrections imposing the zeroth-moment to be cutoff-
independent, namely:

. . Cra
Ki(¢%n) = Ki(¢*) + —

Si(q,m)- (75)
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Appendix A

Perturbative corrections with a
Wilsonian scale separation

Real emission form factors with a Wilsonian cutoff at NLO, introduced in
eq. (35), read, for §o > 1/2 —n+¢*/(2 — 4n):

(4o — 1) (245 + (4% + 3)do — 5¢* — 1)

R§™(Go, 4%, n) =
M M R N 3/2
8(43—4)""n

) ) ) o 1—do+/3@3—°

L [2a@0=1?  (+5)d—1* @ G @ 1]y
(s 8 (45 — ¢2) 8 "4 8 4 @@
L Do G5 =3 +9%0 -5 TG@—-1)  (@-1n?
8 8 (qA2 — qu) 4 4 (q% _ qA2)3/2

(243 + (6> = 3)do —2¢* + 2) n
A ~0\ 3/2
2 (4 - %)
248 — (3¢ + 1)G3 + (4> — 6)do + ¢* + 3

N ~o\ 3/2
16 (33 — ¢2)”
W (2+n) (Go— 1) —2n* — 8(go — 1)
16n+/G5 — G2 4G — % iy

(A.1)
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1—Go++/G2—4>
In —

2 4—4@0+4—4Q(2)—2@0—@2
~ ~6 _ o 5
—74a — 843 + 5642 — 46qo+5_3(q0+2 1244 —|—i4q0 )}
52 52
" 8(q — d3) 8 (4% - 43)
98— 240 + 1) (G5 + 5G3)
3do+1 , =645 —10G3 +414o—5 7 3(d —2do i 2
{ 5 52
8 8(a2— @) a0, 8(@ - @)’
5 ; 52\ )2
(243 + 242 + ¢*(3¢> — 5)do — 34" + ¢*) n
+ A 2 9\5/2
4(qo —1) (38 — @) o
(445 +2(¢° +2)d5 + G°(3¢* — 13)do — 2(4* — 1)§*) n
+ 2 .9\5/2
2(qO_q ) 2A2(6A2 S)A
] ] - - —9)q0
645 — (3¢° +7)do + (8 —124%)g5 + 6 (2q5/;k q* —1) 45 — 24°(64
! 16 (QO - QAQ)
2
i dn + 50 2(942 + 1
(¢* - 3)¢° 4+ @(3n—2) + (QO T4 _ q2( q 2)5/)2
T @ g T \/—qu+ 8 (a3 —a*)"n
16 (43 — ¢2) /2 16n q ) AQO ! 2@(5516)@
—2G5 + (¢° + 1)do + 44%q5 — 2 (24" + 5¢° + 1) 45 + 24%(5¢ 0
+ 2 9\5/2
8(4—a*)""n
(A.2)
1 qo+\/q0 G2
¢ 2-2G0  Go(24o +¢* —3)
CU . _ -
R (QO7 777) - a+ 4 (qu — q2) m
i + 34 o1 240 + 4*)n
d5 + 3do [ Gon (2do LA
~9 2\ A7 4 A ~o A2)3/2 9 (622 . 62)
4 (q ) U+ 2(go — 1) (g3 — ¢ 0
25 & -2
I (2QO_1)(O_Q)_QQQO+QO—2Q’
n 2(% ) PR T A2)3/2
\/q}%—q Uy 8(q0—q) (qo—q n s,

where @ = 1 — 24y + ¢°.
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Appendix B

Form factors in the HQE and
their g;-moments

In the adopted normalization, power corrections to the form factors read:

2
WE™ o, ) = .5 {261 (267 = 548 + Tdo 1) ~ bo

“’%{5—45 ~1) i) + 281 (do (540 — 3) — 2
5900 5 (Go — 1) (45 — G°) + 261 (do (540 — 3) — 24%)
my,

3

—Dg{ —300 + 601 (—¢* + (Go — 1) Go — 2)

9Im my,

+ 4(302 205 (G0 — 1)) (G0 — 1) (a8 — &) }

p_{ 8o +261 (—=G° + (do — 1) Go +2) + 402 (4o — 1) (45 Q)}

(B.1)
2 2
WE o ) = 55 {201 (50 - 2) — 50

2

%{ o — 146140 + 452 (43 @2)}

3

Lf;{séo + 601 (do — 4) + 8 (do — 1) (3 (a3 — ¢*) — 302d0) }

my,

3

L3 {50+251 do —2) — 205 (4° + 2 (Go — 1)@0)}

my,
(B.2)
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2

o 2
WE " (G0, %) = 5 501 (5o — 6)
b

& 22 Lo, (63— ) — 5
3m3

203 . o . .
+ gpwj?g{? (4o — 1) (265 (45 — ¢°) — 36240) — 351%}
2p3 . .
- 3%25 {252 (do—1)"+ 51Q0} (B.3)

We denoted by 6, = 5(”)(1 + G2 — 24o), namely the n-th derivative of the
Dirac delta w.r.t. its argument. We give explicit expressions for the zeroth,
first and second go-moments, at fixed ¢2, of the three form factors, up to
O(1/mj}) corrections in the HQE:

MO(¢?) = / dgo @) WY (qo,¢2), (B.4)

with:
W ¥ (g0, ¢%) = mpt [WEE (@) + WP (o, ¢%)] - (B.5)

7

For convenience, we separate the tree-level and power-corrections contribu-
tions:

. 5L ),
M (q%) = MITE(g?) + M (gP) (B:6)
Functions I’s defined in Sec. 0.1 are linear combinations of such moments:
Ii(O),bare _ Mi(O),TL’
1),HQE m 1+ 0
Ii( ) = M;" - T M;

14 42\2
[PHE @ (14 ¢?) MDY+ <—q> MO

2
(B.7)
Zeroth moments:
orn  (1—4%) (0),TL (0),TL
M7 = — My7" " =2, Mg " =1/my. (B.8)
M(O)@Owe”’((jQ) — (1 - 542) :u%f (qAQ + 1) :u72r 2@2p%5
! 6m; 3m; 3mg
M2(O),power(qA2) _ 0’
pOpomer gy~ e M Pp PLs (B.9)

3 3 4 4
Gmb 2mb 6mb 2mb
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First moments:

Ml(l),power(qq)

MQ(l),power(qAQ)

Mél),power(qq)

Second moments:

MI(Q),TL

MQ(Q),TL
MéZ),TL

MI(Q),power(CjQ)

M2(2),power(Cj2)

MéZ),power (qAQ)

- % (6@4 - 6) )
% (66> +6) ,
1
3 (¢ +1), (B.10)
 (15¢* —4¢* +5)pg  (=3¢" —8¢° = 5) pz
24my, 24my,
~ (at+7)pp  (-15¢" —5) pig
24m 24m; ’
(@ +1) g (¢ +1) p3
6my, 2my,
(=¢*—=5)pp , (=3¢°—3) pis
6m§ 6mg ’
-5 @0 20
6m§ 3m§ Smg’ ’
(B.11)
m% 2 -2 2
-5 @=1) @+,
2
ERGRRE
(g2 4 1), (B.12)
1 6 4 .
- o5 (50" +" = ¢* +3) g
1oa 2 2_(‘36"‘@2"‘1)/’%
+5 Q20+ 1) un S
n (3° + ¢ +d*+1) pis
6mb ’
1 1
5 (50" +60% +1) g — 5 (0" +4¢° + 1) i
_8A2_4 3 _4A4_ A2_2 3
o ) O o e e VU Y
6mb 6mb
5G' +2¢° = 3) pg (3" +14¢% +3) 12
8my, 241my,
(5¢* — 24> + 1) p3, N (—=15¢* — 64*+ 1) p ¢
24m§ 24m§ '
(B.13)
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