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Collective Communications 

§  Collective communication operations are composed of  several point-to-point 
operations.  

§  They are optimized internal implementations (e.g. tree algorithms) used by 
MPI and completely transparent to the user. 

§  Some important examples are:   

•  Broadcast: one process 
communicates with 
several others in the 
same group: 

•  Reduction: combine 
data from several 
processes into a single 
result: 

•  Barrier: synchronize all 
processes: 



Data Communication 

§  It is important to realize that collective operations must fulfill some 
properties: 

•  All processes in the communicator must call the same collective routine 
and must communicate;  

•  All processes must be able to start the collective routine; 

•  Collective operations can be blocking or non-blocking; 

•  No message tags allowed;  

•  Receive buffers on all processes must have exactly the same size;  



Collective Routines 

§ MPI provides several collective functions. Some of  them are 

§ Many functions come with the “v” version allowing data chunks to have 
different sizes. 

Function Description 
MPI_Gather(),	MPI_Gatherv()	 Collects data from tasks	

MPI_Allgather(),	MPI_Allgatherv()	 Collects data from tasks and distribute them	

MPI_Reduce()	 Reduce values on all processes to a single value	

MPI_Allreduce()	 Same as before, but also distribute them	

MPI_Scatter(),	MPI_Scatterv()	 Send data from one process to all others	

MPI_Alltoall(),	MPI_Alltoallv()	 Send data from all to all processes	

MPI_Bcast()	 Broadcast message from one proc to all	

MPI_Barrier()	 Block until all procs have reached the same point	



Collective Routines 

MPI_Bcast()	 MPI_Scatter()	

MPI_Gather()	 MPI_AllGather()	



Synchronization Point: Placing Barriers 

§  Collective calls implies that processes are synchronized at the time of  the 
call. 

§ MPI has a dedicated function for synchronizing processes: 

§  As the name suggests, this function places a barrier so that no processes in 
the communicator can pass the barrier until all of  them call the function. 

MPI_Barrier(MPI_Comm	comm);	



Broadcast 

§  During a broadcast operation, one process sends data to all processes in the 
communicator: 

 

§  Broadcast is commonly used to send the user input / problem configuration to 
all processes. 

§  The function syntax is the following: 

   where 

•  buf: starting address of  the buffer to send; 

•  count: number of  elements in the buffer; 

•  datatype: the datatype of  the buffer; 

•  root: rank of  broadcast process; 

•  comm: communicator; 

MPI_Bcast(void*	buf,	int	count,	MPI_Datatype	datatype,	int	root,	MPI_Comm	comm)	



Example #1: MPI_Bcast() 

§ Naively, you may achieve a broadcast operation using the MPI_Send() and 
MPI_Recv() functions: 

§  The previous code will dispatch buf to all processes. 

...	
int	main(int	argc,	char	**	argv)	
{	
		int	i,	rank,	size;	
		int	buf[NELEMENTS];	
	
		...			//	Initialize	the	MPI	execution	environment		
	
		if	(rank	==	0){		//	Process	#0	broadcast	to	all	processes	with	MPI_Send()	and	MPI_Recv()		
				int	dest;	
				for	(i	=	0;	i	<	NELEMENTS;	i++)	buf[i]	=	1	+	i*i;	//	Fill	buffer		
					
				for	(dest	=	1;	dest	<	size;	dest++){	
						MPI_Send(buf,	NELEMENTS,	MPI_INT,	dest,	0,	MPI_COMM_WORLD);	
				}	
		}else{		//	Receive	from	rank	#0		
				MPI_Recv(buf,	NELEMENTS,	MPI_INT,	0,	0,	MPI_COMM_WORLD,	MPI_STATUS_IGNORE);	
		}	
	
		MPI_Finalize();	
		return	0;	
}	



Example #1: Broadcast 

§  There’s a simpler and more efficient way to achieve the same result using 
MPI_Bcast(): 

§  It is important to realize that MPI_Bcast() is not a simple wrapper around 
MPI_Send() and MPI_Recv() function. 

§  MPI_Bcast() is actually much more efficient. Let’s see why. 

 

int	main(int	argc,	char	**	argv)	
{	
		...		
		MPI_Comm_size(MPI_COMM_WORLD,	&size);	
	
		if	(rank	==	0){	
				for	(i	=	0;	i	<	NELEMENTS;	i++)	buf[i]	=	1	+	i*i;			/*	Fill	buffer		*/	
		}	
		MPI_Bcast(buf,	NELEMENTS,	MPI_INT,	0,	MPI_COMM_WORLD);	
	
		MPI_Finalize();	
		return	0;	
}	
	



Broadcast using MPI_Send/Recv or MPI_Bcast 

§  In the 1st approach rank #0 sends buffer to all processes sequentially: 

 

§  The 2nd approach (MPI_Bcast()) is based on a tree-based communication 
algorithm that can use more of  the available network links at once: 



Example #1b: Using MPI_Bcast() to sort procs output 

§  How can you use MPI_Bcast() so that all processes can print to stdout in an 
ordered manner ?  

§  The code output should be: 

§ Write a code that does that. 

Hello,	I’m	processor	#0	
Hello,	I’m	processor	#1	
Hello,	I’m	processor	#2	
Hello,	I’m	processor	#3	
...	



MPI_Gather() and MPI_Scatter()	

§  MPI_Scatter() is a collective function used to send data from a given root 
process to all processes in a communicator. In this sense MPI_Scatter() is  
very similar to MPI_Bcast().  

§  However, while MPI_Bcast() sends the same piece of  data to all processes,  
MPI_Scatter() sends chunks of  an array to different processes:  

MPI_Scatter(void*	send_buf,	int	send_count,	MPI_Datatype	send_datatype,	
												void*	recv_buf,	int	recv_count,	MPI_Datatype	recv_datatype,	
												int	root,	MPI_Comm	comm)	



MPI_Scatter() 

§  Here send_buf is an array of  data that resides on the root process.  

§  send_count and send_datatype specify how many elements of  a specific 
MPI datatype will be sent to each process: if  send_count	==	1 and 
send_datatype	==	MPI_INT, then process #0 gets the 1st integer of  the 
array, process #1 gets the 2nd integer, and so on. If  send_count	==	2, then 
process #0 gets the 1st and 2nd integers, process #1 gets the 3rd and 4th  and 
so on.  

§  In practice, send_count equals the number of  elements in the array divided 
by the number of  processes.  

§  The receiving parameters are nearly identical in respect to the sending 
parameters: recv_buf parameter is a buffer of  data that can hold 
recv_count elements with datatype recv_datatype.  

§  The last parameters, root and comm, indicate the root process that is 
scattering the array of  data and the communicator in which the processes 
reside. 



MPI_Gather() 

§  MPI_Gather() is the inverse of  MPI_Scatter(): it takes elements from many 
processes and gathers them to one single process. This routine is highly 
useful to many parallel algorithms, such as parallel sorting and searching. 

§  The function prototype is identical to MPI_Scatter(): 

§  Beware that only the root process needs to have a valid receive buffer. All 
other calling processes can pass NULL for recv_buf. 

MPI_Gather(void*	send_buf,	int	send_count,	MPI_Datatype	send_datatype,	
											void*	recv_buf,	int	recv_count,	MPI_Datatype	recv_datatype,	
											int	root,	MPI_Comm	communicator)	



Example #2: Gathering and Scattering 

§  Let’s write a code with the following tasks: 

T1- the root process collects numbers (rank2+1) from all processes through 
and MPI_Gather()	operation. This part of  the code can be written as 

...	
int	main(int	argc,	char	**	argv)	
{	
		int				n,	rank,	size;	
		double	data;	
		double	*send_buf,	*recv_buf;	
	
		...		//	Initialize	the	MPI	execution	environment	
	
		recv_buf	=	(double	*)	malloc(size*sizeof(double));	//	allocate	memory		
		send_buf	=	(double	*)	malloc(size*sizeof(double));	
	
		data	=	rank*rank	+	1.0;	//	generate	data	on	different	procs	
		MPI_Gather(&data,				1,	MPI_DOUBLE,	
													recv_buf,	1,	MPI_DOUBLE,	0,	MPI_COMM_WORLD);	
	
		if	(rank	==	0){	
				printf	("[Gather()]:\n");	
				for	(n	=	0;	n	<	size;	n++)	printf	(”data[%d]	=	%f\n",n,recv_buf[n]);	
		}	
	
		...	



Example #2: Gathering and Scattering 

§ We then continue with the next task: 

T2- the root process scatters numbers (n2-1 with n=0..size-1)  to all other 
processes through an MPI_Scatter() operation: 

 

 

 

 

 

 

§  The output should look like 

		...	
	
		if	(rank	==	0){	
				for	(n	=	0;	n	<	size;	n++)	send_buf[n]	=	n*n	-	1.0;	//	Generate	“size”	random	numbers	
		}	
		MPI_Scatter(send_buf,	1,	MPI_DOUBLE,	
														&data,				1,	MPI_DOUBLE,	0,	MPI_COMM_WORLD);	
	
		printf	("[Scatter,	proc	#%d]	=	%f\n",rank,data);	
	
		...	

[Gather()]:	
data[0]	=	1.000000	
data[1]	=	2.000000	
data[2]	=	5.000000	
data[3]	=	10.000000	
[Scatter,	proc	#0]	=	-1.000000	
[Scatter,	proc	#1]	=	0.000000	
[Scatter,	proc	#2]	=	3.000000	
[Scatter,	proc	#3]	=	8.000000	



Data Reduction: MPI_Reduce()	

§  A reduction operation involves reducing a set of  numbers into a smaller set 
of  numbers through some kind of  operation (e.g. max(), sum(), and so 
forth). 

§  Reductions are indeed very simple operations applied on all the buffers of  all 
processes.  

§  Operations are usually pre-defined (e.g. MPI_MAX, MPI_SUM, etc…) but can 
also be user-defined (more advanced). Usually, the predefined operations are 
largely sufficient for most applications. 

§  The function MPI_Reduce() takes an array of  input elements on each process 
and returns an array of  output elements to the root process. The output 
elements contain the reduced result. The prototype for MPI_Reduce() looks 
like this: 

MPI_Reduce(void*	send_buf,	void*	recv_buf,	int	count,	MPI_Datatype	datatype,	
											MPI_Op	op,	int	root,	MPI_Comm	comm)	



Data Reduction 

§  Here send_buf and recv_buf are, respeticely, the send buffer and the output 
results. 

§  The next arguments, count and datatype, identify the number of  elements 
and the data type we are working on (int, double, etc…). 

§  The operation is specified by the argument “op” which can be one of  

§  Finally, the rank of  the receiving process is given by root. 

op	 Action 

MPI_MAX	 Returns the maximum element 

MPI_MIN	 Returns the minimum element 

MPI_SUM	 Sum all the elements 

MPI_PROD	 Multiply all elements 

MPI_LAND	 Perform a logical “and” across all elements 

MPI_LOR	 Perform a logical “or” across all elements 

MPI_BAND	 Perform a bitwise “and” across all elements 

MPI_BOR	 Perform a bitwise “or” across all elements 



Example #2: Random Number Distribution 

§  Let’s make an example: we want each process to generate independent, 
uniformly distributed Np floating-point random numbers in the interval 
(0,100). 

§ We then wish to compute the average and the maximum of  the distribution 
among all processes: 

		...	
		srand48(time(NULL)	+	rank);			//	Seed	random	sequence	(different	seed	used	for	each	process)	
		for	(i	=	0;	i	<	NELEMENTS;	i++)	buf[i]	=	drand48()*100.0;		//	Fill	buffer	
			
		bmax_loc	=	bsum_loc	=	0.0;	
		for	(i	=	0;	i	<	NELEMENTS;	i++)	{															//	Compute	local	sum	&	max	
				bsum_loc	+=	buf[i];		
				if	(buf[i]	>	bmax_loc)	bmax_loc	=	buf[i];	
		}	
	
		MPI_Reduce	(&bmax_loc,	&bmax,	1,	MPI_DOUBLE,	MPI_MAX,	0,	MPI_COMM_WORLD);	//	Reduce	among	
		MPI_Reduce	(&bsum_loc,	&bsum,	1,	MPI_DOUBLE,	MPI_SUM,	0,	MPI_COMM_WORLD);	//	processors	
	
		if	(rank	==	0){																																	//	Print	output	
				bsum	/=	NELEMENTS*size;																							//	There’s	NELEMENTS*size	elements	in	total	
				printf	("Distribution	max					=	%f\n",bmax);	
				printf	("Distribution	average	=	%f\n",bsum);	
		}	
		MPI_Finalize();	
...	



Data Reduction: MPI_Allreduce() 

§  Some parallel applications will require accessing the reduced results across 
all processes rather than the root process.  

§  To this end, the function MPI_Allreduce() will reduce the values and 
distribute the results to all processes. The function prototype is the 
following: 

 

§  MPI_Allreduce() is identical to MPI_Reduce() with the exception that it does 
not need a root process id (since the results are distributed to all processes). 

§  Indeed MPI_Allreduce() is equivalent to an MPI_Reduce() followed by 
MPI_Bcast(). 

MPI_Allreduce(void*	send_buf,	void*	recv_buf,	int	count,	MPI_Datatype	datatype,	
														MPI_Op	op,	MPI_Comm	comm)	



Example #3: Evaluation of  π 

§  Compute π using a numerical approximation 
in evaluating the integral 

§  A simple numerical quadrature rule is, e.g., 
the midpoint rule: 

§  The program takes as input the number of  
intervals N (quit if  N	=	0). 

§  Each process does a partial summation on N/
size elements (do not use arrays!!). 

§  Reduction is done at the end and the relative 
error is output from proc #0. 

Proc	#0:	Input	N	à	Broadcast	N	

Beg	timing()	
Partial	sum	

Reduce(sum)	
End	timing()	

Print	relative	error	&	timing	



Example #3: Evaluation of  π 

§  In order to measure the code execution time use the MPI_Wtime() function 
(which returns a double): 

 

§  For N = 32 the error is  ≈ 2.5904e-5. Repeat this using 1, 2 and 4 
processors. Is the error always the same ?  

§ Measure the speedup using 1,2 and 4 procs with N=1234567890.  

§  Is the error the same with all processors ? Explain. 

 

tbeg	=	MPI_Wtime();		//	Timer	starts	
...	
tend	=	MPI_Wtime();		//	Timer	stops	
...	
Elapsed	=	tend	-	tbeg	



Application Example: 1D Heat Equation  

§ We now wish to solve the 1D partial differential equation (PDE) 

 

   where D is a diffusion coefficient. 

§  Using finite differences we adopt a 1st order explicit method 

 

    where i is the grid index while n is the temporal index.  

§  The time step is restricted by  

§  This equation is used to model a diffusion process such as the conduction of  
heat on a finite size rod (u = internal energy or temperature). 

§ Note that the update formula involves a three-point stencil: 

i-1 i i+1 

i 

tn 

tn+1 



1D Heat Eq: Grid construction 

§ We construct a discrete mesh consisting of  Nx interior points 

 

    where Δx = (xend – xbeg)/(Nx+1). 

§  The domain endpoints (xbeg and xend) constitute the boundary conditions and 
are called “ghost zones” (for our scheme only Ngh = 1 ghost zone is needed 
on each side). 

§  Therefore our arrays will have dimensions  Nx + 2Ngh. Only interior points 
need to be updated while boundary conditions in the ghost zones must be 
prescribed at the beginning of  each time step. 

•  interior points are spanned by  beg ≤ i ≤ end (beg = Ngh, end = beg + Nx – 1); 

•  Ghost zones on the left are defined by i = 0...beg-1. 
•  Ghost zones on the right are defined by i=end+1...end+Ngh. 

Xbeg  xend Δx 

ibeg iend 



1D Heat Eq: Initial & Boundary Conditions 

§  The diffusion equation admits several analytical solution that can be used to 
assess the validity of  the implementation.  

§  A useful one is  

   where A, B, C and µ are arbitrary constants while D is the diffusion coeff. 

§  Here we use A = 1, B = C= 0, D = 1 and μ= π.  

§ We consider a computational domain with xbeg = 0, xend = 1; 

§  At t=0 we initialize, on  0<x< 1,  

§  Since the solution is periodic and has an extremum at the domain endpoints, 
the boundary conditions can be either: 

•  Periodic: 

•  Dirichlet b.c.: 

 



1D Heat Eq: Serial Code 

§  The serial implementation consists of  the following 4 steps: 

Generate	Grid:	dx,	x[i],	beg,	end	

Allocate	memory:	u0,	u1		
Assign	initial	condition	at	t=0:	for	i=beg,	end:	u0[i]	=	f(x[i])	

Advance	Solution:	
	
while	(	t	<	tstop	){	
		set	physical	boundary	conditions	(e.g.,	Dirichlet)	
		advance	solution	u0	à	u1	
		t	ß	t	+	dt	
}			

Write	solution	to	disk	



1D Heat Eq: The Advance Step 

§  Remember: advancing the solution from tn to tn+1 always requires 3 points to 
be defined at the old time level: ui-1, ui and ui+1. 

§  At the leftmost and rightmost interior points, boundary conditions must 
therefore be specified using ghost (guard) cells (i	=	beg-1 and i	=	end+1) 

§  The update algorithm on a single processor looks like 

§ We carry out integration until tstop	=	0.1. 

while	(t	<	tstop){	
	
		u0[beg-1]	=	...	//	Left	boundary	condition	
		u0[end+1]	=	...	//	Right	boundary	condition			
	
		for	(i	=	beg;	i	<=	end;	i++){			//	Evolve	interior	points	by	dt	
				u1[i]	=	u0[i]	+	dt/(dx*dx)*(u0[i-1]	-	2.0*u0[i]	+	u0[i+1]);	
		}	
		t	+=	dt;	
	
		for	(i	=	beg;	i	<=	end;	i++)	u0[i]	=	u1[i];	//	Copy	array	for	next	time	level	
}	

i-1 i i+1 

i 

tn 

tn+1 



1D Heat Eq: Writing Data 

§  In the serial implementation, output data consists of  a 2-column ascii data 
file, 

§  To achieve this we implement the output function as  

 

§  Data can be written at the beginning (t=0) and at the end (t=tstop=0.1). 

x[beg]				u[beg]	
	
x[beg+1]		u[beg+1]	
	
...							...	
	
x[end]				u[end]	

void	Write	(double	*x,	double	*u,	int	beg,	int	end)	
{	
//	x	=	local	process	grid	
//	u	=	local	process	solution	array	
//	beg,	end	=	local	process	start	and	ending	indices		
//												(interior	points)															
}	



1D Heat Eq: Solution at t =0.1 

§  At t =0.1 we can overplot the analytical solution together with the numerical 
solution using, e.g., 64 points: 



Parallel Implementation 

§  In parallel we wish to achieve a uniform workload on all processors. 

§  In an explicit scheme (like the one we are using), we split the computational 
grid into (possibly) equal-sized meshes:  

§  If  the global grid has Ng points, we want to assign to each process a local 
grid of  Nx=Ng/np points where np is the total number of  processes. 

§  Process boundary can be either internal of  physical. 

Physical  
boundaries 

proc #0 

proc #1 

proc #2 

proc #3 

Interior Points 

Processor  
boundaries 

Processor  
boundaries 



Boundary Conditions: 

§  Let’s take a closer look at the inter-processor b.c.: 

§  Process #p sends “C” to proc #(p+1) and receives “A” from proc #(p-1). 

§  Process #p sends “B” to proc #(p-1) and receives “A” from proc #(p+1). 

§  At a physical b.c., no communication should take place unless periodicity is 
invoked. 

Proc #p 

“D” 

“D” 

“C” 

“C” 

“A” 

“A” “B” 

“B” 

MPI_Sendrecv() 

MPI_Sendrecv() 

Proc #(p-1) 

Proc #(p+1) 



Parallel Implementation flowchart 

§  The serial implementation consists of  the following 4 steps: 

Generate	Global	Grid	on	all	processor:	dx,	xg[i]	
Generate	local	proc.	grid	(use	pointer	arithmetic):	xloc	=	xg	+	offset	

Initialize	parallel	environment,	find	ranks	of	neighbor	processes:	dstL,	dstR	
Set	dst	=	MPI_PROC_NULL	if	process	owns	a	physical	boundary	

Advance	Solution	
	
while	(	t	<	tstop	){	
		set	physical	or	internal	b.c.	
		advance	solution	u0	à	u1	
		t	ß	t	+	dt	
}			

Write	solution	to	disk	

Allocate	memory	on	local	proc.:	u0,	u1			
Assign	initial	condition	on	local	proc.	at	t=0:	



1D Heat Eq: Writing Data in Parallel 

§  In parallel writing is less straightforward as different processes may access 
the same file in scrambled order. 

§ We can devise two possible solutions: 
1.  Each process opens a different file (many files will be generated, one per 

process at each time step we wish to output); 
2.  Process #0 gathers data from other processes and does the write (less 

files file will be generated, but communications are required): 

§  A more sophisticated approach will be discussed later on, in this course. 

		int	nx_loc	=	end	-	beg	+	1;			//	Local	grid	size	
		static	double	*recv_buf;	
		//	Allocate	memory	for	the	recv	buffer	(this	should	be	large	enough	to	contain	all	data	points)	
		if	(recv_buf	==	NULL)	recv_buf	=	(double	*)	malloc((NX_GLOB	+	2*NGHOST)*sizeof(double));	
	
		MPI_Gather	(u	+	beg,	nx_loc,	MPI_DOUBLE,	recv_buf	+	beg,	nx_loc,	MPI_DOUBLE,	0,	MPI_COMM_WORLD);	
		if	(rank	==	0){			//	rank	#0	does	the	writing	
				sprintf	(fname,"heat_eq%02d.dat",n);	
				fp	=	fopen	(fname,"w");	
				for	(i	=	beg;	i	<	beg+NX_GLOB;	i++)	fprintf	(fp,	"%f		%f\n",	x[i],	recv_buf[i]);	
				fclose(fp);	
		}	


