
Numerical Algorithms
for Physics

Andrea Mignone
Physics Department, University of Torino

AA 2022-2023

Course Purpose
• Physics is often described by equations that cannot be solved analytically or cannot

be easily expressed in closed forms.
• Popular examples are

– Pendulum:

– Parabolic motion with air drag:

– Atoms with many electrons, time-dependent fluid dynamics, N-body problems, etc…

• In this course, you will learn how to solve scientific problems by writing (from
scratch) a computer program.

• We will use C++ as our primary language, although only in its basic form (no object-
oriented programming):
– Understand how a computer program (code) works;
– Beware of the limitations;
– Interpret, analyze and visualize results.

Course Objectives & Requisites
• Although far from being complete, the course aims at teaching basic numerical

methodology and will cover the following topics:

– Definite and indefinite integrals (also known as numerical quadrature);
– Random numbers and (a primer to) Monte Carlo methods ;
– Root finder methods for nonlinear equations;
– Ordinary Differential Equations (ODE), initial & boundary value problems;
– Numerical differentiation;
– Linear systems of equations;
– Elliptic partial differential equations (PDE);

• Pre-requisites:

– Mechanics, electromagnetism, quantum physics;
– Acquaintance with C / C++ programming language;
– Some know-how of Linux system.

Course Evaluation & Other Info
• Attendance to classes is strongly required.

• There’re few exceptions: schedule incompatibility (report to me), overlapping with
other courses.

• Lectures & online material at
http://personalpages.to.infn.it/~mignone/Numerical_Algorithms/

• Final grade will be established on: i) learning ability shown during lectures, homework
assignment and ii) (optionally) a supplementary project of your choice to be delivered
no later than one year from the beginning of the course.

• You are free to work on your laptop, if you know what you’re doing.

http://personalpages.to.infn.it/~mignone/Numerical_Algorithms/

Suggested Textbooks

Reference textbooks on C++:
• “C++ Primer Plus (Developer’s Library)”

(6th edition) by S. Prata
• “Practical C++ Programming”

(2nd edition) by S.Oualline

Reference textbooks on numerical methods:

• “Numerical Recipes”
• “A Survey of Computational Physics”

(Landau)
• “Computational Physics” (Giordano)

Unix Shell
• A Unix shell is a command-line interpreter (CLI) that provides an interface to the UNIX

system.

• It gathers input from you and executes programs based on that input. When a program
finishes executing, it displays that program's output.

• A shell is defined by its environment in which we can run our commands, programs, and
shell scripts. There are different flavors of shells with their own set of recognized
commands and functions.

• Most likely, the bash shell will be the default on your system (other possibilities are csh,
tcsh, zsh, etc…).

Handling directories: ls, pwd, cd, mkdir
• The command ls is used to list the content of a directory. Additional command line

options (such as -l, -lt, -lh) can be given , see the man page (man ls)

• The pwd command prints the current working directory ($HOME);

• The cd command is used to change directory:

• The mkdir command is used to create a new directory:

> ls -l
-rw-r--r-- 1 mignone staff 298 Apr 16 16:22 conta.cpp
-rwxrwxrwx 1 mignone staff 1288 Apr 12 19:27 factorial.cpp
-rwxrwxrwx 1 mignone staff 979 Apr 12 18:59 guess.cpp
-rwxrwxrwx 1 mignone staff 745 Apr 16 16:45 operations.cpp
-rwxrwxrwx 1 mignone staff 574 Apr 16 15:35 welcome.cpp

> cd My_Folder # change directory to My_Folder
> cd ../ # go one level up

> mkdir New_Folder # create directory New_Folder

Handling files: cp, mv, rm
• cp can be used to copy files and directories from one location to another, e.g.

• mv can be used to rename or move a file from one location to another, e.g.

• rm is used to delete files:

Attention: remove command cannot be undone !

> cp source dest # copy ‘source’ to ‘dest’
> cp file ../ # copy ‘file’ one level up
> cp file1 file2 file3 My_Dir/ # copy three files to the directory ‘My_Dir’

> mv source dest # rename ‘source’ to ‘dest’
> mv file1 file2 file3 My_Dir/ # copy three files to the directory ‘My_Dir’

> rm file1 # delete ‘file1’
> rm ./* # remove all files in the current directory

Using wildcards
• Wildcards are used to work with multiple files:

– ? (question mark): this represents any single character, example

– * (asterisk): this represents any number of characters (including zero). Example:

> ls fo?.c # may list fo1.c fo2.c fo3.c, foo.c, etc…

> ls fo*.c # may list fo12.c fool.c fokker.c, etc…

Useful Tips & Tricks
• Linux command are case-sensitive.

• Finding previous command: pressing the Up keyboard key will cycle through the last
Linux commands we successfully used, in order. No failed commands will show here.

• Use Tab to autocomplete: the <Tab> button on the keyboard automatically fills in
partially typed commands (or files names). It save huge time.
Example:
– If we want to delete a file named "whydidIgivethisfilesuchalongname", we just need

to type "rm w" and pressing Tab will automatically complete the rest of the filename.

Note: If there are more than files that begin with the same letters, e.g.
"whydidIgivethisfilesuchalongname" and "whydidIeatsomuch", pressing Tab on "rm
w" will autocomplete the common "whydidI".

Customizing Bash Environment
• Bash environment can be customized by editing ‘.bashrc’ file in your $HOME

directory (on Mac OS, this may be found under ‘.profile’)

• For instance,

source $HOME/Lib/Scripts/utility.sh

export PS1="\[\e[32;1m\][\u@\h] \w\[\e[0m\]\n> ”

export PATH=<new paths here>:$PATH

alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'

How we will work: Editor
During this course, we will use the terminal for compilation and execution, but coding will
be done in a standard text editor. Here’re a few choices:

• gedit (Front end GUI)

• geany (Front end GUI)

• Visual studio code (Front end GUI)

• vi / vim / nano (terminal)

• emacs

• komodo edit (GUI)

• Notepad++ (Windows)

Your 1st program: Hello World!
• Use your editor to open a new file ‘welcome.cpp’ and type

• Save files and compile (from the terminal) with

• This will compile ‘welcome.cpp’ and produce the executable ‘welcome’.
• Run the program by typing, at the terminal,

#include <iostream> // Preprocessor directive

int main() // Function Header
{

using namespace std; // Make definitions visible
cout << endl;
cout << "---+" <<endl;
cout << "+ Hello world ! +" <<endl;
cout << "+ +" <<endl;
cout << "+ Welcome to the Numerical Algorithm Class +" <<endl;
cout << "+--+" <<endl;
return 0;

}

> g++ welcome.cpp –o welcome

> ./welcome

Program Structure
• C++ programs are constructed from building blocks called

functions.

• Organize a program into major tasks
and then design separate functions
to handle those tasks.

• The previous program consists of a single function named
main() with the following elements:

#include ...

Func1(){
statements

}

Func2(){
statements

}

main(){
statements

}
cv

o Comments, indicated by the // prefix
o A preprocessor #include directive
o A function header: int main()
o A using namespace directive
o A function body delimited by { and }
o Statements that uses the C++ cout facility to display a message
o A return statement to terminate the main() function

The main()function
int main()
{

statements
return 0;

}

• The main() function has the following fundamental
structure:

• These lines state that there is a function called main() and
describe how the function behaves.: together they
constitute a function definition.

• In C++ each complete instruction is called a statement.

• Statement must terminate with a semicolon,

• It consists of
– the function header int main(): a

capsule summary of the function’s
interface with the rest of the program,

– the function body: the portion enclosed in
braces ({ and }), which represents
instructions to the computer about what
the function should do.

The C++ Preprocessor and the iostream File
• C++ (like C) uses a preprocessor: a program that processes a source file before the

main compilation takes place.

• Preprocessor directives begin with #:

• The #include directive causes the preprocessor to add the contents of the iostream
file to your program at compilation time: in practice the content of the iostream file
will replace the #include <iostream> line.

• This directive causes, a typical preprocessor action which adds or replaces text in the
source code before it’s compiled.

• The content of the iostream is added for communication between the program and
the outside world. The I/O in iostream refers to input - information brought into the
program - and to output - information sent out from the program.

• C++’ I/O scheme involves several definitions found in the iostream file.

#include <iostream> // a PREPROCESSOR directive

Practice Session #1
• count.cpp: write a program that prints the integers numbers from 1 to 10, using for

and while loops.

• Modify the previous code to print only odd numbers.

• operations.cpp: given two float numbers and two integer numbers, perform
simple arithmetic operations (+, -, *, /) à watch out integer division !

Functions
• Consider a simple program that computes the sum of two double precision

numbers and write a separate function to perform the sum.
• An example is given here:

#include <iostream>
#include <cmath>

double Sum(double, double);

int main() {
using namespace std;
double a, b, c;

a = 1.5;
b = 3.7;
c = Sum(a,b);
return 0;

}

double Sum(double x, double y)
{

return x+y;
}

Function declaration (or prototype): does for
functions what a variable declaration does for
variables: it tells what types are involved.

Function can be called from anywhere now

The Function definition implements the actual
body of the function.

Passing Arguments to Functions
• Arguments to function can be passed by value or by reference.
• By value: arguments to the function are copied into the variables represented by the

function parameters. For example, take:

• By reference: what is passed is no longer a copy but the variable itself: any
modification to the arguments is reflected in the variables passed as arguments in the
call:

c = Sum(a,b);

double Sum(double x, double y)
{

...
}

In this case, x and y are copies of the variables
a and b:any modification of these variables
within the function has no effect on the
original value.

AddOne(a);

void AddOne(double& x)
{

x = x + 1.0;
}

In this case, a (= x) is modified and after the
call it has been incremented by one.

Practice Session #2
• sum.cpp: compute the sum of two integers (or floats)

• add_one.cpp: add one to a number.

• quotient.cpp: write	a	function	that	computes	the	quotient	and	remainder	of	the	
division	of	two	integers,	a and	b.	Example	
– 10/7 = 1 remainder	3
– 13/6 = 2 remainder	1,	etc..

• arrays.cpp: compute the average, variance and standard deviation of an array.
You can use the drand48() function to fill the array with random numbers.

Typical Errors,
good and bad programming habits

Indentation
int i;

for (i=0; i < 10; i++){
if (i == 5)

{
cout << “I am number five” << endl;
}

}

NO !!

int i;

for (i=0; i < 10; i++){
if (i == 5) {

cout << “I am number five” << endl;
}

}

YES !!

Indentation clarifies the link between control flow constructs such as conditions or
loops, and code contained within and outside of them.
The code will be i) easy to read, ii) easy to understand, iii) easy to modify, iv) easy to
maintain.

Type Casting (1/2 = 0)
int i,n;
double q;

for (i = 0; i < n; i++) {
q = i/n;
q = (double)(i/n);

}

NO !!

int i,n;
double q;

for (i = 0; i < n; i++) {
q = (double)i/(double)n;

}

YES !!

Mixing lower- and upper-case
int I;
double a[i];

Cin >> I;

NO !!

int i;

cin >> i;
double a[i];

YES !!

The == sign and the = sign
for (i = 0; i < 10; i++){
if (i = 5) break;

}

NO !!

for (i = 0; i < 10; i++){
if (i == 5) break;

}

YES !!

Floating Point arithmetic
double x=0.0;

while (1){
x += 0.1;
if (x == 10.0) break;

}
cout << "x = %f\n" << x << endl;
return 0;

NO !!

double x=0.0;

while (1){
x += 0.1;
if (fabs(x-10.0) < 1.e-6) break;

}
cout << "x = %f\n" << x << endl;
return 0;

YES !!

Rounding error
double x, dx;
for (x = 0.0; x <= xend; x +=dx) {
...

}

// This will yield (xend = 1.0, dx = 0.1):
//
// x = 0.0, 0.1, 0.19999, 0.200003

NO !!

int i;

for (i = 0; i<N; i++){
x = x0 + i*dx
...

}

YES !!

