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Float and Double precision datatype
• Singles or floats is shorthand for single- precision floating-point numbers and occupy 32 

bits: 1 bit for the sign, 8 bits for the exponent, and 23 bits for the fractional mantissa: 

• The sign bit s is in bit position 31, the biased exponent e is in bits 30–23, and the 
fractional part of the mantissa f is in bits 22–0. Since 8 bits are used to store the 
exponent e and since 28 = 256 à 0 ≤ e ≤ 255.

• Likewise -126 ≤ e ≤ 127.
• In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal 

places of significance and magnitudes in the range 

EXAMPLE: IEEE-754 Single-Precision representation of: 3.141590

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0
|- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|
|s|      exp      |                  mantissa                   | 



Float and Double precision datatype
• Doubles	are	stored	as	two	32-bit	words,	for	a	total	of	64	bits	(8	B).	The	sign	occupies	

1	bit,	the	exponent	e,	11	bits,	and	the	fractional	mantissa,	52	bits:	

• The fields are stored contiguously, with part of the mantissa f stored in separate 32-
bit words. 

• Doubles have approximately 16 decimal places of precision (1 part in 252) and 
magnitudes in the range 



C and C++ Data-Type Range
In 1987, the Institute of 
Electrical and Electronics 
Engineers (IEEE) and the 
American National 
Standards Institute (ANSI) 
adopted the IEEE 754 
standard for floating-point 
arithmetic. When the 
standard is followed, you 
can expect the primitive 
data types to have the 
precision and ranges given 
by the following table



Overflow and Underflow

• If a single-precision number x > 2128, a fault condition known as an overflow occurs. 
The resulting number xc may end up being a machine-dependent pattern, not a 
number (NAN), or unpredictable.

• If x < 2−128, an underflow occurs. The resulting number xc is usually set to zero, 
although this can usually be changed via a compiler option. 

• In our experience, serious scientific calculations almost always require at least 64-bit 
(double-precision) floats. And if you need double precision in one part of your 
calculation, you probably need it all over, which means double-precision library 
routines for methods and functions. 



Practice Session #1: determining machine precision 
• The loss of precision is categorized by defining the machine precision εm as the 

maximum positive number that can be added unity without changing it:

where the subscript c is a reminder that this is a computer representation of 1.

• Consequently, an arbitrary number x can be thought of as related to its floating- point 
representation xc by 

but the actual value for ε is not known.

• In other words, except for powers of 2 that are represented exactly, we should 
assume that all single-precision numbers contain an error in the sixth decimal place 
and that all doubles have an error in the fifteenth place.

• precision.cpp: write a computer program to determine the machine precision. 
Define 1 in float (or double) precision arithmetic and keep adding epsilon 
(àepsilon/10) until 1+eps = 1.



Quadratic Equation Solver
• Finite precision arithmetic may lead to loss of accuracy when computing the roots of 

a quadratic polynomial with the standard formula, 

• When quantities of the same sign are subtracted, some precision loss may occur. In 
particular, if b > 0, the root with the plus sign may become inaccurate when ac is 
relatively small compared to b2. If this is the case, we can rationalize the previous 
expression and find 

• This suggests that we can use the standard representation when we sum and the 
second representation when we subtract terms:



Practice Session #2
• quadratic.cpp: using double precision arithmetic, write a computer program to 

solver the quadratic quadratic equation. 

using, at first, the standard formula.
• Test your solver on the following cases:

• what do you see ?
• In order to avoid catastrophic cancellation, implement the selective expressions 

depending on the sign of the b coefficient.

a b c x1 x2

1 -(x1+x2) x1*x2 2 -3

1 -(x1+x2) x1*x2 10-5 108

1 -(x1+x2) x1*x2 10-12 1012



Practice Session #3
• roundoff.cpp: using single precision arithmetic, obtain a numerical approximation 

to sqrt(x^2 + 1) – x (valid for large x) and 1 - cos(x) (valid for x ≈ 0).  Write your code 
such that the output looks like

• Here:
– fx1 is the function itself, fx1 = sqrt(x^2 + 1)–x or  fx1 = 1-cos(x);
– fx2 is the rationalized version;
– f(taylor) the Taylor expansion around the desired point (x = ∞  or x = 0);

Example #1: compute sqrt(x^2 + 1) - x for large x
======================================================
x = 1.000000e+04; fx1 = 5.000000e-05; fx2 = 5.000000e-05; f(taylor) = 5.000000e-05
x = 1.000000e+05; fx1 = 4.999994e-06; fx2 = 5.000000e-06; f(taylor) = 5.000000e-06
x = 1.000000e+06; fx1 = -2.047500e-03; fx2 = 5.000000e-07; f(taylor) = 5.000000e-07
x = 1.000000e+07; fx1 = 1.884165e-02; fx2 = 5.000000e-08; f(taylor) = 5.000000e-08
x = 1.000000e+08; fx1 = 1.362821e+00; fx2 = 5.000000e-09; f(taylor) = 5.000000e-09
x = 1.000000e+09; fx1 = -7.846625e+00; fx2 = 5.000000e-10; f(taylor) = 5.000000e-10
x = 1.000000e+10; fx1 = 1.002044e+02; fx2 = 5.000000e-11; f(taylor) = 5.000000e-11

Example #2: compute 1-cos(x) for small x
======================================================
x = 1.000000e-01; fx1 = 4.995823e-03; fx2 = 4.995835e-03; f(taylor) = 4.995834e-03
x = 1.000000e-02; fx1 = 5.000830e-05; fx2 = 4.999958e-05; f(taylor) = 4.999958e-05
x = 9.999999e-04; fx1 = 4.768372e-07; fx2 = 4.999999e-07; f(taylor) = 4.999999e-07
x = 9.999999e-05; fx1 = 0.000000e+00; fx2 = 4.999999e-09; f(taylor) = 4.999999e-09
x = 9.999999e-06; fx1 = 0.000000e+00; fx2 = 4.999999e-11; f(taylor) = 4.999999e-11
x = 9.999999e-07; fx1 = 0.000000e+00; fx2 = 4.999999e-13; f(taylor) = 4.999999e-13
x = 9.999999e-08; fx1 = 0.000000e+00; fx2 = 4.999999e-15; f(taylor) = 4.999999e-15
x = 9.999999e-09; fx1 = 0.000000e+00; fx2 = 4.999999e-17; f(taylor) = 4.999999e-17



Practice Session #4  [SKIP]
• series.cpp: compute taylor series of sin(x) for x = 1, up to a precision of 10-8 (last term in the series should contribute < 10-8) using term by term 

summation and recurrence relation;

• Iterative schemes:
– babyl.cpp: compute the square root of a number using Babylonian (or Heron’s) method (see next page)
– unstable_roundoff.cpp: not all recurrence relation are numerically stable!



Practice Session #04: Computing the square root
• heron.cpp: Compute the square root using Heron’s (or Babylonian) method: finding sqrt(s)

is the same as solving the equation 
f(x) = x^2 - S = 0   è x(n+1) = 0.5*(x(n) + S/x(n))

• The basic idea is that if x is an overestimate to the square root of a  non-negative real number S
then S/x, will be an underestimate and so the average of these two numbers may reasonably be 
expected to provide a  better approximation.

• This is also known as "Heron's method", named after the 1st-century Greek mathematician 
Heron of Alexandria who gave the first explicit description of the method.

• Your code should take, as inputs, the value of S and a guess x(0) to its square root. The code 
output should look like

• Here the error is computed as the difference between two successive iterates , ε = |x(n+1) – x(n)|.
• Using Arrays is not necessary.

Enter a realnumber: 
13
Enter your guess : 
3
---------------------------------
Iteration # 1; x =   3.66666666666667e+00; err = 6.66666666666667e-01
Iteration # 2; x =   3.60606060606061e+00; err = 6.06060606060606e-02
Iteration # 3; x =   3.60555131143366e+00; err = 5.09294626941603e-04
Iteration # 4; x =   3.60555127546399e+00; err = 3.59696747942451e-08
Iteration # 5; x =   3.60555127546399e+00; err = 0.00000000000000e+00

The SQRT of 1.30000000000000e+01 is: 3.60555127546399e+00
The Exact values is:                 3.60555127546399e+00


