Ch. 02
Arithmetic Precision

Andrea Mignone
Physics Department, University of Torino
AA 2022-2023

Float and Double precision datatype

Singles or floats is shorthand for single- precision floating-point numbers and occupy 32
bits: 1 bit for the sign, 8 bits for the exponent, and 23 bits for the fractional mantissa:

S e f

Bit position 31 30 23 22 0

EXAMPLE: IEEE-754 Single-Precision representation of: 3.141590

010000000100100100001111110106000

[s] exp | mantissa

The sign bit s is in bit position 31, the biased exponent e is in bits 30-23, and the
fractional part of the mantissa f is in bits 22—-0. Since 8 bits are used to store the
exponent e and since28=256 20 < e < 255.

Likewise -126 < e < 127.

In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal
places of significance and magnitudes in the range

1.4 x 10~* < single precision < 3.4 x 10%®

Float and Double precision datatype

Doubles are stored as two 32-bit words, for a total of 64 bits (8 B). The sign occupies
1 bit, the exponent e, 11 bits, and the fractional mantissa, 52 bits:

s e f f (cont.)
Bit position 63 62 92 Dl 32 31 0

The fields are stored contiguously, with part of the mantissa f stored in separate 32-
bit words.

Doubles have approximately 16 decimal places of precision (1 part in 252) and
magnitudes in the range

4.9 x 10~%** < double precision < 1.8 x 10%°%.

In 1987, the Institute of
Electrical and Electronics
Engineers (IEEE) and the
American National
Standards Institute (ANSI)
adopted the IEEE 754
standard for floating-point
arithmetic. When the
standard is followed, you
can expect the primitive
data types to have the
precision and ranges given
by the following table

C and C++ Data-Type Range

Key word Size in Interpretation| Possible values
bytes
bool 1 boolean true and false
unsigned char 1 Unsigned character 0 to 255
char (or signed char) 1 Signed character -128 to 127
wchar_t 2 Wide character (in windows, same 0 to 2'°-1
as unsigned short)
short (or signed short) 2 Signed integer 2% t02"% -1
unsigned short 2 Unsigned short integer 0to2"-1
int (or signed int) 4 Signed integer -2 to 2% -1
unsigned int 4 Unsigned integer Oto 2%-1
Long (or long int or 4 signed long integer -2%to 2% -1
signed long)
unsigned long 4 unsigned long integer 0to 2% -1
float Signed single precision floating | 3.4*10*to 3.4*10**(both
point (23 bits of significand, 8 bits | positive and negative)
of exponent, and 1 sign bit.)
long long Signed long long integer -2%t0 29 -1
unsigned long long Unsigned long long integer 0to 2°“-1
double Signed double precision floating 1.7*10*%t0 1.7*10™*
point(52 bits of significand, 11 bits (both positive and
of exponent, and 1 sign bit.) negative)
long double 8 Signed double precision floating 1.7%10" w0 1.7%10°

point(52 bits of significand, 11 bits
of exponent, and 1 sign bit.)

(both positive and
negative)

Overflow and Underflow

=]

)

§

=

=
z = z
= Underfl =
§ ndaerriow §
O]

|||||||||||‘|||||||||||
0

o l 0+38 N 10—45 10»45 +10+38

Figure 1.7 The limits of single-precision floating-point numbers and the consequences of
exceeding these limits. The hash marks represent the values of numbers that can be stored;
storing a number in between these values leads to fruncation error. The shaded areas
correspond to over- and underflow.

If a single-precision number x > 2128 3 fault condition known as an overflow occurs.
The resulting number x. may end up being a machine-dependent pattern, not a
number (NAN), or unpredictable.

If x < 2-128 an underflow occurs. The resulting number x. is usually set to zero,
although this can usually be changed via a compiler option.

In our experience, serious scientific calculations almost always require at least 64-bit
(double-precision) floats. And if you need double precision in one part of your
calculation, you probably need it all over, which means double-precision library
routines for methods and functions.

Practice Session #1: determining machine precision

The loss of precision is categorized by defining the machine precision €, as the
maximum positive number that can be added unity without changing it:

def
1(:+6m — 1(:7

where the subscript ¢ is a reminder that this is a computer representation of 1.

Consequently, an arbitrary number x can be thought of as related to its floating- point
representation x. by

’L‘p:flf<1i€), |€| < €m;

but the actual value for € is not known.

In other words, except for powers of 2 that are represented exactly, we should
assume that all single-precision numbers contain an error in the sixth decimal place
and that all doubles have an error in the fifteenth place.

precision.cpp: write a computer program to determine the machine precision.
Define 1in float (or double) precision arithmetic and keep adding epsilon
(= epsilon/10) until 1+eps = 1.

Quadratic Equation Solver

Finite precision arithmetic may lead to loss of accuracy when computing the roots of
a quadratic polynomial with the standard formula,
. —b 4+ Vb — dac
ar" +br+c=0 — xi= 5

a
When quantities of the same sign are subtracted, some precision loss may occur. In
particular, if b > 0, the root with the plus sign may become inaccurate when ac is
relatively small compared to b2. If this is the case, we can rationalize the previous
expression and find 2

T+ =

AN

This suggests that we can use the standard representation when we sum and the
second representation when we subtract terms:

_ —-b—-+b?-4ac 26

>a & Xx» Y~ vy when b > 0

=
|

2C —b + Vb2 — 4ac
_ & — henb <0
* —b + Vb2 — 4ac *2 2a when

Practice Session #2

* quadratic.cpp: using double precision arithmetic, write a computer program to
solver the quadratic quadratic equation.

az? +br+c=10

using, at first, the standard formula.
* Test your solver on the following cases:

a b C x1 X2
1 -(x1+X5) X1*X5 2 -3
1 -(X1+X5) X1 %X, 107 108
1 -(X1+X5) X1%X5 10-12 1012

what do you see?

In order to avoid catastrophic cancellation, implement the selective expressions
depending on the sign of the b coefficient.

Practice Session #3

* roundoff.cpp: using single precision arithmetic, obtain a numerical approximation
to sqrt(x*2 + 1) — x (valid for large x) and 1 - cos(x) (valid for x = 0). Write your code
such that the output looks like

Example #1: compute sqrt(x”2 + 1) - x for large x

.000000e+04; fx1 = 5.000000e-05; fx2 = 5.000000e-05; f(taylor)
.000000e+05; fx1 = 4.999994e-06; fx2 = 5.000000e-06; f(taylor) 5.000000e-06
.000000e+06; fx1 = -2.047500e-03; fx2 5.000000e-07; f(taylor) 5.000000e-07

X 1 5.000000e-05
X 1
X 1
X = 1.000000e+07; fx1 = 1.884165e-02; fx2 = 5.000000e-08; f(taylor) = 5.000000e-08
X 1
X 1
X 1

.000000e+08; fx1 = 1.362821e+00; fx2 = 5.000000e-09; f(taylor) = 5.000000e-09
.000000e+09; fx1 = -7.846625e+00; fx2
.000000e+10; fx1 = 1.002044e+02; fx2

5.000000e-10; f(taylor) 5.000000e-10
5.000000e-11; f(taylor) = 5.000000e-11

Example #2: compute 1-cos(x) for small x

X = 1.000000e-01; fx1 = 4.995823e-03; fx2 = 4.995835e-03; f(taylor) = 4.,995834e-03
X = 1.000000e-02; fx1 = 5.000830e-05; fx2 = 4.999958e-05; f(taylor) = 4,999958e-05
X = 9.999999e-04; fx1 = 4.768372e-07; fx2 = 4.999999e-07; f(taylor) = 4,999999e-07
X = 9.999999e-05; fx1 = 0.000000e+00; fx2 = 4.999999e-09; f(taylor) = 4,999999e-09
X = 9.999999e-06; fx1 = 0.000000e+00; fx2 = 4.999999e-11; f(taylor) = 4,999999e-11
X = 9.999999e-07; fx1 = 0.000000e+00; fx2 = 4.999999e-13; f(taylor) = 4,999999e-13
X = 9.999999e-08; fx1 = 0.000000e+00; fx2 = 4.999999e-15; f(taylor) = 4,999999e-15
X = 9.999999e-09; fx1 = 0.000000e+00; fx2 = 4.999999%e-17; f(taylor) = 4,999999e-17
e Here:

— fx1is the functionitself, fx1 = sqrt(x*2 + 1)-x or fx1 = 1-cos(x);
— fx2is the rationalized version;
— f(taylor) the Taylor expansion around the desired point (x = e or x = 0);

Practice Session #4 [SKIP]

Practice Session #04: Computing the square root

heron.cpp: Compute the square root using Heron’s (or Babylonian) method: finding sqrt(s)
is the same as solving the equation

f(x) =x*2 -S =0 = x(m) =9,5%(x(M + S/x(M)
The basic idea is that if x is an overestimate to the square root of a non-negative real number S
then S/x, will be an underestimate and so the average of these two numbers may reasonably be
expected to provide a better approximation.

This is also known as "Heron's method", named after the 15t-century Greek mathematician
Heron of Alexandria who gave the first explicit description of the method.

Your code should take, as inputs, the value of S and a guess x(® to its square root. The code
output should look like

Enter a realnumber:

13

Enter your guess :
3

Iteration # 1; x = 3.66666666666667e+00; err = 6.66666666666667e—01
Iteration # 2; x = 3.60606060606061e+00; err = 6.06060606060606e—-02
Iteration # 3; x = 3.60555131143366e+00; err = 5.09294626941603e-04
Iteration # 4; x = 3.60555127546399e+00; err = 3.59696747942451e-08
Iteration # 5; x = 3.60555127546399e+00; err = 0.00000000000000e+00
The SQRT of 1.30000000000000e+01 is: 3.60555127546399e+00

The Exact values is: 3.60555127546399e+00

Here the error is computed as the difference between two successive iterates , € = [x(™" — x().
Using Arrays is not necessary.

