
Ch. 02
Arithmetic Precision

Andrea Mignone
Physics Department, University of Torino

AA 2022-2023

Float and Double precision datatype
• Singles or floats is shorthand for single- precision floating-point numbers and occupy 32

bits: 1 bit for the sign, 8 bits for the exponent, and 23 bits for the fractional mantissa:

• The sign bit s is in bit position 31, the biased exponent e is in bits 30–23, and the
fractional part of the mantissa f is in bits 22–0. Since 8 bits are used to store the
exponent e and since 28 = 256 à 0 ≤ e ≤ 255.

• Likewise -126 ≤ e ≤ 127.
• In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal

places of significance and magnitudes in the range

EXAMPLE: IEEE-754 Single-Precision representation of: 3.141590

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0
|- -|
|s| exp | mantissa |

Float and Double precision datatype
• Doubles	are	stored	as	two	32-bit	words,	for	a	total	of	64	bits	(8	B).	The	sign	occupies	

1	bit,	the	exponent	e,	11	bits,	and	the	fractional	mantissa,	52	bits:	

• The fields are stored contiguously, with part of the mantissa f stored in separate 32-
bit words.

• Doubles have approximately 16 decimal places of precision (1 part in 252) and
magnitudes in the range

C and C++ Data-Type Range
In 1987, the Institute of
Electrical and Electronics
Engineers (IEEE) and the
American National
Standards Institute (ANSI)
adopted the IEEE 754
standard for floating-point
arithmetic. When the
standard is followed, you
can expect the primitive
data types to have the
precision and ranges given
by the following table

Overflow and Underflow

• If a single-precision number x > 2128, a fault condition known as an overflow occurs.
The resulting number xc may end up being a machine-dependent pattern, not a
number (NAN), or unpredictable.

• If x < 2−128, an underflow occurs. The resulting number xc is usually set to zero,
although this can usually be changed via a compiler option.

• In our experience, serious scientific calculations almost always require at least 64-bit
(double-precision) floats. And if you need double precision in one part of your
calculation, you probably need it all over, which means double-precision library
routines for methods and functions.

Practice Session #1: determining machine precision
• The loss of precision is categorized by defining the machine precision εm as the

maximum positive number that can be added unity without changing it:

where the subscript c is a reminder that this is a computer representation of 1.

• Consequently, an arbitrary number x can be thought of as related to its floating- point
representation xc by

but the actual value for ε is not known.

• In other words, except for powers of 2 that are represented exactly, we should
assume that all single-precision numbers contain an error in the sixth decimal place
and that all doubles have an error in the fifteenth place.

• precision.cpp: write a computer program to determine the machine precision.
Define 1 in float (or double) precision arithmetic and keep adding epsilon
(àepsilon/10) until 1+eps = 1.

Quadratic Equation Solver
• Finite precision arithmetic may lead to loss of accuracy when computing the roots of

a quadratic polynomial with the standard formula,

• When quantities of the same sign are subtracted, some precision loss may occur. In
particular, if b > 0, the root with the plus sign may become inaccurate when ac is
relatively small compared to b2. If this is the case, we can rationalize the previous
expression and find

• This suggests that we can use the standard representation when we sum and the
second representation when we subtract terms:

Practice Session #2
• quadratic.cpp: using double precision arithmetic, write a computer program to

solver the quadratic quadratic equation.

using, at first, the standard formula.
• Test your solver on the following cases:

• what do you see ?
• In order to avoid catastrophic cancellation, implement the selective expressions

depending on the sign of the b coefficient.

a b c x1 x2

1 -(x1+x2) x1*x2 2 -3

1 -(x1+x2) x1*x2 10-5 108

1 -(x1+x2) x1*x2 10-12 1012

Practice Session #3
• roundoff.cpp: using single precision arithmetic, obtain a numerical approximation

to sqrt(x^2 + 1) – x (valid for large x) and 1 - cos(x) (valid for x ≈ 0). Write your code
such that the output looks like

• Here:
– fx1 is the function itself, fx1 = sqrt(x^2 + 1)–x or fx1 = 1-cos(x);
– fx2 is the rationalized version;
– f(taylor) the Taylor expansion around the desired point (x = ∞ or x = 0);

Example #1: compute sqrt(x^2 + 1) - x for large x
==
x = 1.000000e+04; fx1 = 5.000000e-05; fx2 = 5.000000e-05; f(taylor) = 5.000000e-05
x = 1.000000e+05; fx1 = 4.999994e-06; fx2 = 5.000000e-06; f(taylor) = 5.000000e-06
x = 1.000000e+06; fx1 = -2.047500e-03; fx2 = 5.000000e-07; f(taylor) = 5.000000e-07
x = 1.000000e+07; fx1 = 1.884165e-02; fx2 = 5.000000e-08; f(taylor) = 5.000000e-08
x = 1.000000e+08; fx1 = 1.362821e+00; fx2 = 5.000000e-09; f(taylor) = 5.000000e-09
x = 1.000000e+09; fx1 = -7.846625e+00; fx2 = 5.000000e-10; f(taylor) = 5.000000e-10
x = 1.000000e+10; fx1 = 1.002044e+02; fx2 = 5.000000e-11; f(taylor) = 5.000000e-11

Example #2: compute 1-cos(x) for small x
==
x = 1.000000e-01; fx1 = 4.995823e-03; fx2 = 4.995835e-03; f(taylor) = 4.995834e-03
x = 1.000000e-02; fx1 = 5.000830e-05; fx2 = 4.999958e-05; f(taylor) = 4.999958e-05
x = 9.999999e-04; fx1 = 4.768372e-07; fx2 = 4.999999e-07; f(taylor) = 4.999999e-07
x = 9.999999e-05; fx1 = 0.000000e+00; fx2 = 4.999999e-09; f(taylor) = 4.999999e-09
x = 9.999999e-06; fx1 = 0.000000e+00; fx2 = 4.999999e-11; f(taylor) = 4.999999e-11
x = 9.999999e-07; fx1 = 0.000000e+00; fx2 = 4.999999e-13; f(taylor) = 4.999999e-13
x = 9.999999e-08; fx1 = 0.000000e+00; fx2 = 4.999999e-15; f(taylor) = 4.999999e-15
x = 9.999999e-09; fx1 = 0.000000e+00; fx2 = 4.999999e-17; f(taylor) = 4.999999e-17

Practice Session #4 [SKIP]
• series.cpp: compute taylor series of sin(x) for x = 1, up to a precision of 10-8 (last term in the series should contribute < 10-8) using term by term

summation and recurrence relation;

• Iterative schemes:
– babyl.cpp: compute the square root of a number using Babylonian (or Heron’s) method (see next page)
– unstable_roundoff.cpp: not all recurrence relation are numerically stable!

Practice Session #04: Computing the square root
• heron.cpp: Compute the square root using Heron’s (or Babylonian) method: finding sqrt(s)

is the same as solving the equation
f(x) = x^2 - S = 0 è x(n+1) = 0.5*(x(n) + S/x(n))

• The basic idea is that if x is an overestimate to the square root of a non-negative real number S
then S/x, will be an underestimate and so the average of these two numbers may reasonably be
expected to provide a better approximation.

• This is also known as "Heron's method", named after the 1st-century Greek mathematician
Heron of Alexandria who gave the first explicit description of the method.

• Your code should take, as inputs, the value of S and a guess x(0) to its square root. The code
output should look like

• Here the error is computed as the difference between two successive iterates , ε = |x(n+1) – x(n)|.
• Using Arrays is not necessary.

Enter a realnumber:
13
Enter your guess :
3

Iteration # 1; x = 3.66666666666667e+00; err = 6.66666666666667e-01
Iteration # 2; x = 3.60606060606061e+00; err = 6.06060606060606e-02
Iteration # 3; x = 3.60555131143366e+00; err = 5.09294626941603e-04
Iteration # 4; x = 3.60555127546399e+00; err = 3.59696747942451e-08
Iteration # 5; x = 3.60555127546399e+00; err = 0.00000000000000e+00

The SQRT of 1.30000000000000e+01 is: 3.60555127546399e+00
The Exact values is: 3.60555127546399e+00

