Ch. 03
Numerical Quadrature

Andrea Mignone
Physics Department, University of Torino
AA 2023-2024

Numerical Quadrature

* In numerical analysis “quadrature” refers to the computation of definite
integrals.

g f(x)

| <> X
I | —

e Atraditional way to perform numerical integration is to take a piece of graph
paper and count the number of boxes or quadrilaterals lying below a curve of
the integrand. For this reason numerical integration is also called numerical
quadrature

Numerical Quadrature

The Riemann definitions of an integral is the limit of the sum over boxes as the width
h of the box approaches zero:

b (b—a)/h
| f(z)de=Jim |k Zl f(x:)

The numerical integral of a function f(x) is approximated as the equivalent of a finite
sum over boxes of height £(x) and width w;:

b N
/ f@)de= Y flaipw,

(N = (b-a)/h).
This is similar to the Riemann definition except that there is no limit to an
infinitesimal box size.

The previous equation is the standard form for all integration algorithms. The
function £ (x) is evaluated at N points in the interval [a, b], and the function values
fi = f(x;) are summed with each term in the sum weighted by w;.

Numerical Quadrature

b _N
/ f@)do = Sz,

While this sum gives the exact integral only when N - o, it may be exact for finite N if
the integrand is a polynomial.

Different integration algorithms amount to different ways of choosing the points and
weights. Generally, the precision increases as N gets larger, with round-off error
eventually limiting the increase.

There’s no universal “best’” approximation: the computations depends on the specific
behavior of f(x).

Singularities should be removed by hand before performing the actual computation.

For integrands with slow (fast) variations in some regions, a change of variable that
places less (more) points there is advisable.

Rectangular Rule

Let’s divide the integration region [a,b] into 4y f(x)
N equally spaced intervals of length h: . /\
b—a | |
h = ~ /\ I
| . h | i |
x; =a+th (¢2=0,...,N—1) | i i I | | X

A simple way to approximate the integral
within a single interval [x;, Xj+h],isto
assume to be piecewise constant, so that we x;+h
/ f(x)da
1

have the rectangular rule: >

The error can be found using Taylor expansion:

x;+h x;+h -)
/ f(x)dx = / [f(z,) + (x — x) f(x;) + ———f"(x;) +] dx

. L'?’ . “i

h?
2

Q

flx)h + —f"(x;)

Midpoint Rule

* By looking at the error in the previous 4y)

expressions, it is straightforward to realize
that the linear term in the error cancels if we /\\

choose the interval midpoint (rather than the

leftmost point): ' h
| <> X
' >
a=x, X1 X X3 4 b=xy

;TN h
/ flx)dx =~ f (I; + 5) h

 TheerrorisnowO0(h3):

x;i+h - x;+h (_;I.' . ;ri+l)2
/ f(x)dx = / [f'(;ri+%)+(;1?—;1?1-+_)f'(;r,-+1)+ o1 — f(x;11) +...}d;r.

(o) Lo

&
—
—

~
+
-

P)

+
—
Py

~
+
-

Trapezoidal Rule

The trapezoidal rule takes each integration 4y
interval 1 and constructs a trapezoid of width f(X)/\;
This approximates f(x) by a straight line in
each interval i and uses the average height | b | |
(fi+fin)/2. | <« .
The area of such trapezoid is — | ' ' | —>
a=Xp X1 X7 X3 X4 b—XN
kit h(f; + f; 1 1
/ flx) da;= i+ fir1) =—hf;+ -hfii1
- 2 2 2
h?
The error can be showntobe — (E) £ e [;l?i T+ h]
12 - o

Applying the trapezoidal rule to the entire region [a,b] we add contributions from

each interval:

h h h
/ fz)dx =~ E(fo + f1) + (fl + fa) + ... = §fo +hfi+hfa+...+ §fN

In terms of our standard integration formula, the weights are W; = {

/
%h

h
h.—

|

Simpson Rule

If we approximate the function with a parabola we obtain a better
approximation:

x;+h x;+h N 3. 2
o/ ’ 2, \ o xr 2
] flz)dr =~ / (ax“+Pr+y)dr = 3 + 5 + v
Iy Iy .

In order to relate a, and y to the function, we consider aninterval [-1,1] so
that

x;+h

Iy

f(=1)=a—=0B+7, f(0) =, fQ)=a+B+n,

S i f(l) +2f(_1) —f(O), [3: ’ fY:f(()).

In this way we can express the integral as the weighted sum over the values of
the function at three points:

1
/ (ax® + Bz +v) dx = + +
J-1

The formula is actually correct for polynomials up to order 3.

Extended Simpson rule

Because three values of the function are needed, the integral should be evaluated
over two adjacent intervals, (function eval. at the two endpoints and in the middle):

x;+h
‘- _ h 4h
/ f(z)dr ~ Ef‘i—l + i+ fz+1

Jxi—h

1 [h
The error can be showntobe € = ~90 (5) 4, €€z, xi+h)

Simpson’s rule must thus be carried out over pairs of intervals, which in turn requires
that the total number of intervals N be even or that the number of points (N+1) be odd.

If we apply the previous results to successive, non-overlapping pairs of intervals, we
obtain (extended Simpson rule)

", 1, 4, 2, 4, 2, 1, L,]
\/a f(l‘)dl‘ = h |i§fg+ gfl + §f2+§f‘3+ cee T gf.,\r_‘z'i‘ gf_,\r_l -+ §f.‘\r_

According to our formulation, the weights' are: w; = { h 4h 2h 4h 4h h}

3’373 37°773"3

! The 2/3, 4/3 alternation continues throughout the interior of the evaluation. Many people believe that the wobbling alternation
somehow contains deep information about the integral of their function that is not apparent to mortal eyes. In fact, the alternation is
an artifact of using the building block.

Practice Session #1

quadraturel.cpp: given aninterval [a,b] and a function f(x), write a program

to compute
b
/ f(z)dx
J

Divide theinterval [a,b] into N equally spaced sub-interval separated by N+1 points
{Xe» X1, Xz, .. Xy}.Ineach sub-interval apply the rectangular, trapezoidal and
Simpson rules.

Consider f(x) = exp(-x)anduse [a, b] = [0,1].

Implement each quadrature rule using the same template, e.g.,

double QuadratureRule (double (*F)(double), double a, double b, int N)
{

sum += ... // do the sum
return sum;

}

Practice Session #1

* The 15t function argument is a pointer to a function “*F”. This argument should be
passed from the caller using a valid function name:

sum = QuadratureRule (func, a, b, N);

double func(double x)
{

return exp(-x);

}

* With 4 sub-intervals (N=4) your program output should give the following values:

Exact: 6.321205588286e-01

Rectangular: 7.144244988813e-01; (N = 4)
Trapezoidal: 6.354094290277e-01; (N = 4)
Simpson: 6.321341753205e-01; (N = 4)

Practice Session #1

Next, iterate by doubling the value of intervals N (= 4, 8, 16, ...) until convergence is

achieved:
N

|[N — [A\Tz | < tOl \-Vhel“e] N = Z w; f ('Jj])

7

where tol is a prescribed tolerance (e.g. 10%).

The expected result is

32768

Rectangular: 6.321302042719e-01; N
Trapezoidal: 6.321237739567e-01; N = 128

Simpson: 6.321206123892e-01; N = 16

Introducing Gaussian Quadrature

Higher precision may be achieved if we relax the assumption of equally-spaced
quadrature points.

By choosing the x,, in some optimal sense we then have 2N parameters at our disposal
in constructing the quadrature formula (2N = N abscissae + N weights).

These can be chosen to satisfy
] N

f xPdx = Z wixy for p=0,..,2N -1

' i=1

In other words, the quadrature formula using only N carefully chosen points can be
made exact for polynomials up to degree 2N-1 or less.

This is obviously more efficient than using equally-spaced abscissae.

Unevenly spaced abscissae: An example

As an example, let’s look for a quadrature rule in the form

|
f fx)dx = wof(xo) + wif(x1)
-

We wish to make it exact for polynomials of degree < 3.

Because of the linearity of the quadrature, it suffices to make the rule exact for f(x) =
1, X, X2 and x3. Hence we obtain the following system of 4 equations

[Wy + wy = 2
I woxo +wix; = 0
xPdx = wox{ + wix] -) .)
-1 WoXg + wix; = 2/3
v xS G R
L Woxg +wix; = 0

1

wyp=w; =1

/(%)

Solving for the weights and abscissae: Ty = —I =

e

+

1
1
Our quadrature rule becomes / f(x)dx =~ f (__)
-1 V3

The general case

In the general case we have the system of 2N equations forp = 0, ..,2N-1

2

d—

: for p=0,2,..,2N -2
wlx‘l' + ...+ u-’Nx‘,; = f xPdx =4 p+1 Al
-1

0 for p=1,3,..,2N -1

The system is nonlinear but it admits a solution and the resulting numerical

integration rule is called Gaussian quadrature. It is not convenient, however, to solve
the system in this way.

A solution to the previous system can be expressed in terms of Legendre polynomials.
In particular, any polynomial of degree 2N-1 (or less) can be written in the form

f(x) = Q(x)Pn(x) + R(x)

with Q and R polynomial of degree N-1 or less. The integral becomes:

| | |
f f)dx = f [Q(X)PN(XHR(X)]dx: f R(x)dx
-1 —1 _

l
where the second equality is a consequence of the orthogonality of Py to all
polynomial of degree N-1 or less.

Gauss-Legendre Quadrature

Using our summation rule:

1 N N

/ f(x)dx = Z w; f(x;) = Z w; [Q(;z;,-)PN (x;) + R(;z:,j)]
If we now take {x;} to be the roots of Py, the we obtain exactly:
1 N N

/ flx)dx = Z w; f(x;) = Z w;R(x;)
Thus the w; satisfy the linear system A1 when the abscissae are the zeros of Legendre
polynomials.

It can be shown that the weights are related to the derivative of Py at the
corresponding zero:

2
(1 = x)H[Py(x)]?

W; =

Gauss-Legendre Quadrature: a note

As a general rule, Gaussian quadrature is the method of choice when the integrand is
known analytically, smooth or it can be made smooth enough by extracting fromit a
function that is the weight for a standard set of orthogonal polynomials.

One has to evaluate weights and abscissae.

If the integrand varies rapidly, we can repeat the basic Gaussian quadrature formula
by applying it over several sub-intervals in the range of integration.

Finally, if the integrand can be evaluated only at equally-spaced abscissae (for

example when it is generated by integrating a differential equation), then Simpson
(or higher) formula should be used.

Other Quadrature Rules

Other type of orthogonal polynomials provide useful quadrature formulas when the
integrand has a particular form.

For instance, the Laguerre polynomials (which are orthogonal on the interval [0,0]
with weight function e*) lead to the Gauss-Laguerre quadrature formula:

»e
/ e f(z)dr =Y wif(x;)
()

[
Here {x;} are the roots of the Laguerre polynomial of order N+1 and {w;} are related to
the values at these points (see Abramowitz & Stegun, “Handbook of Mathematical
Functions”, section 25.4.29 and after).

Likewise the Hermite polynomials provide Gauss-Hermite quadrature formulas for

integrals in the form toc .}
/ e " f(x)dx
——

Other types of integral requires special care in choosing the polynomial. A list of them
can be found in sect. 25.4 of Abramowitz & Stegun.

Change of Interval

The previous considerations may be extended to any interval [x,, x,] using a simple
linear change of variable.

Tr1 — Xy To + 1
2 2

T rT1 — T L X1 — & ro+ T
/ f(;z:)d:z: = ; / f ;t + - ¢ - dt
J g 2 J—1 2 2 :

Applying Gaussian quadrature,

- '-\l"
- T1 — Ty g] — T T+ 21)
x)dr = - Z w; -t. +
/ @ : (B

=1

In particular, with 7 = we end up with

Other change of variable that makes the integrand smoother may provide better
accuracy.

Applying Gauss Quadrature over Sub-Intervals

In general, we can still divide our integration domain [a,b] and into N equally spaced
intervals and apply Gaussian quadrature to each interval separately; e.g.

Ng =2 Ng =2 Ng =2 Ng =2
E A ST A IS A
—e ——=o o——o *—1—e o—
a _ ~ J b
N=4

For this reason, it may be convenient to cast our Gaussian quadrature functionin a
slightly (more general way), by providing as input arguments both the number of
intervals N and the number of Gaussian points Ng:

double GaussQuadratureRule (double (*F)(double), double a, double b, int N, int Ng)
{
if (Ng == 2) {w[] = ..., x[]=...}
else if (Ng == 3) {w[] = x[]="...}
sum = 0.0;
for (i = @; i < N; i++) { // Loop over intervals
X0 = ...; x1 = ... // Define left and right interval endpoints x0 & x1
sumk = 0.0; // Initialize sum for this interval
for (k = ©; k < Ng; k++) sumk += ... // Apply Gaussian rule to sub-interval
sum += sumk; // Add partial sum to total integral
}
return sum;
}

Gauss-Legendre Quadrature

Number of points, n Points, X; Weights, w;
1 0 2
1
2 + \/ 3 1
)
0)

W
H_
wjea |
W |en

184+ 30

sfi-nfe o
8
Vi1t

18—/ 30
A6

123
0 225

1 10 | 322413470
ig\/r_—;—z 1o 322478

:I:%\/5—|—2 % azz—mﬁﬁﬂ

Gauss-Legendre Quadrature

Table 25.4

ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION

J2 Setam 3 wiste

Abscissas=zxz, (Zeros of Legendre Polynomials)

0,57735

0.00000
0.77459

0,33998
0.86113

0.00000
0.53846
0.90617

0.23861
0.66120
0.93246

0,00000
0.40584
0,74153
0.94910

ty

02691

00000
66692

10435
63115

00000
93101
98459

91860
93864
95142

00000
51513
11855
79123

89626

00000
41483

84856
94053

00000
05683
38664

83197
66265
03152

00000
77397
99394
42759

2

3
i

1.00000

3
I
(v o]

0.88888
0.55555

=
i
.

0.65214
0.34785

P
It
o

0.56888
0.47862
0,23692

0.46791
0.36076
0.17132

n="T
0.41795
0.38183
0,27970
0.12948

uH

00000

88888
55555

51548
48451

88888
86704
68850

39345
15730
44923

91836
00505
53914
49661

00000

88889
55556

62546
37454

88889
99366
56189

72691
48139
79170

73469
05119
89277
68870

3

=1

0.18343
0,52553
0.79666
0.96028

0.00000
0,32425
0.61337
0.83603
0.96816

0,14887
0.43339
0,67940
0.86506
0.97390

0.12523
0.36783
0,58731
0.76990
0,90411
0.98156

o

46424
24099
64774
98564

00000
34234
14327
11073
02395

43389
53941
95682
33666
65285

34085
14989
79542
2674]
72563
06342

Weight Factors=w,

95650
16329
13627
97536

00000
03809
00590
26636
07626

81631
29247
99024
88985
17172

11469
98180
86617
94305
70475
46719

n=§

n=12

0.36268
0.31370
0.22238
0,10122

0.33023
0,31234
0.26061
0.18064
0,08127

0.29552
0,26926
0.21908
0.14945
0.06667

0.24914
0.23349
0.20316
0.16007
0.10693
0.04717

37833
66458
10344
85362

93550
70770
06964
81606
43883

42247
67193
63625
13491
13443

70458
25365
74267
83285
93259
533863

78362
77887
53374
90376

01260
40003
02935
94857
61574

14753
09996
15982
50581
08688

13403
38355
23066
43346
95318
86512

Orthogonal For more

Interval w(Xx) . A&S |, .
polynomials information, see ...
_ Legendre See Gauss—Legendre
=1, 1] l polynomials 25429 quadrature above
. o 3 - : . 25433 Gauss—Jacobi
-1,1) (1 — g:} (1+ :::} ., 3 > —1| Jacobi polynomials B=0) quadrature
1 Chebyshev 3
(-1,1) — polynomials (first | 25.438 | Chebyshev—Gauss
1 — 12 kind) quadrature
Chebyshev
(-1, 1] V1 — 72 polynomials (second | 25440 | Chebyshev—Gauss
kind) quadrature
_ : Gauss—Laguerre
I
[0,) e Laguerre polynomials| 25.4.45 quadrature
o —x _ Generalized Laguerre Gauss—Laguerre
10, %) rie”, a>-1 polynomials quadrature
(=0,) E—-TE Hermite polynomials | 25.4.46 Gauss—Hermite

quadrature

Practice Session #2

Using Simpson rule with 2 intervals (3 points in total) and Gauss-Legendre (1 interval,
3 Gaussian points), compute the integral

3
/ v1+tdt =4.66666667
0

Simpson = 4.662277660168e+00

The result youexpectis | = “° 4.666829051581e+00

As you can see, both methods use the same number of function evaluations but
Gauss is more accurate by one order of magnitude.

Now, using the same code, test the two algorithms in computing the integral:

> , x3 xt X
f(x)dx where f(X)=1-x+2x"+—+——
-1 2 4 8

again using 2 intervals for Simpson’s rule and 1 interval for Gauss-Legendre with 3
Gaussian points. The exact result is -66/5. Which of the two is better?

Indefinite Integrals

In general, the indefinite integral of a function is SO oy
where F(x) is the antiderivative. [f(t)dt = F(z) — F(a)

However, for many functions, the antiderivative cannot be determined using
elementary methods of calculus; e.g.

2 sin & _
/6 “du, / dzr. /\/ 1 + xtdx,

£

integral_sin.cpp: write a program to
compute

e T sint
Si(x) :/ il
0

t

at x = 0.8 using intervals h = 0.8, 0.4, 0.2, 0.1.

The correct value, to ten decimals, is
Si(0.8) = 0.77209 57855.

Next, using gnuplot, produce a plot like the
one in the figure for o0 < x < 25.
Try to not sacrifice accuracy as x increases !

Indefinite Integrals

Evaluation of Si(0.8) using different methods:
[Gaussian n=1, ng=3] = 7.720958e-01
[Trapezoidal, n = 1] = 7.586780e-01
[Trapezoidal, n = 2] = 7.687574e-01
[Trapezoidal, n = 4] = 7.712622e-01
[Trapezoidal, n = 8] = 7.718874e-01
[Simpson, n = 2] = 7.721171e-01
[Simpson, n = 4] = 7.720971e-01
[Simpson, n = 8] = 7.720959e-01

: —— asy@mptotée .
o o) A R R RO

0 5 10 15 20 25
X

Multidimensional Integrals

The quadrature rules discussed so far can be extended to compute integral in
multiple spatial dimensions.

However, integrals of functions of several variables, over regions with dimension
greater than one, are not easy.

The approach is to express the multiple integral as repeated one-dimensional
integrals by applying to Fubini's theorem.

This approach requires the function evaluations to grow exponentially as the number
of dimensions increases. Three methods are known to overcome this so-called curse
of dimensionality.

There are two reasons for this:

— the number of function evaluations to sample an N-dimensional space increases as the Nth
power of the number needed to do a one-dimensional integral: if you need 30 function
evaluations in 1D, then you will likely need = 3x104 evaluations in 3D.

— theregion of integration in N-dim is defined by an N - 1 dimensional boundary which may
be complicated: it need not be convex or simply connected, for example.

Multidimensional Quadrature: Rules

Generally speaking, if the boundary is complicated but the integrand is not strongly
peaked in very small regions, and relatively low accuracy is tolerable, then Monte
Carlo integration is the best approach.

If the boundary is simple and the function is very smooth, breaking up the problem
into repeated one-dimensional integrals or multidimensional Gaussian quadratures, will
be effective and relatively fast. If you need high accuracy, these approaches are in any
case the only ones available to you (Monte Carlo methods are asymptotically slow to
converge).

For low accuracy, use repeated one-dimensional integration or multidimensional
Gaussian quadratures when the integrand is slowly varying and smooth in the region
of integration, Monte Carlo when the integrand is oscillatory or discontinuous, but not
strongly peaked in small regions.

If the integrand is strongly peaked in small regions, and you know where those
regions are, break the integral up into several regions so that the integrand is smooth
in each, and do each separately.

Reduction to 1D integrals

i — 3
® @ ® > @
inner integration
> @
=
o
=
=
Y > ¢ |
o
=
o v
b
)
-
3
S
> @
> @
— J
x
Figure 4.6.1. Function evaluations for a two-dimensional integral over an irregular region, shown

schematically. The outer integration routine, in y, requests values of the inner, x, integral at locations
along the y axis of its own choosing. The inner integration routine then evaluates the function at
x locations suitable to it. This is more accurate in general than, e.g., evaluating the function on a
Cartesian mesh of points.

Practice Session #3

multid_quadrature.cpp: use Gaussian integration to compute the integral of a 2D
function on the square [-1,1]2. Anintegral in the 2D plane may be written as:

//f(l y)dxdy = /(ly (/ f{’_I,y:}(Lz‘) = /dyG(y)

This form allows you to re-use your previously 1D quadrature rules:
[6= 3600 = S s (S s
j j i

This suggests to choose between:
1. A genuine multiD integrator (suggested)

2. Re-use our 1D integrators and define y5 externally using, e.g., a global variable approach. In
this approach we will need:

* Afunction Func2D = f(x,y): theactual 2D function;
* AFunction FFunclD = f(x,y_Jj): used to perform 1D integration in x;
* AFunction GGunclD = G(y) = \int f(x,y) dx: used to perform 1D integrationiny;

Practice Session #3

* Here’s a pseudo-code for a 2D integrator:

double Gaussian2DQuad (double (xFunc)(double, double),
double xa, double xb,
double ya, double yb,
int n, int ngauss)

{
dx = 0
dy = ;
sum = 0.0;
for (j = ...){ // Loop on sub-intervals in y
for (i = ...){ // Loop on sub-intervals in x
XC = ... // Center of interval (x)
yc = ... // Center of interval (y)
sumy = 0.0;
for (jk = 0; jk < ngauss; jk++){
sumx = 0.0; // Initialize sum for this interval

for (ik = 0; ik < ngauss; ik++) { // Apply Gaussian rule to sub-interval
sumx += wg[ik]*Func(xc + 0.5%dxxxgl[ik], yc + 0.5xdyxxgl[jk]);

¥
sumx *x= 0.5%dx;
sumy += wgl[jk]*xsumx;

b

sumy *x= 0.5xdy;

sum += sumy;

+}
¥

Practice Session #3

Here’s a pseudo-code that enables us to employ our 1D implementation:

// Global variables are defined prior to any function can be seen everywhere throughout the file.
// A good common practice is to name them differently. Here I use “g_<name>”

static double g _ycoord; // = fixed value of y for which we integrate along x

static int g nint; // = number of intervals in quadrature function

int main()
{
double ybeg, yend; // Define here your domain boundary in y
sum = GaussianQuad (GFunclD, ybeg, yend, g_nint, 3); // Integrate in the y direction

}

double GFunclD(double y) // Return the integral G(y) = \int f(x,y) dx for a specified value of y.
{

double sum_x, xbeg, xend; // Define here your domain boundary in x

g _ycoord = y; // This is the right place to change the global “y” coordinate
sum_Xx = GaussianQuad (FFunclD, xbeg, xend, g nint, 3); // Integrate in the x-direction for fixed y
return sum_x;

}

double FFunclD(double x) // Return the integrand f(x,y) for a specified value of y (= g_ycoord).
{

return Func2D (x, g _ycoord);

}

double Func2D(double x, double y) // This is the actual 2D function f(x,y).

{
return f(x,y);

}

Practice Session #3

* Test your program on the function

(x,y) =x"'y +2y°x" —yx* +2
) . ,

for which the integralon -1 < x,y £ 1 evaluatesto412/45 (= 9.15556).
Since the degree is 4, a Gaussian quadrature rule with Ng,.ss> 3 should compute the

integral exactly.

* Next consider the unit disk again on the domain [-1,1]2%
‘ | if X2 +y2 <
J(x,y) = ‘
0 otherwise

Using Ngauss = 4, how many intervals must be used to obtain 1 with an absolute
accuracy of 1052 Is the error uniformly decreasing ?

