
Ch. 04
Random Numbers &

a primer to Monte Carlo Methods

Andrea Mignone
Physics Department, University of Torino

AA 2023-2024

Pseudo-Random Numbers
• It may seem a conceptual impossibility in producing “random numbers” with a

computer which, by definition, is the most precise and deterministic of all machines
conceived by the human mind.

• A program will produce output that is entirely predictable, hence not truly
“random.”

• Computer-generated sequences are termed pseudo-random: a deterministic
algorithm that produces a random sequence which should be different from, and
— in all measurable respects — statistically uncorrelated with, the computer
program that uses its output.

• In other words, any two different random number generators ought to produce
statistically the same results when coupled to your particular applications program.
If they don’t, then at least one of them is not (from your point of view) a good
generator.

Generating Pseudo Random Numbers
• Let’s understand how pseudo random numbers (prn) work with an example

• The pseudo-random number generator srand() is initialized using the argument
passed as seed.

• Using the same seed will generate the same succession of results in subsequent calls
to rand(), which generates integer random numbers.

• For different seed value used in a call to srand(), the prn generator rand() is
expected to generate a different succession of results in the subsequent calls.

• To produce different sequences at each execution, we can use the time() function:

srand(seed); // Initialize the sequence
for (i=0; i<10; i++){
number = rand()%100+1; // Generate a random number in [1,100]
cout << number << endl;

}

srand(time(NULL)); // Initialize the sequence

Generating Pseudo Random Numbers
• Double precision random numbers in the interval [0,1] can be generated using

drand48() rather than rand():

• As before, the prn sequence is initialized using srand48() (instead of srand()).

• At each code execution, the sequence will now be different since the seed depends
on the call to time(NULL).

srand48(time(NULL)); // Initialize the sequence
for (i=0; i<10; i++){
double x = drand48(); // Generate a random number in [0,1]
cout << number << endl;

}

Practice Session #1
• guess.cpp: write a program that extract an integer random number in the range

[1,100] and try to guess it.
Based on the most recent guess, have the code suggest the interval containing the
random number. Count the number of guesses.

• For instance, suppose the number to guess is 35, then your code should produce an
output similar to [input from keyboard is colored in red]:

n in [1,100]
type your guess #1 > 5
n in [5,100]
type your guess #2 > 27
n in [27,100]
type your guess #3 > 60
n in [27,60]
type your guess #4 > 50
n in [27,50]
type your guess #5 > 32
n in [32,50]
type your guess #6 > 38
n in [32,38]
type your guess #7 > 35
Number found in 7 iterations !!

Practice Session #2
• prn_uniformity.cpp: test a random-number generator in the range [0,1] (use

double precision !) to obtain a numerical measure of its uniformity and randomness
before you stake your scientific reputation on it.
– Generate a quick visual test by plotting ri as a

function of i (0 ≤ i < 103) : a uniform distribution of
uncorrelated point values should appear.

– Evaluate the kth-moment of the distribution:

If the number are distributed uniformly, then the
previous equation can be approximated by

Check that the deviation varies as 1/sqrt(N) by plotting
the error as a function of N (double N at each iteration
to produce a log-log plot). Limit to k = 1 and k = 2.

Application to Radioactive Decay
• Spontaneous decay is a natural process in which

a particle decays into other particles. It is
random event with constant probability.

• Of course, as the total number of particles
decreases with time, so will the number of
decays.

• Imagine having a sample of N(t) radioactive nuclei at time t.
• Let ∆N be the number of particles that decay in some small time interval ∆t; the

probability P of any one particle decaying per unit time is a constant:

• Because the exponential decay law is a large-number approximation to a natural
process that always ends with small numbers, our simulation should be closer to
nature than is the exponential decay law:

Practice Session #3: Radioactive Decay
• decay.cpp: using random deviates in [0,1] simulate the radioactive decay of an

initial distribution of N atoms having a decay rate λ (use λ = 0.01).

- We increase time in discrete steps ∆t (=
1), and for each time interval we
count the number of nuclei that have
decayed during that ∆t.

- The simulation quits when there are no
nuclei left to decay or when time
exceeds a given threshold (e.g. t < 500).
Such being the case, we have an outer
loop over the time steps ∆t and an inner
loop over the remaining nuclei for each
time step.

- Produce a plot.

Acceptance-Rejection Method
• A convenient method for generating random

variables according to a specific distribution
is von Neumann acceptance / rejection,
whose geometrical basis is illustrated in the
figure.

• Suppose we are interested in generating x
between 0 and 1 with distribution W(x) and
let C(x) be a positive function such that
C(x) > W(x) over the region of integration.

• C(x) may be chosen as a constant greater
than the maximum value of W(x).

• If we generate points in 2D that uniformly fill
the area under C(x), and accept only those
for which y < W(x), then the accepted point
will be distributed according to W(x).

C(x)

Practice Session #04: Gaussian Distribution
• Using the acceptance-rejection method, generate random deviates following a

Gaussian-like distribution:

with μ=0, σ=0.5.

• Choose C to be a constant, e.g.
C ≥ W(x) = f(x) and choose x in
the range [-5,5];

• Generate pairs of random numbers
(xk,yk) for k = 0…N-1 (take N = 105) and
construct the distribution.

Monte Carlo Methods & Quadrature
• Monte Carlo methods are a class of stochastic algorithms – optimization, numerical

integration and generating probability distribution- relying on repeated random
sampling to obtain the solution to a problem which might be deterministic in
principle.

• Commonly employed in physics and/or mathematics when other approaches become
impracticable.

• Here we consider Monte Carlo integration which is based on a random choice of
points at which the integrand is evaluated. This method is particularly useful for
higher-dimensional integrals.

• The approach is clearly non-deterministic:: each realization provides a different
outcome.

• The final outcome is an approximation to the correct value with respective error bars,
and the correct value is likely to be within those error bars.

An Example: “Stone Throwing”
• Consider a function f(x,y) in a 2D space and its

integral over a certain region R Î A

• Random values of x and y are generated to sample
A: only trial points (x,y) inside R are accepted.

• The ratio between successful attempts divided by
the total number of samples represents the probability for samples to be accepted.

• Multiplying this probability by the volume of the sampling space A gives
approximation of the correct value of the integral:

• A large number of samples will result a closer value to the expected value.

AR

Error
• The uncertainty associated with this quadrature formula, we consider f(x,y) as a

random variable and invoke the central limit for large N. From statistic we have

• Where sf
2 is the variance in f, a measure of the extent to which f deviated from its

average over the region of integration.

• The uncertainty in σI decreases as 1/sqrt(N) (not very fast, if compared with
trapezoidal for which the error scales line N-2).

• Precision is greater if σf is smaller (function is as smooth as possible).

Practice Session #5: Computing π
• pi.cpp: use random sampling to perform a 2-D integration

on the unit disc, determine π:

– Consider a circle of radius 1 enclosed in a square of side 2.
– Generate pairs of random number, {xi, yi} in the range [-1,1] ,

with i = 1,…,N and count how many points fall inside the circle.
– Since we now the area of the square, obtain an approximation

of the area of the circle as

1. Give an input value of N and compute the integral;
2. Keep increasing N such that the relative error err = |I/π-1| < tol (use tol = 10-4);
3. Plot the error* as a function of N = 4,8,16, … ≈ 106-107 and compare it with estimate

(≈1/sqrt(N)).

*From statistics, a more accurate error estimate may be obtained using the standard deviation, i.e., the amount of variation we
should expect from samples. In this case the error is computed from the standard deviation σ, that is, the square root of

