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Pseudo-Random Numbers
• It may seem a conceptual impossibility in producing “random numbers” with a 

computer which, by definition, is the most precise and deterministic of all machines 
conceived by the human mind.

• A program will produce output that is entirely predictable, hence not truly 
“random.” 

• Computer-generated sequences are termed pseudo-random: a deterministic 
algorithm that produces a random sequence which should be different from, and 
— in all measurable respects — statistically uncorrelated with, the computer 
program that uses its output. 

• In other words, any two different random number generators ought to produce 
statistically the same results when coupled to your particular applications program. 
If they don’t, then at least one of them is not (from your point of view) a good 
generator. 



Generating Pseudo Random Numbers
• Let’s understand how pseudo random numbers (prn) work with an example

• The pseudo-random number generator srand() is initialized using the argument 
passed as seed.

• Using the same seed will generate the same succession of  results in subsequent calls 
to rand(), which generates integer random numbers.

• For different seed value used in a call to srand(), the prn generator rand() is 
expected to generate a different succession of results in the subsequent calls.

• To produce different sequences at each execution, we can use the time() function:

srand(seed);              // Initialize the sequence
for (i=0; i<10; i++){
number = rand()%100+1;  // Generate a random number in [1,100]
cout << number << endl;  

}

srand(time(NULL));              // Initialize the sequence



Generating Pseudo Random Numbers
• Double precision random numbers in the interval [0,1] can be generated using 

drand48() rather than rand():

• As before, the prn sequence is initialized using srand48() (instead of srand()).

• At each code execution, the sequence will now be different since the seed depends 
on the call to time(NULL).

srand48(time(NULL));     // Initialize the sequence
for (i=0; i<10; i++){
double x = drand48();  // Generate a random number in [0,1]
cout << number << endl;  

}



Practice Session #1
• guess.cpp: write a program that extract an integer random number in the range 

[1,100] and try to guess it.  
Based on the most recent guess, have the code suggest the interval containing the 
random number. Count the number of guesses.

• For instance, suppose the number to guess is 35, then your code should produce an 
output similar to [input from keyboard is colored in red]:

n in [1,100]
type your guess #1 > 5
n in [5,100]
type your guess #2 > 27
n in [27,100]
type your guess #3 > 60
n in [27,60]
type your guess #4 > 50
n in [27,50]
type your guess #5 > 32
n in [32,50]
type your guess #6 > 38
n in [32,38]
type your guess #7 > 35
Number found in 7 iterations !!



Practice Session #2
• prn_uniformity.cpp: test a random-number generator in the range [0,1] (use 

double precision !) to obtain a numerical measure of its uniformity and randomness 
before you stake your scientific reputation on it.  
– Generate a quick visual test by plotting ri as a 

function of i (0 ≤ i < 103) : a uniform distribution of  
uncorrelated point values should appear.

– Evaluate the kth-moment of the distribution:

If the number are distributed uniformly, then the 
previous equation can be approximated by 

Check that the deviation varies as 1/sqrt(N) by plotting 
the error as a function of N (double N at each iteration 
to produce a log-log plot). Limit to k = 1 and k = 2.



Application to Radioactive Decay
• Spontaneous decay is a natural process in which 

a particle decays into other particles. It is 
random event with constant probability. 

• Of course, as the total number of particles 
decreases with time, so will the number of 
decays. 

• Imagine having a sample of N(t) radioactive nuclei at time t. 
• Let ∆N be the number of particles that decay in some small time interval ∆t; the 

probability P of any one particle decaying per unit time is a constant:

• Because the exponential decay law is a large-number approximation to a natural 
process that always ends with small numbers, our simulation should be closer to 
nature than is the exponential decay law:



Practice Session #3: Radioactive Decay
• decay.cpp: using random deviates in [0,1] simulate the radioactive decay of an 

initial distribution of N atoms having a decay rate λ (use λ = 0.01).  

- We increase time in discrete steps ∆t (= 
1), and  for each time interval    we 
count the number of nuclei that have 
decayed during that ∆t. 

- The simulation quits when there are no 
nuclei left to decay or when time 
exceeds  a given threshold (e.g. t < 500). 
Such being the case,  we have an outer 
loop over the time steps ∆t and an inner 
loop over the remaining nuclei for each 
time step. 

- Produce a plot.



Acceptance-Rejection Method
• A convenient method for generating random 

variables according to a specific distribution 
is von Neumann acceptance / rejection, 
whose geometrical basis is illustrated in the 
figure.

• Suppose we are interested in generating x 
between 0 and 1 with distribution W(x) and 
let C(x) be a positive function such that     
C(x) > W(x) over the region of integration. 

• C(x) may be chosen as a constant greater 
than the maximum value of W(x). 

• If we generate points in 2D that uniformly fill 
the area under C(x), and accept only those 
for which y < W(x), then the accepted point 
will be distributed according to W(x). 

C(x)



Practice Session #04: Gaussian Distribution
• Using the acceptance-rejection method, generate random deviates following a 

Gaussian-like distribution:

with μ=0, σ=0.5. 

• Choose C to be a constant, e.g. 
C ≥ W(x) = f(x) and choose x in 
the range [-5,5];

• Generate pairs of random numbers 
(xk,yk) for k = 0…N-1 (take N = 105) and 
construct the distribution.



Monte Carlo Methods & Quadrature
• Monte Carlo methods are a class of stochastic algorithms – optimization, numerical 

integration and generating probability distribution- relying on repeated random 
sampling to obtain the solution to a problem which might be deterministic in 
principle. 

• Commonly employed in physics and/or mathematics when other approaches become 
impracticable. 

• Here we consider Monte Carlo integration which is based on a random choice of 
points at which the integrand is evaluated. This method is particularly useful for 
higher-dimensional integrals.

• The approach is clearly non-deterministic:: each realization provides a different 
outcome. 

• The final outcome is an approximation to the correct value with respective error bars, 
and the correct value is likely to be within those error bars.



An Example: “Stone Throwing” 
• Consider a function f(x,y) in a 2D space and its 

integral over a certain region R Î A 

• Random values of x and y are generated to sample 
A: only trial points (x,y) inside R are  accepted. 

• The ratio between successful attempts divided  by 
the total number of samples represents the probability for samples to be accepted. 

• Multiplying this probability by the volume of the sampling space A gives  
approximation of the correct value of the integral:

• A large number of samples will result a closer value to the expected value.

AR



Error
• The uncertainty associated with this quadrature formula, we consider f(x,y) as a 

random variable and invoke the central limit for large N. From statistic we have

• Where sf
2 is the variance in f, a measure of the extent to which f deviated from its 

average over the region of integration.

• The uncertainty in σI decreases as 1/sqrt(N) (not very fast, if compared with 
trapezoidal for which the error scales line N-2).

• Precision is greater if σf is smaller (function is as smooth as possible).



Practice Session #5: Computing π
• pi.cpp: use random sampling to perform a 2-D integration  

on the unit disc,  determine π:

– Consider a circle of radius 1 enclosed in a square of side 2.
– Generate pairs of random number, {xi, yi} in the range [-1,1] , 

with i = 1,…,N and count how many points fall inside the circle.
– Since we now the area of the square, obtain an approximation 

of the area of the circle as

1. Give an input value of N and compute the integral;
2. Keep increasing N such that the relative error  err = |I/π-1| < tol (use tol = 10-4);
3.    Plot the error* as a function of N = 4,8,16, … ≈ 106-107 and compare it with estimate 

(≈1/sqrt(N)).

*From statistics, a more accurate error estimate may be obtained using the standard deviation, i.e., the amount of  variation we 
should expect from samples. In this case the error is computed from the standard deviation σ, that is, the square root of


