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Finding Roots of nonlinear Equations

• Except for linear problems, root finding proceeds by iteration: starting from some 
approximate trial solution, a useful algorithm will improve the solution until some 
predetermined convergence criterion is satisfied. 

• For smoothly varying functions, good algorithms  will always converge, provided that the 
initial guess is good enough. 

• Success crucially depends on having a good first guess for the solution, especially for 
multidimensional problems. This crucial beginning usually depends on analysis rather than 
numerics. 



Conditions for a Root to Exist
• In most cases, a change of sign of the function in a given 

interval [a,b] is a necessary (but not sufficient) condition 
for it to have a root.

• However, for an even number of roots in [a,b], this is no 
longer true:

• A change of sign may also given by a function with vertical 
asymptote:

• Multiple roots, or very close roots, are a real problem, 
especially if the multiplicity is an even number: there may 
be no readily apparent sign change in the function, so the 
notion of bracketing a root (and maintaining) the bracket 
— becomes difficult. 
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Bracketing a Root
• In order to isolate a single root, we need to pinpoint the intervals where a sign 

change is detected:

• For continuous function, and excluding roots with even multiplicity, we will say 
that a root is bracketed in the interval [xn,xn+1]  - with xn=a+nh, xn+1=a+(n+1)h - if 
f(xn) and f(xn+1) have opposite signs: then at least one root must lie in that interval 
(the intermediate value theorem). 

• Once we know that an interval contains a root, several classical procedures are 
available to refine it. These proceed with varying degrees of speed and sureness 
towards the answer. 
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Finding  All of the Roots

• In general, root finder methods will iterate over an initial interval and be able to 
converge to one root at a time. 

• For this reason, we will first conceive algorithms that operates in a given interval by 
assuming that the function changes sign only once in this interval (i.e. only one root will 
be assumed).

• In a second step, we will bracket the N possible roots of a function f(x) and call our 
root finder algorithm once for each of them, by properly specifying the interval.
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Bisection Method
• The bisection method is one that cannot fail. It is thus not to be sneered at as a 

method for otherwise badly behaved problems. The idea is simple.

1. Start with an interval [a,b], bracketing the root.
2. Estimate the root as the midpoint of the interval:  xm = (a+b)/2, compute f(xm) and use the 

midpoint to replace whichever limit has the same sign.

3. Repeat from step 1. until convergence is reached.

• After each iteration the bounds containing the root decrease by a factor of two. 
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Convergence of Bisection Method
• If after n iterations the root is known to be within an interval of size δn, then after the 

next iteration it will be bracketed within an interval of size δn+1 = δn/2 neither more nor 
less. 

• Since the new interval is proportional to the the first power, it is said to converge 
linearly. 

• Thus, we know in advance the number of iterations required to achieve a given 
tolerance in the solution is n = log2 (δ0/δ), where δ0 is the size of the initially 
bracketing interval, δ is the desired ending tolerance. So for  δ0=1, δ=10-6 one has
n = log2(106) ≈ 20.

• Bisection must succeed: 
– If the interval happens to contain two or more roots, bisection will find one of them. 
– If the interval contains no roots and merely straddles a singularity, it will converge on the 

singularity. 

• Methods that converge as a higher power, δn+1 = constant × (δn)m with m > 1 are said 
to converge superlinearly. 



False Position (Regula Falsi) Method
• In the false position method, the function is assumed to be approximately linear in 

the local region of interest, and the next improvement in the root is taken as the 
point where the approximating line crosses the axis:

• After each iteration one of the previous boundary points is discarded in favor of the 
latest estimate of the root.

• It converges faster than bisection to the root because it makes usage of appropriate 
weighting of the initial end points x1 and x2 using the information about the function.

• Usually, the convergence rate of False Position is superlinear, but estimation of its 
exact order is not so easy. 

a
b

f(x)

xm



Some Caveats on the False Position Method
The algorithm is very similar to the Bisection method and may implemented in the same 
way, but it differs in two aspects:

1. The next estimate does not coincide with the interval midpoint.

2. The halting condition for the false-position method is different from the bisection 
method: if, for example, the function is concave up (see the figure below), only the 
left bound is ever updated. Thus, instead of checking the width of the interval, we 
check the change in the end points to determine when to stop.
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Practice Session #1
froot.cpp: write a program that finds the zero of 
the trial function 

using both bisection and false position methods.

From the plot in the figure it is clear that a single zero 
occurs in the interval [-1,1]. 
Make sure to write your function in a rather general  (read “re-usable”) way. 
A possibility (but not the only one) is

or, 

• How many iterations are necessary to reach a tolerance 10-7 ? 
• What happens if the initial interval is 10 times larger ? 

int Bisection(double (*func)(double), double a, double b, double tol, double &zero)

double Bisection(double (*func)(double), double a, double b, double tol)



Practice Session #1
• Using an interval [-1,1] and a tolerance of 10-7 (exit condition |b-a| < tol), the 

output produced by the bisection method should read 

• Here [a,b] represent the interval at the kth iteration, while xm is the interval midpoint 
and fm = f(xm).

Bisection(): k = 1; [a,b] = [-1.000000e+00, 1.000000e+00]; xm = 0.000000e+00; dx = 2.000000e+00; fm = 1.000000e+00
Bisection(): k = 2; [a,b] = [0.000000e+00, 1.000000e+00]; xm = 5.000000e-01; dx = 1.000000e+00; fm = 1.065307e-01
Bisection(): k = 3; [a,b] = [5.000000e-01, 1.000000e+00]; xm = 7.500000e-01; dx = 5.000000e-01; fm = -2.776334e-01
Bisection(): k = 4; [a,b] = [5.000000e-01, 7.500000e-01]; xm = 6.250000e-01; dx = 2.500000e-01; fm = -8.973857e-02
Bisection(): k = 5; [a,b] = [5.000000e-01, 6.250000e-01]; xm = 5.625000e-01; dx = 1.250000e-01; fm = 7.282825e-03
Bisection(): k = 6; [a,b] = [5.625000e-01, 6.250000e-01]; xm = 5.937500e-01; dx = 6.250000e-02; fm = -4.149755e-02
Bisection(): k = 7; [a,b] = [5.625000e-01, 5.937500e-01]; xm = 5.781250e-01; dx = 3.125000e-02; fm = -1.717584e-02
Bisection(): k = 8; [a,b] = [5.625000e-01, 5.781250e-01]; xm = 5.703125e-01; dx = 1.562500e-02; fm = -4.963760e-03
Bisection(): k = 9; [a,b] = [5.625000e-01, 5.703125e-01]; xm = 5.664062e-01; dx = 7.812500e-03; fm = 1.155202e-03
Bisection(): k = 10; [a,b] = [5.664062e-01, 5.703125e-01]; xm = 5.683594e-01; dx = 3.906250e-03; fm = -1.905360e-03
Bisection(): k = 11; [a,b] = [5.664062e-01, 5.683594e-01]; xm = 5.673828e-01; dx = 1.953125e-03; fm = -3.753492e-04
Bisection(): k = 12; [a,b] = [5.664062e-01, 5.673828e-01]; xm = 5.668945e-01; dx = 9.765625e-04; fm = 3.898588e-04
Bisection(): k = 13; [a,b] = [5.668945e-01, 5.673828e-01]; xm = 5.671387e-01; dx = 4.882812e-04; fm = 7.237912e-06
Bisection(): k = 14; [a,b] = [5.671387e-01, 5.673828e-01]; xm = 5.672607e-01; dx = 2.441406e-04; fm = -1.840599e-04
Bisection(): k = 15; [a,b] = [5.671387e-01, 5.672607e-01]; xm = 5.671997e-01; dx = 1.220703e-04; fm = -8.841203e-05
Bisection(): k = 16; [a,b] = [5.671387e-01, 5.671997e-01]; xm = 5.671692e-01; dx = 6.103516e-05; fm = -4.058732e-05
Bisection(): k = 17; [a,b] = [5.671387e-01, 5.671692e-01]; xm = 5.671539e-01; dx = 3.051758e-05; fm = -1.667477e-05
Bisection(): k = 18; [a,b] = [5.671387e-01, 5.671539e-01]; xm = 5.671463e-01; dx = 1.525879e-05; fm = -4.718446e-06
Bisection(): k = 19; [a,b] = [5.671387e-01, 5.671463e-01]; xm = 5.671425e-01; dx = 7.629395e-06; fm = 1.259729e-06
Bisection(): k = 20; [a,b] = [5.671425e-01, 5.671463e-01]; xm = 5.671444e-01; dx = 3.814697e-06; fm = -1.729360e-06
Bisection(): k = 21; [a,b] = [5.671425e-01, 5.671444e-01]; xm = 5.671434e-01; dx = 1.907349e-06; fm = -2.348157e-07
Bisection(): k = 22; [a,b] = [5.671425e-01, 5.671434e-01]; xm = 5.671430e-01; dx = 9.536743e-07; fm = 5.124565e-07
Bisection(): k = 23; [a,b] = [5.671430e-01, 5.671434e-01]; xm = 5.671432e-01; dx = 4.768372e-07; fm = 1.388203e-07
Bisection(): k = 24; [a,b] = [5.671432e-01, 5.671434e-01]; xm = 5.671433e-01; dx = 2.384186e-07; fm = -4.799769e-08
Bisection(): k = 25; [a,b] = [5.671432e-01, 5.671433e-01]; xm = 5.671433e-01; dx = 1.192093e-07; fm = 4.541132e-08
Bisection(): k = 26; [a,b] = [5.671433e-01, 5.671433e-01]; xm = 5.671433e-01; dx = 5.960464e-08; fm = -1.293185e-09



Practice Session #1
• Using an interval [-1,1] and a tolerance of 10-7 (exit condition |xk-xk-1| < tol), the 

output produced by the false position method should read 

• Here [a,b] represent the interval at the kth iteration, while xm is the interval midpoint 
and fm = f(xm). The distance between endpoints is denoted with |del|=|xk-xk-1|.

FalsePos(): k = 1; [a,b] = [-1.000000e+00, 7.093967e-01]; xm = 7.093967e-01; fm = -2.174559e-01; |del| = 2.906033e-01
FalsePos(): k = 2; [a,b] = [-1.000000e+00, 6.149498e-01]; xm = 6.149498e-01; fm = -7.428178e-02; |del| = 9.444693e-02
FalsePos(): k = 3; [a,b] = [-1.000000e+00, 5.833191e-01]; xm = 5.833191e-01; fm = -2.527607e-02; |del| = 3.163067e-02
FalsePos(): k = 4; [a,b] = [-1.000000e+00, 5.726287e-01]; xm = 5.726287e-01; fm = -8.587983e-03; |del| = 1.069039e-02
FalsePos(): k = 5; [a,b] = [-1.000000e+00, 5.690049e-01]; xm = 5.690049e-01; fm = -2.916387e-03; |del| = 3.623874e-03
FalsePos(): k = 6; [a,b] = [-1.000000e+00, 5.677752e-01]; xm = 5.677752e-01; fm = -9.901954e-04; |del| = 1.229665e-03
FalsePos(): k = 7; [a,b] = [-1.000000e+00, 5.673578e-01]; xm = 5.673578e-01; fm = -3.361785e-04; |del| = 4.173945e-04
FalsePos(): k = 8; [a,b] = [-1.000000e+00, 5.672161e-01]; xm = 5.672161e-01; fm = -1.141327e-04; |del| = 1.416957e-04
FalsePos(): k = 9; [a,b] = [-1.000000e+00, 5.671680e-01]; xm = 5.671680e-01; fm = -3.874778e-05; |del| = 4.810423e-05
FalsePos(): k = 10; [a,b] = [-1.000000e+00, 5.671517e-01]; xm = 5.671517e-01; fm = -1.315475e-05; |del| = 1.633111e-05
FalsePos(): k = 11; [a,b] = [-1.000000e+00, 5.671461e-01]; xm = 5.671461e-01; fm = -4.465995e-06; |del| = 5.544341e-06
FalsePos(): k = 12; [a,b] = [-1.000000e+00, 5.671443e-01]; xm = 5.671443e-01; fm = -1.516190e-06; |del| = 1.882283e-06
FalsePos(): k = 13; [a,b] = [-1.000000e+00, 5.671436e-01]; xm = 5.671436e-01; fm = -5.147413e-07; |del| = 6.390284e-07
FalsePos(): k = 14; [a,b] = [-1.000000e+00, 5.671434e-01]; xm = 5.671434e-01; fm = -1.747529e-07; |del| = 2.169479e-07
FalsePos(): k = 15; [a,b] = [-1.000000e+00, 5.671433e-01]; xm = 5.671433e-01; fm = -5.932799e-08; |del| = 7.365305e-08



The Secant Method
• The secant method is a root-finding algorithm which assumes 

a function to be approximately linear in the region of 
interest. 

• Each improvement is taken as the point where the 
approximating line (the secant) crosses the axis:

• Differently from the false position method, 
the secant method retains only the most 
recent estimate, so the root does not 
necessarily remain bracketed.

• The initial interval may not contain the root:   
in this case, two guesses two the root must be provided.



The Secant Method: Pseudocode
• A simple pseudo code for the secant method is the following:

• Note that, as it is the case for previous algorithms, only one function evaluation per 
iteration is needed.

• Further checks may be necessary:
– number of iterations should not exceed a certain limit;
– Interval width should decrease (i.e. solution must not diverge)

Fa = Func(a), Fb = Func(b)       // Initialize 
Δx = b-a, k = 1
while (|Δx| > ε){          // Start iteration cycle
Δx = Fb*(b–a)/(Fb-Fa)    // Compute increment

a  ß b                  // Shift values 
 Fa ß Fb
b  ß b – Δx
Fb = Func(b)
k++; 

}



The Newton Method
• Perhaps the most celebrated of all one-dimensional 

root-finding methods, Newton’ s method (also called 
the Newton-Raphson method) differs from previous 
root finders by the fact that it requires the 
evaluation of both the function f(x), and the 
derivative f’ = df/dx, at arbitrary points x. 

• The Newton method consists geometrically of 
extending the tangent line at a current point x(k)

until it crosses zero, then setting the 
next guess x(k+1) to the abscissa of that zero-
crossing:

• The Newton method requires only one guess to the 
solution, but it does not maintain the root bracketed



Convergence of the Newton’s Method
• The Newton-Raphson method is more powerful than the previous algorithms since it 

converges quadratically to the solution.

• Within a small distance ε of x, the function and its derivative can be approximated as

• By Newton’s formula:

where ε = x(k)-x0 is the difference between a trial value from the true root.
• Using the previous relations we can express f(k) and f’(k) in terms of ε and the 

derivatives at the root itself. 
• The result is a recurrence relation for the deviations of the trial solutions:



Convergence of the Newton’s Method
• Near a root, the number of significant digits approximately doubles with each step. 
• This very strong convergence property makes Newton-Raphson the method of choice 

for any function whose derivative can be evaluated efficiently, and whose derivative 
is continuous and nonzero in the neighborhood of a root.

• However: there’re a number of situation in which Newton-Raphson method may fail.



Summary
• We can summarize, in the table the following properties of the 4 methods explained 

so far:

• On roots with higher multiplicity, Newton and Secant converge at slower rates.

• Other algorithms are possible as well, e.g. Ridder’s or Brent’s methods (for an 
extended discussion see the book “Numerical Recipes”, Ch. 09.)

Method Convergence MulitD / Complex 
Plane Extension

Bracket 

Bisection m=1 No Yes

False Position 1< m<1.6 No Yes

Secant m=1.618 Yes No

Newton m=2 Yes No



Practice Session #2
• Add Newton and Secant method to froot.cpp and compare the number of 

iterations with Bisection and False Position.

• Note that, for an efficient realization of Newton-Raphson, the user should provide 
not only the function f(x) but also its first derivative f’(x) at the desired point x.

• The output of the secant algorithm (using [a,b]=[-1,1] and a tolerance of 10-7) 
should read  

where xa and xb are the most recent iteration and dx is the next increment.
Likewise, for Newton, you should obtain

Secant(): k = 1; xa = -1.000000e+00; xb = 1.000000e+00; dx = 2.906033e-01
Secant(): k = 2; xa = 1.000000e+00; xb = 7.093967e-01; dx = 1.523963e-01
Secant(): k = 3; xa = 7.093967e-01; xb = 5.570004e-01; dx = -1.039871e-02
Secant(): k = 4; xa = 5.570004e-01; xb = 5.673991e-01; dx = 2.553492e-04
Secant(): k = 5; xa = 5.673991e-01; xb = 5.671438e-01; dx = 4.702440e-07
Secant(): k = 6; xa = 5.671438e-01; xb = 5.671433e-01; dx = -2.176575e-11

Newton(): k = 1; xc = 5.000000e-01; dx = -5.000000e-01
Newton(): k = 2; xc = 5.663110e-01; dx = -6.631100e-02
Newton(): k = 3; xc = 5.671432e-01; dx = -8.321618e-04
Newton(): k = 4; xc = 5.671433e-01; dx = -1.253749e-07
Newton(): k = 5; xc = 5.671433e-01; dx = -2.833750e-15



A Special Class of Functions: Polynomials
• Consider 

• If you’re thinking about doing
by using looping like:

don’t even dare! (It's obvious that there's a lot of repetitive computations being done  
by raising x to successive powers).
This method is quite inefficient: it requires n additions and n(n+1)/2 multiplications.

• A possibility would be an iterative method, by simply keeping the previous power of x 
between iterations:

It's easy to see that there are 2n multiplications and n additions for each 
computation. The algorithm is now linear instead of quadratic.

F(x) = an*pow(x,n) + an-1*pow(x,n-1) + ... a1*x + a0

double P = 0
for (int i = 0; i <= n; i++) P += a[n]*pow(x,n);    // NOOOOO !!!!!!!

double P = 0.0, xn = 1.0;
for (int i = 0; i <= n; i++){
P += a[i]*xn;
xn *= x;          // the current power of x

}



Horner’s Method for Polynomial Evaluation
• An even cheaper solution is given by Horner’s Method. Take

• Divide the polynomial into monomials starting from the largest power: the result 
obtained from one monomial is added to the result obtained from the next monomial 
and so forth in an addition fashion. Then you rewrite

Each monomial involves a maximum of one multiplication and one addition                                        
processes: n multiplications and n additions are involved !

• With a simple modification, we can also obtain the derivative at the same time:

p    = a[n];
dpdx = 0; 
for (int j = n-1; j >= 0; j--){

dpdx = dpdx*x + p;
p    = p*x + a[j];

}



Practice Session #3
• Consider the function 

This function has a root in x = -1. 
Repeat the search over the interval [-5,0].

The following table gives the number of 
iterations obtained with the different 
methods using a tolerance 10-8.

• Can you explain why False Position performs so badly ? 
• What happens when the initial interval is reduced to [-2,0] ? 

Bisection False Position Secant Newton

# Iterations ≈ 30 ≈ 80 ≈ 12 ≈ 6



Practice Session #4
• Consider the function

Search the zero over the interval 
[0,2] with tolerance 10-7.
The solution is x0 ≈ 5.235934e-01
Any problem ? Explain.

Bisection False 
Position

Secant Newton

# Iterations ≈ 26 55 ?? ≈ 8



Reorganizing your Code
• As the code becomes larger, we should split the programs up into modules: these would 

be separate source files: main() would be in one file, the others will contain functions. 

• In such a way, we can create our own library of functions by writing a suite of subroutines 
in one (or more) modules which can then be shared amongst many programs by simply 
including them at compilation time.

• There are many advantages of spreading a program across several files:
1. Teams of programmers can work on programs. Each programmer works on a different file.
2. An object oriented style can be used: each file defines a particular type of object as a data-type 

and operations on that object as functions. The implementation of the object is private from the 
rest of the program. This makes for well structured programs which are easy to maintain.

3. Files can contain all functions from a related group (e.g., all matrix operations). These can then 
be accessed like a function library.

4. Well implemented objects or function definitions can be re-used in other programs, reducing 
development time.

5. In very large programs each major function can occupy a file to itself. Any lower level functions 
used to implement them can be kept in the same file. Then programmers who call the major 
function need not be distracted by all the lower level work.

6. When changes are made to a file, only that file need be re-compiled to rebuild the program. The 
UNIX make facility is very useful for rebuilding multi-file programs in this way.



Reorganizing your Code: an Example

• In the example, the program is split into three 
parts:
– froot.cpp: contains the main() function and 

all problem-dependent functions and 
definitions;

– my_header.h: this is the “header file” 
containing only definitions of data types, 
function prototypes and C preprocessor 
commands. Header files helps to centralize the 
definitions in one file and share this file amongst 
the modules.

– root_solvers.cpp: contains a general 
implementation of the root-finder methods.

// Include headers you may need
#include <iostream>
#include <iomanip>
...

using namespace std;

// Function prototype goes here
double Bisection (...);
double Secant (...);
...

my_header.h
#include “my_header.h”

int main()
{

...
root1 = Bisection(...);
root2 = Secant(...);  

  ...
}

froot.cpp

#include “my_header.h”

double Bisection(...)
{

...
  ...
}

double Secant(...)
{

...
  ...
}

root_solvers.cpp



Reorganizing your Code
• How do we compile more than one file ? 

• This compilation technique is feasible when

– Just a few files are present ( < 3-4);
– All files (including header) reside in the same directory.
– You do not need to re-use the library files outside the current directory.

• For larger/more complex problem, we shall use the make utility that comes with UNIX 
system (later).

> g++ froot.cpp root_solvers.cpp –o program_name



Bracketing Several Roots
• We will now try to identify all of the roots potentially lying in a given interval [a,b]. 

• To this end, we divide the initial interval [a,b] into N equally spaced segments. 

• We then cycle over N in order to identify those segments across which the function 
changes sign. 

• Count  and store them using arrays, e.g. xL[i] , xR[i], where i = 0...Nr-1 , while 
Nr is the number of bracketing intervals (e.g. in the figure above N = 4, Nr = 3).

• For each segment, use your favorite root finder scheme to refine search and pinpoint 
the zero of the function with accuracy. 
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Practice Session #5
• Modify your program to find all of the zeros 

of the function: 

by first using a bracketing function and 
then any of the root finder methods to 
refine the search.
This function has five roots in the interval 
[-10,10], corresponding to:

Are you able to find them all ?     Which root-finder performs the best ? 

Root #1 Root #2 Root #3 Root #4 Root #5

-8.716925e+00 -6.889594e+00 -2.968485e+00 4.361680e-01 2.183971e+00 



Practice Session #6
• legendre.cpp: write a code that can found the zero of Legendre

polynomial of arbitrary order n.
In order to evaluate Pn(x) use Bonnet’s recursion
formula:

with P0(x) = 1, P1 (x)= x. 
For Newton-Raphson method, the derivative may 
be computed in terms of  Pn(x) and Pn-1(x) through

• Now that you have found the roots with high precision, you may use them to 
produce your Gaussian weights:

(hints: to increase the number of digits in your output, use (e.g.)
cout << setprecision(12);


