Ch. 06.
 Numerical Differentiation

Andrea Mignone
Physics Department, University of Torino
AA 2022-2023

Finite Difference Method

- Let us suppose that we are looking for the derivative of a function $f(x)$ at some given point x.
- Assume that the function $f(x)$ is known at equally spaced point x_{i}, such that $h=x_{i+1}-x_{i}$ is the spacing between nodes. Let

$$
f_{i}=f\left(x_{i}\right) \quad \text { for } \quad i=0, \ldots, N_{x}-1
$$

- In order to find the derivative $f^{\prime}=d f / d x$, the most direct method expands the function using a Taylor series in the neighborhood of x_{i} :

$$
f_{i+1} \equiv f\left(x_{i}+h\right) \approx f_{i}+f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}+\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right)
$$

- Solving for f^{\prime}, we have the forward difference (FD) approximation:

$$
f_{i}^{\prime} \approx \frac{f_{i+1}-f_{i}}{h}-\frac{f_{i}^{\prime \prime}}{2} h
$$

- This approximation has an error proportional to h : we can make the approximation error smaller by making h smaller, yet precision will be lost through the subtractive cancellation on the left-hand side when h is too small.

Backward Difference

- Similarly, we could expand $f\left(x_{i}-h\right)$:

$$
f_{i-1} \equiv f\left(x_{i}-h\right) \approx f_{i}-f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}-\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right)
$$

and obtain the backward difference (BD) approximation

$$
f_{i}^{\prime} \approx \frac{f_{i}-f_{i-1}}{h}+\frac{f_{i}^{\prime \prime}}{2} h
$$

which still has the same error $O(h)$.

- Both the forward and backward approximations are only first-order accurate and would give the correct answer only when $f(x)$ is a linear function.
- For a quadratic function $f(x)=a+b x^{2}$, for instance, the forward derivative approximation would result in

$$
\frac{f_{i+1}-f_{i}}{h}=2 b x_{i}+b h
$$

- If you compare it with the exact derivative ($f^{\prime}=2 b x$), this clearly becomes a good approximation only for small $h\left(h \ll 2 x_{i}\right)$

Central Difference

- Now consider both the right and left expansions:

$$
\left\{\begin{array}{l}
f_{i+1} \approx f_{i}+f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}+\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right) \\
f_{i-1} \approx f_{i}-f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}-\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right)
\end{array}\right.
$$

- Subtracting the two equations yields the central difference (CD) approximation

$$
f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h}-\frac{f^{\prime \prime \prime}}{6} h^{2}
$$

- During the subtraction, even powers cancel and our approximation is thus secondorder accurate: you can expect the cd approximation to be exact for a parabola.
- The FD, BD and CD approximations are quite natural in the sense that they are reminiscent of the incremental ratio used in elementary calculus.

Higher Order Formulas

- It is possible to obtain higher-order approximation by including more points.
- If we now expand also f_{i+2} and f_{i-2}, we obtain a system of equations

$$
\left\{\begin{aligned}
f_{i+2} & \approx f_{i}+2 f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2}(2 h)^{2}+\frac{f_{i}^{\prime \prime \prime}}{3!}(2 h)^{3}+O\left(h^{4}\right) \\
f_{i+1} & \approx f_{i}+f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}+\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right) \\
f_{i-1} & \approx f_{i}-f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}-\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right) \\
f_{i-2} & \approx f_{i}-2 f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2}(2 h)^{2}-\frac{f_{i}^{\prime \prime \prime}}{3!}(2 h)^{3}+O\left(h^{4}\right)
\end{aligned}\right.
$$

- Getting rid of terms up the fourth derivative, we obtain

$$
f_{i}^{\prime} \approx \frac{f_{i-2}-8 f_{i-1}+8 f_{i+1}-f_{i+2}}{12 h}+\frac{h^{4}}{30} f^{(5)}
$$

which is a fourth-order accurate approximation.

Practice Session \#1

- derivative.cpp: compute the numerical derivative $f(x)=\sin (x)$ in $x=1$ using FD, $B D$ and CD (or higher) using different increments $h=0.5,0.25,0.125, \ldots$
Plot the error

$$
\epsilon=\left|f_{\mathrm{num}}^{\prime}-f_{\mathrm{ex}}^{\prime}\right|
$$

as a function of h using a log-log scaling.

$2^{\text {nd }}-$ and Higher-order Derivatives

- For higher order derivatives we can still make use of the Taylor expansion and solve for the second (or higher) derivative.
- From

$$
\left\{\begin{aligned}
f_{i+1} & \approx f_{i}+f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}+\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right) \\
f_{i-1} & \approx f_{i}-f_{i}^{\prime} h+\frac{f_{i}^{\prime \prime}}{2} h^{2}-\frac{f_{i}^{\prime \prime \prime}}{3!} h^{3}+O\left(h^{4}\right)
\end{aligned}\right.
$$

we can solve, e.g., for the $2^{\text {nd }}$ derivative:

$$
f_{i}^{\prime \prime} \approx \frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}}+O\left(h^{2}\right)
$$

Practice Session \#2

- trajectory.cpp: Given the particle trajectory

$$
x(t)=\alpha t^{2}-t^{3}\left[1-\exp \left(-\frac{\alpha^{2}}{t}\right)\right]
$$

produce a plot of the velocity and acceleration in the range $\theta<t<\alpha$.
How many inversion points are present ? (try $\alpha=10$ to begin with)
To this purpose, divide the range [$0, \alpha$] into N equally spaced intervals Δt and use this spacing when computing the derivatives (that is, $h=\Delta t$).

Note: central $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives are ill-defined at $x=0$. At this point, replace them with the corresponding one-sided approximation (\rightarrow next slide).

