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Ordinary Differential Equations (ODE)
• Many physical problems are described by Ordinary Differential Equations

(ODE) and therefore it is not surprising that this particular field plays a major
role in computational physics.

• A very common form is

where and t is the independent variable. In components:

• This defines an Initial Value Problem (IVP): an ODE together with a specified
value, called the initial condition, of the unknown function at a given point in
the domain of the solution.



Ordinary Differential Equations
• Another example is the Boundary Value Problem (BVP): a differential 

equation together with a set of additional constraints, called the boundary 
conditions.

• The “standard” two point boundary value problem has the following form: 

• à We want to solve a set of n coupled first-order ordinary differential 
equations, satisfying  m boundary conditions at the starting point (t=0), and a 
remaining set of n-m boundary conditions at the final point te. 



Higher order ODE
• A differential equation of order higher than one can always be rewritten as a 

coupled set of first-order ODEs.

• As an example,

where Y0 = z, Y1 = z’.

• Occasionally, it is useful to incorporate into their definition some other 
factors in the equation, or some powers of the independent variable, for the 
purpose of mitigating singular behavior that could result in overflows or 
increased roundoff error. 



Initial Value Problem
• In the following we discuss several methods for solving ODE with a particular

emphasis on the initial value problem, consisting of the solution of the
original ODE once the vector of unknowns Y is specified at a particular time:

where Y0 is the initial condition.
• This is a very common case in physics.

• We consider an interval [0,te] which represents our domain of
integration.

• The general strategy is to divide the interval into steps of equal size h =
te/N and then develop a recursion formula relating Yn with Yn-1, Yn-2,… and
so forth.

• Here Yn is the solution vector at tn=nh.



The Euler Method
• The simplest method is the explicit Euler method in which we replace the

temporal derivative by finite differences:

which gives

• This formula has a local error of h2.

• However, the global truncation error after many steps is the cumulative
effect of the local errors committed at each step:

• In this sense, the Euler method is therefore a 1st order method.



Order of Accuracy
• The method has order of

accuracy p if the local
truncation error satisfies

• The order of accuracy is
therefore defined to be one
less than the order of the
leading term in the local
truncation error.



Code Structure
• An efficient structure can be achieved by separating the implementation of the 

actual integrator (which is general) from the right hand side function (which is 
problem-dependent):

void EulerStep (double t, double *Y, void (*RHSFunc)(double, double *, double *),
double dt, int neq)

// Take one step dt using Euler method for the solution of dY/dt = rhs. 
// Here neq is the number of ODE (the dimensionality of Y[]) and *RHSFunc() is a 
// pointer to the actual function (in this case it points to dYdt()) that 
// calculates the right-hand side of the system of equations.
{

int k;
double rhs[256];  // Make sure rhs[] is large enough (this implies neq < 256)

                    // rhs[neq] is *NOT* standard C++ (forbidden as static declaration)

RHSFunc (t, Y, rhs);
for (k = 0; k < neq; k++) Y[k] += dt*rhs[k]; // Update solution array

}

void dYdt (double t, double *Y, double *R)
// Compute the right-hand side of the ODE dy/dt = -t*y 
{

double y = Y[0];
R[0] = -t*y;

}

EulerStep (t, Y, dYdt, dt, neq);



Practice Session #1

• ode1.cpp. Consider the ODE

This has analytical solution
à Implement Euler’s method and try integrating

from t = 0 up to t = 3 using different step sizes,
e.g., h=0.5, 0.2, 0.1, 0.05, ..., 0.001.

• The following table shows the numerical solution and errors for h = 0.5.

à Write ASCII data file showing the absolute and relative errors for each step size as a
function of position. Comment on this.

à Choose h = 1. What happens ?

#    t             y(t)        abs_err       rel_err
0.000000e+00  1.000000e+00  0.000000e+00  0.000000e+00
5.000000e-01  1.000000e+00  1.175031e-01  1.331485e-01
1.000000e+00  7.500000e-01  1.434693e-01  2.365410e-01
1.500000e+00  3.750000e-01  5.034753e-02  1.550813e-01
2.000000e+00  9.375000e-02  4.158528e-02  3.072760e-01
2.500000e+00  0.000000e+00  4.393693e-02  1.000000e+00
3.000000e+00  0.000000e+00  1.110900e-02  1.000000e+00



Achieving Higher Accuracy
• Integrating an ODE is closely related to numerical quadrature. In fact, we can

formally integrate the ODE and rewrite it as

• The problem, of course, is that we don’t know the right hand side R over the
interval of integration.

• Two main approaches can be used to achieve higher order:

– Multistep methods: achieve higher order by considering solution values further in
the past (Yn, Yn-1, Yn-2, etc…)

– Single-Step methods: propagate a solution over an interval by combining the 
information from several Euler-style steps (each involving one evaluation of Rs), 
and then using the information obtained to match a Taylor series expansion up to 
some higher order. 



Linear Multistep Methods
• A possible solution is to use the values at previous point to provide linear

extrapolation of R over the interval

• Doing the integral results in the Adams-Bashforth two-step method:

• A related method is that of Adam-Moulton that employs a trapezoidal rule:

This method, however, is implicit since the unknown appears also in the r.h.s
through Rn+1. In the following we will focus mainly in explicit methods



Linear Multistep Methods
• Extrapolating using higher-order polynomial allows us to achieve higher 

accuracy.

• The fourth-order Adams-Bashforth method can be derived using a cubic 
interpolant:

• Since the recursion involve several previous steps, the value of Y0 alone is 
not sufficient to start and some other method is required to start the 
integration (e.g. RK or Taylor-series methods).



Runge-Kutta Methods
• Runge-Kutta methods are single-step methods as they require information 

only in the current interval and not from previous ones.

• They are based on Taylor expansion and yield better algorithms in terms of 
accuracy and stability.

• The basic philosophy is that it provides intermediate step in the computation 
of Yn+1. As an example we consider the 2nd order RK method where we 
approximate the integral using midpoint rule:

• To evaluate the function at the midpoint on the r.h.s. we can use a lower-
order approximation:



Runge-Kutta Methods
• Similarly one could use a trapezoidal (instead of the midpoint) rule:

• However, to make the algorithm explicit, we replace the second term in the 
r.h.s. with a lower-order approximation using Euler’s method: 

• This method is second-order accurate in time and it is also known as Heun’s
method or modified Euler’s method.



RK2 Methods
• Runge-Kutta methods are traditionally written in terms of increments, so 

that the midpoint and the modified Euler’s method can be written as:



Practical Implementation of RK Methods
• From a practical view, here’s a pseudo-code showing how the RK2 

(midpoint) can be implemented for a system of Neq equations:

• Here RHS_Func(double, double *, double *) is a user-supplied function 
that depends on the particular problem and whose purpose is that of 
computing the array of right hand sides of the first-order ODEs.

• RHS_Func() takes two input values (t,Y) and one output value (k). 

RK2Step(t, Y, (*RHS_Func), h, Neq)
{

double Y1[Neq], k1[Neq], k2[Neq];

RHS_Func(t,Y,k1)
for (i=0..Neq-1) Y1[i] = Y[i]+0.5*h*k1[i]

RHS_Func(t+0.5*h,Y1,k2)

for (i=0..Neq-1) Y[i] += h*k2[i]
}



The fourth-order Runge-Kutta: RK4
• If the Improved Euler method for differential equations corresponds to the 

Trapezoid Rule for numerical integration, we might look for an even better 
method corresponding to Simpson's Rule. This is called the Fourth-Order 
Runge-Kutta Method.

• The classical and very popular fourth-order algorithm requires 4 evaluation 
of function per step, has local accuracy of O(h5) and has found to give the 
best balance between accuracy and computational effort: 



Practice Session #2
• ode2.cpp: using Euler, RK2 and RK4 methods, solve the system of ODEs

with initial condition x(0) = 1, y(0) = 0.

à What is the analytical solution ? 

à Try to integrate the system between 0 ≤ t ≤ 20π using 200 points and compare the 
solutions. Which method is the most accurate ? 

à How can you choose the step size ? 

à Is there any quantity that you expect to be conserved ? Are they ? 



Practice Session #2: Convergence study
• We now wish to measure the convergence 

study of the three different algorithms 
(Euler, RK2, RK4) 

• Integrate now the previous system of ODE 
between 0 ≤ t ≤ 3 using N = 4, 8, 16,  … 2048
intervals. 

• At the end of integration compute the 
error as the difference between numerical and analytical solutions at te = 3:

err = |x(te) – cos(te)|; 

• Plot the error as a function of N. Do you recover the expected convergence rate ?

• Try again for te = 2π: the error for the 2nd order scheme will be smaller. Why ?



Stability

large changes in the solution will occur (even for small perturbations of the initial
condition), and the problem is unstable. Therefore, when studying the stability of
numerical methods we will consider the model problem for �  0 only. Even though
we will study only stability with respect to the model problem, it can be shown that
the results of this analysis also apply to other linear (and some nonlinear) problems.

Example We study how Euler’s method behaves for the stable model problem above,
i.e., in the case �  0. Since f(t, y) = �y(t) Euler’s method states that

yn+1 = yn + hf(tn, yn)
= yn + h�yn

= (1 + �h)yn.

Therefore, by induction,
yn = (1 + �h)ny0.

Since the exact problem has an exponentially decaying solution for � < 0, a stable
numerical method should exhibit the same behavior. Therefore, in order to ensure
stability of Euler’s method we need that the so-called growth factor |1 + �h| < 1. For
real � < 0 this is equivalent to

�2 < h� < 0 () h <
�2
�

.

Thus, Euler’s method is only conditionally stable, i.e., the step size has to be chosen
su�ciently small to ensure stability.

The set of �h for which the growth factor is less than one is called the linear stability
domain D (or region of absolute stability).

Example For Euler’s method we have

|1 + �h| < 1

so that (for complex �)

DEuler = {z = �h 2 C : |z + 1| < 1},

a rather small circular subset of the left half of the complex plane.
FIGURE

Example On the other hand, we can show that the implicit or backward Euler method

yn+1 = yn + hf(tn+1, yn+1)

is unconditionally stable for the above problem.
To see this we have

yn+1 = yn + h�yn+1

or
yn+1 =

1
1� �h

yn.
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Stability

Therefore,

yn =
✓

1
1� �h

◆n

y0.

Now, for (real) � < 0, the growth factor
✓

1
1� �h

◆
< 1

for any h > 0, and we can choose the step size h arbitrarily large.
Of course, this statement pertains only to the stability of the method. In order to

achieve an appropriate accuracy, h still has to be chosen reasonably small. However,
as we will see below, we do not have to worry about stepsize constraints imposed by
the sti↵ness of the problem.

If we allow complex �, then the linear stability domain for the backward Euler
method is given by the entire negative complex half-plane, i.e.,

DbackwardEuler = {z = �h 2 C : Rez < 0} = C�.

In general, absolute stability of a linear multistep formula can be determined with
the help of its characteristic polynomials. In fact, an s-step method is absolutely stable
if the roots of the polynomial � = ⇢ � �h� lie inside the unit disk. Here ⇢ and � are
defined as earlier, i.e.,

⇢(w) =
sX

m=0

amwm

�(w) =
sX

m=0

bmwm

and am and bm are the coe�cients of the s-step method

sX

m=0

amyn+m = h
sX

m=0

bmf(tn+m, yn+m)

with f(tn+m, yn+m) = �yn+m, m = 0, . . . , s, given by the model problem.
The linear stability domain of an s-step method is then the region in the complex

plane for which the roots of the polynomial � = ⇢� �h� lie inside the unit disk.

Example For Euler’s method ⇢(w) = w � 1, and �(w) = 1, so that

�(w) = ⇢(w)� �h�(w) = (w � 1)� �h = w � (1 + �h)

with root 1 + �h. The region of absolute stability D is therefore

DEuler = {z = �h 2 C : |1 + z| < 1},

the same region we found earlier.
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Practice Session #3
• kepler.cpp: solve the equation of motion of a 

point mass in a central gravitational field, 

Use dimensionless units by setting GM=1 and 
set the initial mass at the point (x=4,y=0) with
initial velocity in the y-direction. Use two dimensions (x-y) only.

à What is the maximum velocity for which the orbit is closed ?
à Consider first the case of a circular orbit and integrate for ≈10 orbits by counting 

turning points (1 orbit = 2 turning points). How can we safely choose the step size ?
à Now consider an elliptical orbit (try e.g. α = 0.3).  Can you devise a strategy to control 

the time step so that Dθ » const ? (Make sure your algorithm produces bounded 
orbits…)

à How would you scale your results to physical c.g.s units ? 



Useful Tips (& tricks) 
• Bounded orbits are admissible if the mechanical energy of the system is 

negative, i.e., E = v2/2 – 1/r < 0 à v < sqrt(2/r)

• Circular orbits are defined by matching centripetal and gravitational forces:            
v2/r = 1/r2 à v = sqrt(1/r)

• In general one could write v = sqrt(α/r) and, for α < 2, we always have 
elliptical orbits which repeats.

• In 2D we have a total of 4 ODE of order 1:

where r = sqrt(x2 + y2)



Scaling the Equations to Physical Units
• By properly choosing the dimensions, one can easily scale the equations to 

dimensionless form.

• Write a physical quantity q (in cgs) as q = qcgs qc where qcgs is a constant 
in cgs units representing your reference unit and qc is a dimensionless (code) 
variable. 

• For instance, by writing time t = tcgs tc, and r = Lcgs Lc, one has

• Choosing                               and keeping Lcgs arbitrary we obtain the 
dimensionless  form of the equations.

• Make sure you choose independent reference units (do not choose length, 
time and velocity !!). 



Symplectic Integrators
• Many problems require integrating Newton’s equations of motion over a 

long period of time and for a large number of particles.

• In the case of a large number of interacting particles, we need to compute 
accelerations on every particle. It can be challenging to use a variable step 
size integrator, so more commonly a low order integrator is used on all 
particles during each time-step. The step size can be chosen so that it is 
appropriate for the particle with the largest acceleration. 

• Symplectic integrators are designed to preserve the geometry of phase 
space and a Hamiltonian system is integrated that is an approximation to the 
desired Hamiltonian.

• Errors are bounded  and  the integration exhibits stability on long timescales.



Symplectic Integrators
• Both algorithms take advantage of the property that the equation for dx/dt

does not involve x itself and the equation for dv/dt does not involve v 
(assuming velocity independent forces). 

• The Leapfrog and Verlet algorithms are particularly suited for this purpose 
and they possess the following properties:

– These integrators are time-reversible: one can integrate forward n steps and then reverse 
the direction to arrive at the same starting position. 

– They also conserves the (slightly modified) energy of dynamical systems, which can be 
especially useful in orbital dynamics [many other integration schemes, such as the (order-4) Runge-Kutta

method, do not conserve energy and allow the system to drift substantially over time].
– In a spherically symmetric potential, angular momentum is conserved and, remarkably, the 

leapfrog/(velocity or position) Verlet algorithm conserves it exactly. 



Leapfrog Method
• Consider the equation of motion  à

assuming that the force does not
depend on velocity.

• The Euler method would approximate this equation using

• A better approximation would be to replace the vn by its value at the 
midpoint of the interval: 

• If vn+1/2 is known, then we can apply a similar trick to evolve v forward in time:  

• Thus, once we have started off with x0 and v1/2 we can continue with x and v 
leapfrogging over each other as shown in the figure below: 



Leapfrog Method
• The basic integration formula for the leapfrog algorithm is therefore:

• This method has a local error ≈ h3 and therefore is a second-order accurate 
method.

• This method, although symplectic, has one major drawback: it requires 
position and velocity to be staggered (displaced by h/2 in time). 

• It also requires a (strictly) constant h, in order to preserve second-order 
accuracy in time.



The velocity-Verlet Method
• One way to overcome the limitations of the Leap-frog method is to average 

the velocity, vn = (vn-1/2+vn+1/2)/2 and 

• This is called the velocity Verlet algorithm. It is equivalent to the Leapfrog 
scheme with an additional recipe for starting the algorithm off and for 
evaluating v and x at the same time. 

• Apparently, it seems that two force calculations are required per time step, 
but a closer look reveals that the acceleration term in the 3rd line is the same 
as the force in the 1st line of the next step, so it can be stored and reused. 

• Since velocity Verlet is the same as leapfrog, it is a second order method. 



The position-Verlet Algorithm
• Note that instead of starting with a half step for v followed by full step for x 

and another half step for v, one could do the opposite: a half step for x 
followed by full step for v and another half step for x, i.e. 

• This is called the position Verlet algorithm.



Generalization to Systems
• Both the velocity-Verlet and the position-Verlet (as well as the leap-frog 

method) can be easily generalized to the case of many equations. 

• Where xi and vi are the positions and velocities, ai is the acceleration for 
the corresponding component.

• Note that each acceleration depends on the set of all position {xi}

• It is important that all the positions are first updated, then all the forces are 
calculated using the new positions, then all the velocities are updated and 
finally all the positions are updated again.

Velocity-Verlet Position-Verlet



Practice Session #4
• harmonic.cpp: solve the harmonic 

oscillator problem 

using velocity-Verlet (or position-Verlet) 
algorithm, choosing a constant time step 
h = 0.02T and initial condition 
x0 = 1, v0 = 0 (T=2π/ω).

à Evolve the system for 10 periods and compute the relative error in the 
mechanical energy of the system. Compare it with RK2 midpoint.



A fourth-order Symplectic Algorithm
• The simplest higher order symplectic algorithm is that of E. Forest and R.D. 

Ruth:

where

Note that this method requires 3 evaluations of 
the force per time step, as opposed to just one 
for the leapfrog method.
Note too that the steps are symmetric 
about the middle one (this ensures time 
reversal invariance) .



Boris Pusher for Lorentz Force
• Charged particles in an electromagnetic field are subject to the Lorentz force:

where  α = e/mc is the charge to mass ratio of the particle, γ is the Lorentz factor, c is  
the  speed of light. 

• The position Verlet algorithm can be extended to the case of a the Lorentz force. 
The algorithm is implicit in the velocity but, since the magnetic force is linear in the 
velocity, it can be solved in a rather simple way: 

Where: 
- up= γvp is the particle 4-velocity, 
- h = αpΔt,		
- b = (h/2) B/γ



Implicit Methods
• Implicit methods offer the advantage of enhanced stability (often, 

unconditionally stability) over explicit methods.
• In an implicit method, the right hand side is evaluated at the next time level. 

For instance, in the implicit Euler method one has

• The solution now requires inverting the previous equation to found Yn+1.
• For a linear equation (R(Y) = -λY), one can found the solution analytically:

• However, in the more general case when R is not a linear function, implicit 
methods become challenging as they require the solution of one (or more) 
nonlinear equations.

• This problem can become rather arduous with systems of equations as 
multidimensional root solvers are necessary.



Implicit Methods
• A possibility is to use a “semi-implicit” approach, which consists of linearizing 

the right hand side with respect to the old time level:

• Written in this form, the solution can be formally expressed as

where I is the identity matrix.

• Semi-implicit methods are suitable if the time step is not too large, to ensure 
the Taylor expansion remain accurate (enough).


