Ch 10
Elliptic Partial Differential Equations

Andrea Mignone
Physics Department, University of Torino
AA 2022-2023

Elliptic PDE:

") D)
D Jp - \
Several elliptic PDEs can be written (in 2D) as LS ’; = S(x,y)

dx> Oy?

Here (x,y) is a function of space only and S(x,y) is a source term.

Although not the most general form, several equations can be written in this way:
— Poisson equation for electrostatic potential
— Time independent Schrodinger eq.
— Heat diffusion with local heat generation/loss

y=I
Elliptic equations are boundary value problem.
O, &
The problem is well posed (i.e. the PDE has YAl
unique solution) if appropriate boundary ‘ /'
conditions (b.c.) are specified y=§)=o ol

(Dirichlet or Neumann).

In a two dimensional space the function ¢(x,y) (or its normal derivative) can be
specified on the edges of the square and (possibly) on some additional curve within.

Elliptic PDE: Discretization

* We define a 2D lattice of N, points in the x-direction and N, points in the y-direction:

Hoe00ee88n
ST
I Neseaesses
NOSSSO088s!
Pottt ittt

* Uniform and equal spacing in both direction is assumed: h=Ax=Ay.

* Red points should be specified as boundary conditions while black points are the
solution values (unknowns).

Elliptic PDE: Discretization

To begin with, we discretize the Laplacian operator using 2"4-order approximations to
the second derivatives:
Pit1; — 20i; + Yi-1 n Pijr1 — 205+ Pij-1 q. .

. ¢ _ ‘ - M

Ax? Ay?

Interior (or active) points:
— 1i=1..Ny-2, j=1..N,-2.Thisis where the solution must be found.

Boundary points:
— Bottom: 1=0...N,-1 j=6

— Top: 1=0...N,-1 J=N, -1
— Left: 1=0 Jj=e...N,-1

— Right: 1=N,-1 Jj=6...N,-1

Direct Methods of Solution

The solution of a discrete elliptic PDE involves (N,-2)x(N,-2) equations at just as
many grid points.

For linear PDEs the discretization is naturally framed as a matrix-inversion problem:

Ap=D>b

Here Ais alarge sparse matrix of (N,-2)2x(N,-2)? points.

A direct methods attempt to solve the system in a fixed number of operations by
inverting A (e.g. Gaussian elimination).

We will not use direct method for the present purpose.

Iterative Methods of Solution

An iterative method is one in which a first approximation is used to compute a second
approximation which in turn is used to calculate a third one and so on:

Al e (n) o (n) ()

Pi = F(2ij 0 Pi—1,j-1 ---av9i+1.j+1)
The iterative procedure is said to be convergent when the differences between the

exact solution and the successive approximations tend to zero as the number of
iterations increase.

These methods are also called “relaxation methods” since the iterative process
gradually “relax” the solution to the exact solution.

From the analytical point of view, relaxation method can be understood by
decomposing the matrix A as a diagonal component D, strictly lower and upper
triangular components L and U:

A=D+L+U

Iterative Methods of Solution

* Here we will focus on three basic techniques, namely:

1. Jacobi’s iterative method: we solve for diagonal element by keeping off-diagonal
terms on the right hand side at the previous stage:

Ap = (D+L+U)p =0b — o = p~1 [b — (L + U)cptjki:}

2. Gauss-Seidel iterative method: we solve for the lower triangular part of the
system using backsubstitution:

Ap=(D+L+U)p=b — (,p“"'*'l::' _ (D+L)—1 |:b B ULPI:H}

3. Successive Over Relaxation iterative method: a variant of the Gauss-Seidel
algorithm based on a constant parameter w > 1, called the relaxation factor:

Ap = (D+L+U)p=b —) = (DiwL)™ [wb — (WU — (w — I)D)fp“";'}

1. Jacobi’s Iterative Method

Suppose we have found a solution of the discretized equation, then at each grid
point:
) 1

2¢
¥ij — 4 (“v’ﬁ+1.j + @ic1; T @i T @i — S)

This is only formal since the r.h.s. is not known. To find the solution, the equations
must be solved simultaneously = solving Poisson's equation is essentially a problem
in linear algebra.

Jacobi's iterative method starts with a guess @(© for the solution at the interior lattice
points. Plugging this guess into the r.h.s. yields ¢ at all lattice points. Iterating:

Ck+1) 1 k) (k) (k)
Y"/ o 1 (Yl‘*‘]. f + YI—]. f + ~,v1 f+1 _+_ ']Vl ', 1]2)

Formally, using matrix notations, this is the same as
Ap=(D+L+U)p=b = " =p! [b — (L + L-")ﬂP'i”':'}

where D-1 s trivially inverted.

1. Jacobi’s Iterative Method

‘A[L‘+1} o]. k) |!) |)) |;) 2
e o 1 (Yi-l-l] T 7"’1—1 i T 7"1 H—l T 7”1 =1 h *Sf~._f)

In Jacobi’s method, the computation of ¢+ requires nelghbor elements at the
previous stage.

We cannot overwrite @®) with &+ since that value will be needed by the rest of the
computation. The minimum amount of storage is two matrices of size nxn.

A necessary and sufficient condition for an iterative method to converge is that the
iteration matrix R - in Jacobi’s method R = D-!(L+U) - has aspectral radius less

than unity.

The eigenvalues of the iteration matrix R are found to be

A

mn

:l cosﬂ+cosﬂ ,m=1--- M-1, n=1,---, N-1
2 M N

Usually convergence is slow for the lowest and highest frequencies.

2. Gauss-Seidel Iterative Method

This is a modification of the Jacobi method, which can be shown to converge
somewhat faster: the idea is to use the components of @+ as soon as they are
computed.

In fact, if we sweep in order of increasing i and j. Then the left and lower neighbors of
each lattice point are already updated.

Why not use these (presumably) more accurate values in Jacobi's formula? This
results in one form of the Gauss-Seidel algorithm:

k1) 1 k) k41 k) k+1) 2o)
Yi.j — 1 (‘f’z+1.,,’ + ¥i—1.j + ¥i.g+1 + Yig—1 h bi._j)

Formally, this is equivalent to
Ap= (D+L+U)p=b — " =(D+L)™! [b —U 90'1"'3'}

The preconditioner matrix D + L becomes triangular instead of diagonal, but this is still
easy to use.

2. Gauss-Seidel Iterative Method

The computation of &) uses only the elements of @+ that have already been
computed, and the elements of &) that have not yet to be advanced to iteration k+1.

This means that, unlike the Jacobi method, only one storage array is required as
elements can be overwritten as they are computed (advantageous for very large
problems).

However, unlike the Jacobi method, the computations for each element cannot be
done in parallel and the values at each iteration are dependent on the order of the
original equations.

Again, convergence is ensured if the spectral radius of the iteration matrix R =
(D+L)-1Uis less than one.

i A = cos 2~ +cos - 2
The eigenvalues are mnmax = 4 M y;

This means that the Gauss Seidel method is twice as fast as the Jacobi’s method.

3. Successive Over Relaxation (SOR)

* Both Jacobi and Gauss-Seidel do not use the value of @;; at the same lattice point
during the update step.

* The convergence of the iteration can be improved considerably by using a linear
combination of the new and old solutions as follows:

(k1) oAk % (k1) (k) AR+ (k) 2¢)
Yijg = (l_w’)'*‘i.j +I ('7‘":'—1..) T Y TP -1 T Wi h bi.;i/

* In matrix notation, this is the same as
Ap=(D+L+U)p=b — " =(D+wL)™! [wb — (WU — (w— I)D)cp“'q

The preconditioner matrix is still in triangular form.

3. Successive Over Relaxation (SOR)

The over-relaxation parameter w can be tuned to optimize the convergence. It can be
shown that

— SOR converges only for 0<w<2;
— Itis faster than Gauss-Seidel only if I<w<2;

— It converges fastest for a square lattice if w=2/(1+m/N), where Nis the number
of points in the x or y directions.

* It can be shown that the eigenvalues of the SOR matrix are

nt? = % [/\w + VA2w? — 4w — 1)}

where A is an eigenvalue of the Jacobi matrix.

)
1+/1—)]

max

e The minimum occurs at Wopt =

Convergence Checking

We need to decide when the solution has converged sufficiently.

Since we presumably do not know the exact solution, one criterion is to ask that the
approximate solution does not change significantly from one iteration to the next.

One possibility is to compute the iteration error

__Z (k+1) (k)
. *rf — ¥ij
ij

where summation should be extended to interior points only.

AxrAy

Alternatively, convergence can also be checked by computing the residual defined as

=%

where 0% are the undivided approximations to the 2"d derivatives:

15"11 f;l?’ll } S

0;Pij = Pitlj— 205+ Pi-1j » yPii = Pijrl— 205 T Vi1

Convergence Rate

If we denote with rthe number of iterations required to reduce the overall error by a
factor 10-Pfor the 2D Laplacian equation is (see NR, Sect. 19.5):

(pN?/2 Jacobi]
r—{ pN*/4 Gauss — Seidel
pN/3 SOR]
\

Thus SOR converges in =N iteration (provided an optimal choice for w is used) while
Jacobi and Gauss-Seidel are much slower.

This makes SOR of more practical interest while leaving both Jacobi and Gauss-Seidel
only of theoretical interest.

Boundary Conditions

Dirichilet b.c. specify the value of the solution itself, e.g. at a left boundary:

, \ ¢y | (k+1) f
elro,y)=9y) — @o; =9Y)

Neumann b.c. specify the value of the derivative, e.g. oo = o(y)
(- £ IQ

To introduce the Neumann b.c. one may use a 15t-order discretization for the
derivative to to find ¢,

P — $o, Oy
—_— O' —_— =
h ox

xrQ

With the SOR scheme this will produce

(RN .,") v (k41 Y u) . |1) Al 1A+1n IAI 2 ¢

which works fairly well but may cause convergence slow down near boundaries since the
solution in the boundary is obtained at iteration k rather than k+1.

Neumann Boundary conditions [Optional]

* A more stable method requires to to incorporate the b.c. directly into the iteration
scheme:

| |A+ll _ ,,u+1a o o k) YT (R ,,lf_A-ﬁ:u _. «L+1' k) 2¢

* This results in an implicit update which, however, can be easily solved for ¢, ;at the
(k+1)th iteration cycle:

) (k) (k+1) (k) 20
(k41 (1)MJ T 4 [hU—FV’J T *’IJ 1+*1 j+1 —h *Sl.JJ

= 1—w/4

« Similar expressions are obtained at a right boundary.
« A2"order discretization can also be used by introducing, e.g., the one-sided discretization

—p2j A 30 0%

2h ox 0

1
— o =5 (v +4pi; — 2ho)

Lo

Algorithm Implementation

Here’s a sketch on how your code should be correctly written:

allocate memory for 2D arrays @°[NX]J[NY] and @*[NX][NY] to store solution
values at the current and next 1iteration;

define grid arrays x[1] and y[7j];
initialize solution array (e.g. ¢°[i][j] = @) in the 1interior points;

Iterate solution on interior points until convergence; Assign boundary

conditions carefully;

Write solution to disk;

—o—9—0—0—0—9)

—o—9—0—0—90—9

*—o—9—0—0—90—§

r—o—0—0—0—90—9

—eo—9o—9o oo

—o—0—0—0—90—9

+—o—o—9o—9¢o—o—

*—o——0—0—0—9

A ——9—9—9—9—9

v *—0—0—0—0—0—90

Note: interior points are in black, and looping over them
can be done using the indices

#tdefine IBEG 1
##tdefine IEND NX-2

and similarly for 3BeG, JEND.
Boundary points are in red and corresponds to

- @[o][*], o[NX-1][*] at Lleft, right bound.;

- o[*][o], o[*][NY-1] at bottom, top bound.;

Practice Session #1

* elliptic.cpp:solve the Poisson equation

v A
%o Oy

o2 g~ oY =0

ontheunitsquare0 = x,y = 1withS =const.
and b.c. given by the exact solution

- S, .
oz, y) = e ™ sin(—my) + I(IE +)

- SetNX = NY = 32andtryS = 0andthenS = 2 using Jacobi, Gauss-Seidel and
SOR. Compare the number of iterations necessary to achieve convergence, using the
residual and a tolerance of 10-7. Results are given by the following table

€, = Z (Slzkpu + (55'791_] — h-QS,fj tol = 107
¥
Jacobi Gauss-Siedel SOR
S=0 =~ 3322 =~ 1655 =~ 105

S=2 = 3167 =~ 1617 = 122

Practice Session #2

Compute the potential of an infinitely long charged cylinder by solving the Poisson

equation

0

-0.002

po for r<a

-0.004

0 otherwise

Vip=—p, with pz{

use a=0.1and p,=1.

-0.006

-0.008

As a boundary condition use the exact solution:

7“ -0.012
_pOT for 0<r<a o014
(P('r) — < 9 -0.016
poa r 1 :
B llog (—) + —] otherwise
\ 2 a 2

Solve the equation on the square domain -1=x,y=<1, using1282nodes.
(=Y
Lj

Jacobi Gauss-Siedel SOR
=~ 46224 ~ 23113 = 447

9 9 2 &
0,93+ 0y0i; — IS

tol = 107,

Practice Session #3

Find the steady-state temperature distribution of a rectangular plate o sx<2,0<y=<
1, insulated at x=0, with temperature fixed to 0 and to 2-x on the lower and upper
sides and constant heat flux = 3 at the right side.

For constant thermal conductivity, this entails the solution of the Laplace equation

Vip =0

N

subject to b.c. o
(Jyp 5z-j . (1)8
0:; — 03 yE [0‘]'] 0:3 0:6
=0 0.2 0.4
()79 0.1 0.2
: - 3~ Yy e [0~ 1] -o 0-
< ()l: r=2
o(x,0) =0, x € [0,2]
\ p(x, 1) =2—-z, T € [0~ 2] k41 (k)] .
€ = Z i 0 — Y ATAy tol = 107,
- J J
tj

Use 129 x 65 grid nodes and verify

that the 3 methods convergence Jacobi Gauss-Siedel SOR

with the table > = 14523 ~ 7882 ~ 260

