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Elliptic PDE: 

• Several elliptic PDEs can be written (in 2D) as

• Here φ(x,y) is a function of space only and S(x,y) is a source term.

• Although not the most general form, several equations can be written in this way:
– Poisson equation for electrostatic potential
– Time independent Schrodinger eq. 
– Heat diffusion with local heat generation/loss 

• Elliptic equations are boundary value problem.

• The problem is well posed (i.e. the PDE has 
unique solution) if appropriate boundary 
conditions (b.c.) are specified
(Dirichlet or Neumann).

• In a two dimensional space the function φ(x,y) (or its normal derivative) can be 
specified on the edges of the square and (possibly) on some additional curve within.



Elliptic PDE: Discretization
• We define a 2D lattice of Nx points in the x-direction and Ny points in the y-direction:

• Uniform and equal spacing in both direction is assumed: h=Δx=Δy. 
• Red points should be specified as boundary conditions while black points are the 

solution values (unknowns).
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Elliptic PDE: Discretization
• To begin with, we discretize the Laplacian operator using 2nd-order approximations to 

the second derivatives:

• Interior (or active) points:  
– i=1…Nx-2, j=1…Ny-2. This is where the solution must be found.

• Boundary points: 
– Bottom:   i=0...Nx-1    j=0
– Top:      i=0...Nx-1    j=Ny -1
– Left: i=0          j=0...Ny-1
– Right: i=Nx-1       j=0...Ny-1



Direct Methods of Solution
• The solution of a discrete elliptic PDE involves (Nx-2)x(Ny-2) equations at just as 

many grid points. 

• For linear PDEs the discretization is naturally framed as a matrix-inversion problem:

• Here  A is a large sparse matrix of (Nx-2)2x(Ny-2)2 points.

• A direct methods attempt to solve the system in a fixed number of operations by 
inverting A (e.g. Gaussian elimination).

• We will not use direct method for the present purpose.



Iterative Methods of Solution
• An iterative method is one in which a first approximation is used to compute a second 

approximation which in turn is used to calculate a third one and so on:

• The iterative procedure is said to be convergent when the differences between the 
exact solution and the successive approximations tend to zero as the number of 
iterations increase.

• These methods are also called “relaxation methods” since the iterative process 
gradually “relax” the solution to the exact solution.

• From the analytical point of view, relaxation method can be understood by 
decomposing the matrix A as a diagonal component D, strictly lower and upper 
triangular components L and U: 



Iterative Methods of Solution
• Here we will focus on three basic techniques, namely:

1. Jacobi’s iterative method: we solve for  diagonal element by keeping off-diagonal 
terms on the right hand side at the previous stage:

2. Gauss-Seidel iterative method: we solve for the lower triangular part of the 
system using backsubstitution: 

3. Successive Over Relaxation iterative method: a variant of the Gauss-Seidel 
algorithm based on a constant parameter ω > 1, called the relaxation factor:



1. Jacobi’s Iterative Method
• Suppose we have found a solution of the discretized equation, then at each grid 

point:

• This is only formal since the r.h.s. is not known. To find the solution, the  equations 
must be solved simultaneously à solving Poisson's equation is essentially a problem 
in linear algebra.

• Jacobi's iterative method starts with a guess φ(0) for the solution at the interior lattice 
points. Plugging this guess into the r.h.s. yields φ(1) at all lattice points. Iterating:

• Formally, using matrix notations, this is the same as 

where D-1 is trivially inverted.



1. Jacobi’s Iterative Method

• In Jacobi’s method, the computation of φ(k+1) requires neighbor elements at the 
previous stage. 

• We cannot overwrite φ(k) with φ(k+1) since that value will be needed by the rest of the 
computation. The minimum amount of storage is two matrices of size nxn.

• A necessary and sufficient condition for an iterative method to converge is that the 
iteration matrix R - in Jacobi’s method R = D-1(L+U) – has a spectral radius less 
than unity.

• The eigenvalues of the iteration matrix R are found to be 

• Usually convergence is slow for the lowest and highest frequencies. 



2. Gauss-Seidel Iterative Method
• This is a modification of the Jacobi method, which can be shown to converge 

somewhat faster:  the idea is to use the components of φ(k+1) as soon as they are 
computed.

• In fact, if we sweep in order of increasing i and j. Then the left and lower neighbors of 
each lattice point are already updated.

• Why not use these (presumably) more accurate values in Jacobi's formula? This 
results in one form of the Gauss-Seidel algorithm:

• Formally, this is equivalent to 

• The preconditioner matrix D + L becomes triangular instead of diagonal, but this is still 
easy to use.



2. Gauss-Seidel Iterative Method
• The computation of φ(k+1) uses only the elements of φ(k+1) that have already been 

computed, and the elements of φ(k) that have not yet to be advanced to iteration k+1. 

• This means that, unlike the Jacobi method, only one storage array is required as 
elements can be overwritten as they are computed (advantageous for very large 
problems).

• However, unlike the Jacobi method, the computations for each element cannot be 
done in parallel and the values at each iteration are dependent on the order of the 
original equations.

• Again, convergence is ensured if the spectral radius of the iteration matrix R = 
(D+L)-1U is less than one.

• The eigenvalues are

• This means that the Gauss Seidel method is twice as fast as the Jacobi’s method.



3. Successive Over Relaxation (SOR)
• Both Jacobi and Gauss-Seidel do not use the value of φi,j at the same lattice point 

during the update step. 

• The convergence of the iteration can be improved considerably by using a linear 
combination of the new and old solutions as follows:

• In matrix notation, this is the same as

The preconditioner matrix is still in triangular form. 



3. Successive Over Relaxation (SOR)
• The over-relaxation parameter ω can be tuned to optimize the convergence. It can be  

shown that 

– SOR converges only for   0<ω<2;
– It is faster than Gauss-Seidel only if  1<ω<2;
– It converges fastest for a square lattice if ω≈2/(1+π/N), where N is the number 

of points in the x or y directions. 

• It can be shown that the eigenvalues of the SOR matrix are

where λ is an eigenvalue of the Jacobi matrix.

• The minimum occurs at 



Convergence Checking
• We need to decide when the solution has converged sufficiently. 

• Since we presumably do not know the exact solution, one criterion is to ask that the 
approximate solution does not change significantly from one iteration to the next.

• One possibility is to compute the iteration error

where summation should be extended to interior points only.

• Alternatively, convergence can also be checked by computing the residual defined as

where δ2φ are the undivided approximations to the 2nd derivatives:  



Convergence Rate
• If we denote with r the number of iterations required to reduce the overall error by a 

factor 10-p for the 2D Laplacian equation is (see NR, Sect. 19.5):

• Thus SOR converges in ≈N iteration (provided an optimal choice for ω is used) while 
Jacobi and Gauss-Seidel are much slower.

• This makes SOR of more practical interest while leaving both Jacobi and Gauss-Seidel 
only of theoretical interest.



Boundary Conditions
• Dirichilet b.c. specify the value of the solution itself, e.g. at a left boundary:   

• Neumann b.c. specify the value of the derivative, e.g.

To introduce the Neumann b.c. one may use a 1st-order discretization for the    
derivative to to find φ0,j:

With the SOR scheme this will produce

which works fairly well but may cause convergence slow down near boundaries since the 
solution in the boundary is obtained at iteration k rather than k+1.



Neumann Boundary conditions [Optional]
• A more stable method requires to to incorporate the b.c. directly into the iteration 

scheme:

• This results in an implicit update which, however, can be easily solved for φ0,j at the 
(k+1)th iteration cycle:

• Similar expressions are obtained at a right boundary.
• A 2nd order discretization can also be used by introducing, e.g., the one-sided discretization



Algorithm Implementation
• Here’s a sketch on how your code should be correctly written:

- allocate memory for 2D arrays φ0[NX][NY] and φ1[NX][NY] to store solution 
values at the current and next iteration;

- define grid arrays x[i] and y[j];

- initialize solution array (e.g. φ0[i][j] = 0) in the interior points;

- Iterate solution on interior points until convergence; Assign boundary 
conditions carefully;

- Write solution to disk;

Nx

Ny

Note: interior points are in black, and looping over them 
can be done using the indices 

#define IBEG 1
#define IEND NX-2

and similarly for JBEG, JEND.
Boundary points are in red and corresponds to 

- φ[0][*], φ[NX-1][*] at left, right bound.;
- φ[*][0], φ[*][NY-1]  at bottom, top bound.;



Practice Session #1
• elliptic.cpp: solve the Poisson equation 

on the unit square 0 ≤ x,y ≤ 1 with S = const. 
and b.c. given by the exact solution 

à Set NX = NY = 32 and try S = 0 and then S = 2 using Jacobi, Gauss-Seidel and 
SOR. Compare the number of iterations necessary to achieve convergence, using the 
residual and a tolerance of 10-7. Results are given by the following table

tol = 10-7

Jacobi Gauss-Siedel SOR

S=0 ≈ 3322 ≈ 1655 ≈ 105

S=2 ≈ 3167 ≈ 1617 ≈ 122



Practice Session #2
• Compute the potential of an infinitely long charged cylinder by solving the Poisson 

equation

use a=0.1 and ρ0=1.
• As a boundary condition use the exact solution:

• Solve the equation on the square domain  -1≤x,y≤1, using 1282 nodes . 

tol = 10-7,

Jacobi Gauss-Siedel SOR

≈ 46224 ≈ 23113 ≈ 447



Practice Session #3
• Find the steady-state temperature distribution of a rectangular plate 0 ≤x ≤ 2, 0 ≤ y ≤ 

1, insulated at x=0, with temperature fixed to 0 and to 2-x on the lower and upper 
sides and constant heat flux = 3 at the right side.

• For constant thermal conductivity, this entails the solution of the Laplace equation

subject to b.c.

• Use 129 x 65 grid nodes and verify 
that the 3 methods  convergence 
with the table à

tol = 10-7,

Jacobi Gauss-Siedel SOR

≈ 14528 ≈ 7882 ≈ 260


