
Ch 10
Elliptic Partial Differential Equations

Andrea Mignone
Physics Department, University of Torino

AA 2022-2023

Elliptic PDE:

• Several elliptic PDEs can be written (in 2D) as

• Here φ(x,y) is a function of space only and S(x,y) is a source term.

• Although not the most general form, several equations can be written in this way:
– Poisson equation for electrostatic potential
– Time independent Schrodinger eq.
– Heat diffusion with local heat generation/loss

• Elliptic equations are boundary value problem.

• The problem is well posed (i.e. the PDE has
unique solution) if appropriate boundary
conditions (b.c.) are specified
(Dirichlet or Neumann).

• In a two dimensional space the function φ(x,y) (or its normal derivative) can be
specified on the edges of the square and (possibly) on some additional curve within.

Elliptic PDE: Discretization
• We define a 2D lattice of Nx points in the x-direction and Ny points in the y-direction:

• Uniform and equal spacing in both direction is assumed: h=Δx=Δy.
• Red points should be specified as boundary conditions while black points are the

solution values (unknowns).

0 1 2 ... i ... Nx-2 Nx-1

Nx

Ny

0

1

2

.
.
.

j

.
.
N
y
-2

N
y
-1

Elliptic PDE: Discretization
• To begin with, we discretize the Laplacian operator using 2nd-order approximations to

the second derivatives:

• Interior (or active) points:
– i=1…Nx-2, j=1…Ny-2. This is where the solution must be found.

• Boundary points:
– Bottom: i=0...Nx-1 j=0
– Top: i=0...Nx-1 j=Ny -1
– Left: i=0 j=0...Ny-1
– Right: i=Nx-1 j=0...Ny-1

Direct Methods of Solution
• The solution of a discrete elliptic PDE involves (Nx-2)x(Ny-2) equations at just as

many grid points.

• For linear PDEs the discretization is naturally framed as a matrix-inversion problem:

• Here A is a large sparse matrix of (Nx-2)2x(Ny-2)2 points.

• A direct methods attempt to solve the system in a fixed number of operations by
inverting A (e.g. Gaussian elimination).

• We will not use direct method for the present purpose.

Iterative Methods of Solution
• An iterative method is one in which a first approximation is used to compute a second

approximation which in turn is used to calculate a third one and so on:

• The iterative procedure is said to be convergent when the differences between the
exact solution and the successive approximations tend to zero as the number of
iterations increase.

• These methods are also called “relaxation methods” since the iterative process
gradually “relax” the solution to the exact solution.

• From the analytical point of view, relaxation method can be understood by
decomposing the matrix A as a diagonal component D, strictly lower and upper
triangular components L and U:

Iterative Methods of Solution
• Here we will focus on three basic techniques, namely:

1. Jacobi’s iterative method: we solve for diagonal element by keeping off-diagonal
terms on the right hand side at the previous stage:

2. Gauss-Seidel iterative method: we solve for the lower triangular part of the
system using backsubstitution:

3. Successive Over Relaxation iterative method: a variant of the Gauss-Seidel
algorithm based on a constant parameter ω > 1, called the relaxation factor:

1. Jacobi’s Iterative Method
• Suppose we have found a solution of the discretized equation, then at each grid

point:

• This is only formal since the r.h.s. is not known. To find the solution, the equations
must be solved simultaneously à solving Poisson's equation is essentially a problem
in linear algebra.

• Jacobi's iterative method starts with a guess φ(0) for the solution at the interior lattice
points. Plugging this guess into the r.h.s. yields φ(1) at all lattice points. Iterating:

• Formally, using matrix notations, this is the same as

where D-1 is trivially inverted.

1. Jacobi’s Iterative Method

• In Jacobi’s method, the computation of φ(k+1) requires neighbor elements at the
previous stage.

• We cannot overwrite φ(k) with φ(k+1) since that value will be needed by the rest of the
computation. The minimum amount of storage is two matrices of size nxn.

• A necessary and sufficient condition for an iterative method to converge is that the
iteration matrix R - in Jacobi’s method R = D-1(L+U) – has a spectral radius less
than unity.

• The eigenvalues of the iteration matrix R are found to be

• Usually convergence is slow for the lowest and highest frequencies.

2. Gauss-Seidel Iterative Method
• This is a modification of the Jacobi method, which can be shown to converge

somewhat faster: the idea is to use the components of φ(k+1) as soon as they are
computed.

• In fact, if we sweep in order of increasing i and j. Then the left and lower neighbors of
each lattice point are already updated.

• Why not use these (presumably) more accurate values in Jacobi's formula? This
results in one form of the Gauss-Seidel algorithm:

• Formally, this is equivalent to

• The preconditioner matrix D + L becomes triangular instead of diagonal, but this is still
easy to use.

2. Gauss-Seidel Iterative Method
• The computation of φ(k+1) uses only the elements of φ(k+1) that have already been

computed, and the elements of φ(k) that have not yet to be advanced to iteration k+1.

• This means that, unlike the Jacobi method, only one storage array is required as
elements can be overwritten as they are computed (advantageous for very large
problems).

• However, unlike the Jacobi method, the computations for each element cannot be
done in parallel and the values at each iteration are dependent on the order of the
original equations.

• Again, convergence is ensured if the spectral radius of the iteration matrix R =
(D+L)-1U is less than one.

• The eigenvalues are

• This means that the Gauss Seidel method is twice as fast as the Jacobi’s method.

3. Successive Over Relaxation (SOR)
• Both Jacobi and Gauss-Seidel do not use the value of φi,j at the same lattice point

during the update step.

• The convergence of the iteration can be improved considerably by using a linear
combination of the new and old solutions as follows:

• In matrix notation, this is the same as

The preconditioner matrix is still in triangular form.

3. Successive Over Relaxation (SOR)
• The over-relaxation parameter ω can be tuned to optimize the convergence. It can be

shown that

– SOR converges only for 0<ω<2;
– It is faster than Gauss-Seidel only if 1<ω<2;
– It converges fastest for a square lattice if ω≈2/(1+π/N), where N is the number

of points in the x or y directions.

• It can be shown that the eigenvalues of the SOR matrix are

where λ is an eigenvalue of the Jacobi matrix.

• The minimum occurs at

Convergence Checking
• We need to decide when the solution has converged sufficiently.

• Since we presumably do not know the exact solution, one criterion is to ask that the
approximate solution does not change significantly from one iteration to the next.

• One possibility is to compute the iteration error

where summation should be extended to interior points only.

• Alternatively, convergence can also be checked by computing the residual defined as

where δ2φ are the undivided approximations to the 2nd derivatives:

Convergence Rate
• If we denote with r the number of iterations required to reduce the overall error by a

factor 10-p for the 2D Laplacian equation is (see NR, Sect. 19.5):

• Thus SOR converges in ≈N iteration (provided an optimal choice for ω is used) while
Jacobi and Gauss-Seidel are much slower.

• This makes SOR of more practical interest while leaving both Jacobi and Gauss-Seidel
only of theoretical interest.

Boundary Conditions
• Dirichilet b.c. specify the value of the solution itself, e.g. at a left boundary:

• Neumann b.c. specify the value of the derivative, e.g.

To introduce the Neumann b.c. one may use a 1st-order discretization for the
derivative to to find φ0,j:

With the SOR scheme this will produce

which works fairly well but may cause convergence slow down near boundaries since the
solution in the boundary is obtained at iteration k rather than k+1.

Neumann Boundary conditions [Optional]
• A more stable method requires to to incorporate the b.c. directly into the iteration

scheme:

• This results in an implicit update which, however, can be easily solved for φ0,j at the
(k+1)th iteration cycle:

• Similar expressions are obtained at a right boundary.
• A 2nd order discretization can also be used by introducing, e.g., the one-sided discretization

Algorithm Implementation
• Here’s a sketch on how your code should be correctly written:

- allocate memory for 2D arrays φ0[NX][NY] and φ1[NX][NY] to store solution
values at the current and next iteration;

- define grid arrays x[i] and y[j];

- initialize solution array (e.g. φ0[i][j] = 0) in the interior points;

- Iterate solution on interior points until convergence; Assign boundary
conditions carefully;

- Write solution to disk;

Nx

Ny

Note: interior points are in black, and looping over them
can be done using the indices

#define IBEG 1
#define IEND NX-2

and similarly for JBEG, JEND.
Boundary points are in red and corresponds to

- φ[0][*], φ[NX-1][*] at left, right bound.;
- φ[*][0], φ[*][NY-1] at bottom, top bound.;

Practice Session #1
• elliptic.cpp: solve the Poisson equation

on the unit square 0 ≤ x,y ≤ 1 with S = const.
and b.c. given by the exact solution

à Set NX = NY = 32 and try S = 0 and then S = 2 using Jacobi, Gauss-Seidel and
SOR. Compare the number of iterations necessary to achieve convergence, using the
residual and a tolerance of 10-7. Results are given by the following table

tol = 10-7

Jacobi Gauss-Siedel SOR

S=0 ≈ 3322 ≈ 1655 ≈ 105

S=2 ≈ 3167 ≈ 1617 ≈ 122

Practice Session #2
• Compute the potential of an infinitely long charged cylinder by solving the Poisson

equation

use a=0.1 and ρ0=1.
• As a boundary condition use the exact solution:

• Solve the equation on the square domain -1≤x,y≤1, using 1282 nodes .

tol = 10-7,

Jacobi Gauss-Siedel SOR

≈ 46224 ≈ 23113 ≈ 447

Practice Session #3
• Find the steady-state temperature distribution of a rectangular plate 0 ≤x ≤ 2, 0 ≤ y ≤

1, insulated at x=0, with temperature fixed to 0 and to 2-x on the lower and upper
sides and constant heat flux = 3 at the right side.

• For constant thermal conductivity, this entails the solution of the Laplace equation

subject to b.c.

• Use 129 x 65 grid nodes and verify
that the 3 methods convergence
with the table à

tol = 10-7,

Jacobi Gauss-Siedel SOR

≈ 14528 ≈ 7882 ≈ 260

