
The	C	Preprocessor	

Andrea	Mignone	
Physics	Department,	University	of	Torino	

AA	2018-2019	



The	C	Preprocessor	
•  The	C	preprocessor	is	a	macro	processor	that	is	used	automatically	by	the	C	

compiler	to		transform	your	program	before	actual	compilation.	
•  In	many	C	implementations,	it	is	a	separate	program	invoked	by	the	compiler	

as	the	first	part	of	translation.	
•  It	allows	you	to	define	macros	which	are	brief	abbreviations	for	longer	

constructs;		
•  The	C	preprocessor	provides	four	separate	facilities:	

1)  Inclusion	of	header	files	
2)  Macro	expansion		
3)  Conditional	compilation	
4)  Line	control		

•  Preprocessor	directive	always	start	with	a	‘#’	symbol,	example:	

#define			TRUE					1	



1)	The	#include	directive	
•  The	#include	directive	tells	the	preprocessor	to	insert	the	contents	of	

another	file	into	the	source	code	at	the	point	where	the	#include	directive	is	
found.		

•  Include	directives	are	typically	used	to	include	the	C/C++	header	files	for	
functions	that	are	held	outside	of	the	current	source	file.	

•  The	syntax	is		

•  If	a	header	file	is	included	within	<>,	the	preprocessor	will	search	a	
predetermined	directory	path	to	locate	the	header	file.		

•  If	the	header	file	is	enclosed	in	"",	the	preprocessor	will	look	for	the	header	
file	in	the	same	directory	as	the	source	file.	

•  Note:	it	is	BAD	idea	to	include	a	function	through	an	include	directive.	
	

#include	<header_file>	
	
//	or		
	
#include	“header_file”	



2)	The	#define	directive	for	constants	
•  The	#define	directive	allows	the	definition	of	macros	within	your	source	

code;	
•  Macros	allow	constant	values	to	be	declared	for	use	throughout	your	code:	

	
	
•  Beware	that	macro	definitions	are	not	variables	and	are	understood	as	

simple	replacement.	They	cannot	be	changed	by	your	program	code	like	
variables;	

•  It’s	a	good	practice	to	define	macro	constant	names	in	uppercase;	
•  There’s	no	semicolon	character	at	the	end	of	a	preprocessor	statement.		

#define			TRUE										1	
#define			FALSE									0	
#define			CONST_c							2.99792458e10		//	speed	of	light	
	
int	main()	
{	
		int	a;	
		double	csq	=	CONST_c*CONST_c;	
	
		cout	<<	“Enter	0	or	1	“;	
		cin	>>	a	>>	endl;	
		if	(a	==	TRUE)	cout	<<	“You	typed	true	!!”		
}	



2)	The	#define	directive	for	Function-like	macro	
•  The	#define	directive	can	also	be	used	with	arguments	allowing	a	function-

like	construct	to	be	used.	
•  As	an	example,	consider	using	a	macro	for	degrees-to-radians	conversion:	

•  This	is	expanded	in-place,	so	that	repeated	multiplication	by	the	constant	is	
not	shown	throughout	the	code.		

•  The	macro	here	is	written	as	all	uppercase	to	emphasize	that	it	is	a	macro,	
not	a	compiled	function.	

...	
#define			DEG2RAD(x)				(	(x)*M_PI/180.0	)	
	
int	main()	
{	
		double	alpha	=	30.0;	
		cout	<<	sin(DEG2RAD(x))	<<	endl;	
		...	
}	
	



2)	The	#define	directive	for	Function-like	macro	

•  IMPORTANT:	the	argument	is	enclosed	in	parenthesis	to	avoid	the	possibility	
of	incorrect	order	of	operations	when	it	is	an	expression	instead	of	a	single	
value:		

...	
#define			DEG2RAD(x)				(	(x)*M_PI/180.0	)	
	
int	main()	
{	
		double	alpha	=	30.0;	
		cout	<<	sin(DEG2RAD(x))	<<	endl;	
		...	
}	
	

//	!	INCORRECT	
#define			DEG2RAD(x)				x*M_PI/180.0	
	
sin(DEG2RAD(30+60))		expands	to		sin(30+60*M_PI/180.)	

//	CORRECT	
#define			DEG2RAD(x)				(x)*M_PI/180.0	
	
sin(DEG2RAD(30+60))		expands	to		sin(	(30+60)*M_PI/180.)	



3)	Conditional	Compilation	
•  In	some	occasions,	you	may	instruct	the	preprocessor	whether	to	include	

certain	part	of	the	code	or	not.	To	do	so,	conditional	directives	can	be	used:	

•  In	the	previous	example,	only	the	part	of	the	code	enclose	in	the	second	
#if...#endif	statement	will	be	compiled.		

•  Note	that	#if	statement	is	not	tested	at	runtime	but	during	the	compilation	
stage.	

#define	SESSION	2		//	Choose	session	number	(1,	2	or	3)	
	
int	main()	
{	
		...	
#if	SESSION		==	1	
		...stuff	for	1st	session...	
#endif	
#if	SESSION		==	2	
	...stuff	for	2nd	session...	
#endif	
...	
}	



3)	Conditional	Compilation	
•  Optionally	you	may	also	use	the	#else	directive:	

•  Or	you	can	also	add	nested	conditionals	to	your	#if...#else	using	#elif	

#if	expression	
			conditional	codes	if	expression	is	non-zero	
#else	
			conditional	if	expression	is	0	
#endif	

#if	expression	
			conditional	codes	if	expression	is	non-zero	
#elif	expression1	
				conditional	codes	if	expression	is	non-zero	
#elif	expression2	
				conditional	codes	if	expression	is	non-zero	
...	..	...	
#else	
			conditional	if	all	expressions	are	0	
#endif	


