The C Preprocessor

Andrea Mignone
Physics Department, University of Torino
AA 2018-2019

The C Preprocessor

The C preprocessor is a macro processor that is used automatically by the C
compiler to transform your program before actual compilation.

In many Cimplementations, it is a separate program invoked by the compiler
as the first part of translation.

It allows you to define macros which are brief abbreviations for longer
constructs;

The C preprocessor provides four separate facilities:

1) Inclusion of header files
2) Macro expansion

3) Conditional compilation
4) Line control

Preprocessor directive always start with a ‘#’ symbol, example:

#tdefine TRUE 1

1) The #1inc lude directive

The #include directive tells the preprocessor to insert the contents of
another file into the source code at the point where the #include directive is
found.

Include directives are typically used to include the C/C++ header files for
functions that are held outside of the current source file.

The syntax is

#include <header file>
// or

#include “header file”

If a header file is included within <>, the preprocessor will search a
predetermined directory path to locate the header file.

If the header file is enclosed in """, the preprocessor will look for the header
file in the same directory as the source file.

Note: it is BAD idea to include a function through an include directive.

2) The #define directive for constants

The #define directive allows the definition of macros within your source
code;

Macros allow constant values to be declared for use throughout your code:

#tdefine TRUE
#tdefine FALSE
#define CONST_c

N R

.99792458e10 // speed of light

int main()
{
int a;
double csq = CONST_c*CONST_c;

cout << “Enter @ or 1 “;
cin >> a >> endl;
if (a == TRUE) cout << “You typed true !!”

}

Beware that macro definitions are not variables and are understood as
simple replacement. They cannot be changed by your program code like
variables;

It’s a good practice to define macro constant names in uppercase;
There’s no semicolon character at the end of a preprocessor statement.

2) The #define directive for Function-like macro

* The #define directive can also be used with arguments allowing a function-
like construct to be used.

* As an example, consider using a macro for degrees-to-radians conversion:

#define DEG2RAD(x) ((x)*M_PI/180.0)

int main()
{
double alpha = 30.0;
cout << sin(DEG2RAD(x)) << endl;

e This is expanded in-place, so that repeated multiplication by the constant is
not shown throughout the code.

* The macro here is written as all uppercase to emphasize that it is a macro,
not a compiled function.

2) The #define directive for Function-like macro

#define DEG2RAD(x) ((x)*M_PI/180.0)
int main()
{

double alpha = 30.0;

cout << sin(DEG2RAD(x)) << endl;

* IMPORTANT: the argument is enclosed in parenthesis to avoid the possibility
of incorrect order of operations when it is an expression instead of a single
value:

// ' INCORRECT

#define DEG2RAD(x) x*M_PI/180.0

sin(DEG2RAD(30+60)) expands to sin(30+60*M PI/180.)

// CORRECT

#define DEG2RAD(x) (x)*M_PI/180.0
sin(DEG2RAD(30+60)) expands to sin((30+60)*M PI/180.)

3) Conditional Compilation

* Insome occasions, you may instruct the preprocessor whether to include
certain part of the code or not. To do so, conditional directives can be used:

#define SESSION 2 // Choose session number (1, 2 or 3)

int main()

{
#if SESSION == 1

...stuff for 1st session...
#tendif
#if SESSION == 2

...stuff for 2nd session...
#tendif

* Inthe previous example, only the part of the code enclose in the second
#if...#end1f statement will be compiled.

* Note that #1f statement is not tested at runtime but during the compilation
stage.

3) Conditional Compilation

» Optionally you may also use the #else directive:

#if expression

conditional codes if expression is non-zero
#else

conditional if expression is ©
#endif

* Oryou can also add nested conditionals to your #if...#else using #elif

#if expression

conditional codes if expression is non-zero
#elif expressionl

conditional codes if expression is non-zero
#elif expression2

conditional codes if expression is non-zero
#else

conditional if all expressions are ©
#endif

