
A Quick Guide to Gnuplot

Andrea Mignone
Physics Department, University of Torino

AA 2021-2022

How to Install Gnuplot
• Gnuplot is available for all platforms, including Linux, Mac and Windows at the web

site http://www.gnuplot.info.

• Linux (Ubuntu) users: you can quickly install it using
> sudo apt-get install gnuplot-qt

• Mac Users: use the brew command (this may take a while)
> brew install gnuplot

• Windows users: go to https://sourceforge.net/projects/gnuplot/files/gnuplot/5.4.2/
and download gp542-win64-mingw.exe. This will install gnuplot on your windows
system under C:\Program Files\gnuplot\. In order to launch gnunplot directly
from your Cygwin terminal, add a symbolic link to wgnuplot.exe.

https://sourceforge.net/projects/gnuplot/files/gnuplot/5.4.2/

What is Gnuplot ?
• Gnuplot is a free, command-driven, interactive, function and data plotting program,

providing a relatively simple environment to make simple 2D plots (e.g. f(x) or f(x,y));

• To start gnuplot from the terminal, simply type

• To produce a simple plot, e.g.
f(x) = sin(x) and f(x) = cos(x)^2

• By default, gnuplot assumes that the
independent, or "dummy", variable for
the plot command is "x”
(or “t” in parametric mode).

> gnuplot

gnuplot> plot sin(x)
gnuplot> replot (cos(x))**2 # Add another plot

Mathematical Functions
• In general, any mathematical

expression accepted by C,
FORTRAN, Pascal, or BASIC may
be plotted. The precedence of
operators is determined by the
specifications of the C
programming language.

• Gnuplot supports the same
operators of the C
programming language, except
that most operators accept
integer, real, and complex
arguments.

• Exponentiation is done through
the ** operator (as in
FORTRAN)

Using set/unset
• The set/unset commands can be used to controls many features, including axis

range and type, title, fonts, etc…
• Here are some examples:

• Immediate help is available inside gnuplot via the "help" command.

Command Description
set xrange[0:2*pi] Limit the x-axis range from 0 to 2*pi,

set ylabel “f(x)” Sets the label on the y-axis (same as “set xlabel”)

set title “My Plot” Sets the plot title

set log y Set logarithmic scale on the y-axis (same as “set log x”)

unset log y Disable log scale on the y-axis

set key bottom left Position the legend in the bottom left part of the plot

set xlabel font ",18" Change font size for the x-axis label (same as “set ylabel”)

set tic font ",18" Change the major (labelled) tics font size on all axes.

set samples 2500 Set the number of points used to draw a function.

Plotting Datafiles
• Gnuplot can also plot ASCII datafile in multicolumn format;

• To plot a multi-column datafile using the 1st column for the abscissa and the 2nd

column as the ordinate, use

• Add a second plot using 1st (=x) and 3rd (=z) columns:

• If the “using” keyword is not specified, 1st and 2nd columns are assumed:

gnuplot> plot “file.dat” using 1:2

gnuplot> replot “file.dat” using 1:3

file.dat
Comments can be placed here
x0 y0 z0 ...
x1 y1 z1 ...
.
xN yN zN …

gnuplot> plot “file.dat”

Example of Plotting Styles
• When plotting datafiles, Gnuplot uses symbols:

• To join symbols with lines, use

gnuplot> plot “file.dat”

gnuplot> plot “file.dat” with lines

Producing Simple Datafiles from C++
• There’re basically two ways to produce a multicolumn ASCII datafile from the output

of a C++ program:
1. [Simple, not very general] By redirecting the output of a program to file:

The ">" sign is used for redirecting the output of a program to something other than
stdout (standard output, which is the terminal by default). Similarly, the >> appends to a
file or creates the file if it doesn't exist.

2. [Clever, more general] By creating the file using the ofstream (or similar) class in C++

./myprogram > myprogram.dat

#include <fstream>
...
ofstream fdata; // declare Output stream class to operate on files
fdata.open(“decay.dat”); // open output file
...
for (...){

fdata << x << " " << fx << " " << .. << endl; // write to file
}
fdata.close(); // close file

Writing 2D Arrays
• Two-dimensional arrays (such as f[i][j]) can be written in multi-column ASCII

format with the index j changing faster and a blank records separating blocks with
different index i:

x[0] y[0] f[0][0]
x[1] y[0] f[1][0]
. . .
x[N-1] y[0] f[N-1][0]

ß <empty line>
x[0] y[1] f[0][1]
...
x[N-1] y[1] f[N-1][1]

ß <empty line>
.
.
.

ß <empty line>
x[0] y[N-1] f[0][N-1]
...
x[N-1] y[N-1] f[N-1][N-1]

Datafiles containing multiple datasets
• A single datafile may also include more than one data set,

which must be separated by a pair of empty lines, e.g.

• In this case you can tell gnuplot which dataset should be
read using the ‘index’ keyword. For instance,

will plot the 3 points (x1, y1), (x2, y2), (x3,y3).
• Likewise

will plot the 6 points (c1, d1), (c2, d2) ... (c6,d6).

gnuplot> plot “file.dat” using 1:2 index 0

gnuplot> plot “file.dat” using 1:2 index 2

x1 y1
x2 y2
x3 y3
<empty line>
<empty line>
a1 b1
a2 b2
a3 b3
a4 b4
<empty line>
<empty line>
c1 d1
c2 d2
c3 d3
c4 d4
c5 d5
c6 d6
...

0th dataset

1st dataset

2nd dataset

file.dat

Creating Scripts for Gnuplot
• A Gnuplot script is a simple text file (with the extension “.gp”) containing a set of

instructions to produce the desired plot.
• Consider the following file, “myscript.gp”

• Comments are preceded with a “#” symbol.

• From gnuplot, you can now invoke this script using the “load” command:

reset # force all graph-related options to default values
fname = “myfile.dat” # file name

set autoscale xfixmin # axis range automatically scaled to include the range
set autoscale xfixmax # of data to be plotted

set tics font ",18"
set xlabel "x" font ",18"
set ylabel "y" font ",18"

set lmargin at screen 0.1 # set size of left margin
set rmargin at screen 0.82 # set size of right margin
set bmargin at screen 0.12 # set size of bottom margin
set tmargin at screen 0.95 # set size of top margin
plot fname using 1:3

gnuplot> load “myscript.gp”

Visualizing 2D Arrays

• Gnuplot can be used to display 2D arrays using the “splot” command instead of
“plot”.

• Different visualizations are possible:

Surface plot

Contour plot

Colored maps

gnuplot> set surface
gnuplot> set hidden3d
gnuplot> splot “data.dat” u 1:2:3 w lines

gnuplot> set pm3d map
gnuplot> splot “data.dat” u 1:2:3

gnuplot> set contour
gnuplot> unset surface
gnuplot> set view map
gnuplot> set cntrparam level 20
gnuplot> splot "elliptic.dat" u 1:2:3 w lines

More on pm3d map
• Pm3D map is a useful plotting style for function of 2D variables. Some tips:

– Exact axis range can be forced using

– Gray-to-rgb mapping can be set through

– A color gradient can be defined and used
to give the rgb values.

gnuplot> set autoscale xfixmin
gnuplot> set autoscale xfixmax
gnuplot> set autoscale yfixmin
gnuplot> set autoscale yfixmax
gnuplot> splot “file.dat”

gnuplot> set palette defined

gnuplot> set palette defined (0 "blue", 1 "white", 2 "yellow")

Slicing Datasets: the “every” keyword
• The keyword “every” specifies which datalines (subsets) within a single data set are

to be plotted. It has the following syntax:

where

• Examples:

• Note: the increments default is set to unity, the start values to the first point or block,
and the end values to the last point or block.

plot 'file' every I:J:K:L:M:N

plot 'file' every 2 # Plot every 2 lines
plot 'file' every ::3 # Plot starting from the 3rd line
plot 'file' every ::3::15 # Plot lines 3-15

I J K L M N
Line
increment

Data block
increment

First line First data
block

Last line Last data
block

Slicing Datasets: taking x- and y- slices
• In a 2D datasets (see “Writing 2D Arrays”), we can use plot with the every keyword to

produce 1D cuts along a given direction.

• To take an x-slice (a plot at constant y along the x-direction), you may use

• To take an y-slice (a plot at constant x- along the y-direction), you may use

j = 2 # Fix the vertical index j = 2 (= 3rd block)
plot fname using 1:3 every :::(j)::(j) with linespoint

This is equivalent to (expliciting writing the increment and starting indices):
plot fname using 1:3 every 1:1:0:(j)::(j) with linespoint pt 4

i = 1 # Fix the horizontal index i = 1 (= 2nd block)
plot fname using 2:3 every ::(i)::(i)

Note: the previous command does not allow data points to be connected by lines.
If you wish to connect data points with lines, you may “cheat”
using the splot command:

set view map
splot fname using 2:2:3 every ::(i)::(i) w lp

Creating Animations
• Animations can be built using the do for[]{..} in gnuplot (v ≥ 4.6).

• Consider the following example (simple_animation1.gp):

• If your gnuplot support .png, .gif or .jpeg terminal, images can be saved to disk:

omega = 2.0*pi;
ntot = 250 # Number of frames in one period
dt = 1.0/ntot # The increment between frames
do for [n=0:2*ntot]{

t = n*dt # Time
plot sin(x - omega*t)
pause 0.1 # pause in seconds

}

set term png # From now on, plots will be done on png terminal
and not on screen

omega = 2.0*pi;
ntot = 250 # Number of frames in one period
dt = 1.0/ntot # The increment between frames
do for [n=0:2*ntot]{
fname = sprintf ("sin_%04d.png",n) # File name
set output fname # Redirect output to file
t = n*dt # Time
plot sin(x - omega*t)

}

Trajectory: 2D Animation
• The following script demonstrate how a trajectory can be animated:

• An improved version adds the Sun (in green) and a
red wake (taken from Animations/kepler*.*):

set xrange [-1:1] # Always a good idea to
set yrange [-1:1] # fix the axis range

set pointsize 2 # symbol size
set style line 2 lc rgb '#0060ad' pt 7 # circle
do for [ii=1:3762] { # Start plotting

plot 'keplerVV.dat' using 2:3 every ::ii::ii linestyle 2
pause 0.02

}

...
ntail = 50 # number of points to draw in the tail
ninc = 3 # increment between frames

Add the sun in the center as a green filled circle
set object circle at first 0,0 size scr 0.01 \

fillcolor rgb 'green’ fillstyle solid

do for [ii=1:3762:ninc] {
im = ((ii - ntail) < 0 ? 1:ii-ntail)
title = sprintf ("Step = %d",ii)
set title title
plot 'keplerVV.dat' using 2:3 every ::ii::ii linestyle 2, \

'keplerVV.dat' using 2:3 every ::im::ii with lines lt 1
}

Trajectory: 3D Animations
• If the particle’s trajectory is not confined to a plane, then you can modify the script by

using set parametric and splot (taken from Animations/spiral_anim.*)

set parametric
set xyplane at 0
set grid

set pointsize 2 # symbol size
set style line 2 lc rgb '#0060ad' pt 7 # circle

-- Plot setting --
set xrange[-0.1:0.1]
set yrange[-0.1:0.1]
set zrange[0:2]

nstop = 990
ntail = 70
ninc = 3 # increment between frames

set view 60,30
set hidden3d
fname = "spiral_anim.dat” # datafile name
do for [ii=1:nstop:ninc] {

print ii
im = ((ii - ntail) < 0 ? 1:ii-ntail)
splot fname using 2:3:($4) every ::ii::ii linestyle 2,\

fname using 2:3:($4) every ::im::ii with lines lt 1

Add shadow on the xy plane
replot fname using 2:3:(0*$4) every ::im::ii with lines lt 3

}

Many Particles Animation
• If you have many particles travelling at different energies, you may have several

datafiles, one for each time t.
• In this case a different input data-file is read at each loop cycle:

• See Animations/nparts_anim.*.

set cbrange [0:35] # Fix the colorbar range

set pointsize 1
set style line 2 lc rgb '#0060ad' pt 7 # circle

set xlabel "x" font ",18"
set ylabel "y" font ",18"
set tics font ",18"

vmag(vx,vy,vz) = sqrt(vx*vx + vy*vy + vz*vz) # Define useful column-function

do for [n=0:100] {
title = sprintf ("Particle velocity magnitude, n = %d",n) # Title string
set title title_string font ",18”
fname = sprintf ('particles.%04d.tab',n) # Datafile string

plot fname using 2:3:(vx=$5, vy=$6, vz=$7, vmag(vx,vy,vz)) \
every 1 with points ls 2 palette

}

References on the Web
• Many tutorials on Gnuplot are available online.

• http://www.gnuplotting.org - This website gives many useful examples on
how to create nice looking plots. The section Gnuplot basics à Plotting data explains
many different ways to plot datafiles.

• http://lowrank.net/gnuplot/index-e.html - Here you can find a nice tutorial,
explaining Legend, tics, label, 2D and 3D plotting and much more.

http://www.gnuplotting.org
http://lowrank.net/gnuplot/index-e.html

