
Using	make		

Andrea	Mignone	
Physics	Department,	University	of	Torino	

AA	2019-2020	



Makefile	
•  Makefiles	are	a	simple	way	to	organize	code	compilation.	

•  With	a	makefile	it	is	possible	to	compile	several	source	files	to	
produce	an	executable;	

•  Source	(.cpp)	and	header	(.h)	files	can	be	placed	in	different	
directories.	



An	example	of	code	structure	
•  User	‘Pippo’	has	the	following	directory	structure:	

/Users/Pippo/Algoritmi/Work	
	
Local	working	directory:	this	is	where	you		
develop	your	problem-dependent	C++		
code.		
	
	
froot.cpp	
example1.cpp	
kepler.cpp	
...	

/Users/Pippo/Algoritmi/Libs	
		
Library	directory:	this	is	the	library	directory	
where	general-purpose	function	resides,		
e.g.,		
	
	
root_finders.cpp	
ode_solvers.cpp	
...	
my_header.h	

/Users/Pippo/Algoritmi	



Understanding	a	makefile
•  The	makefile	is	a	text	file	that	contains	the	recipe	for	building	your	

program.	

•  It	usually	resides	in	the	same	directory	as	the	sources,	and	it	is	usually	called	
“makefile”		or	“Makefile”(without	any	extension).	

•  Instruction	in	a	makefile	are	called	rules:	a	rule	is	an	instruction	for	building	
one	or	more	output	files	from	one	or	more	input	files.		

•  Make	determines	which	rules	need	to	be	re-executed	by	checking	whether	
any	of	the	input	files	has	changed	since	the	last	time	the	rule	was	executed.	

•  A	rule	has	a	syntax	like	this:	

	

output_file: input_file
<actions>



How	“Rules”	Work	

•  The	first	line	of	the	rule	contains	a	space-separated	list	of	output	files,	
followed	by	a	colon,	followed	by	a	space-separated	list	of	input	files.		

•  The	output	files	are	also	called	targets,	and	the	input	files	are	also	called	
dependencies;		

•  We	say	that	the	target	file	depends	on	the	dependencies,	because	if	any	of	
the	dependencies	change,	the	target	must	be	rebuilt.	

•  The	remaining	lines	of	the	rule	(the	actions)	are	shell	commands	to	be	
executed.		

•  Each	action	must	be	indented	with	a	tab	character.	Usually,	there's	just	one	
action	line,	but	there	can	be	as	many	as	you	want;	each	line	is	executed	
sequentially,	and	if	any	one	of	them	fails,	the	remainder	are	not	executed.	
The	rule	ends	at	the	first	line	which	is	not	indented.	

	

output_file: input_file
<actions>



KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 

The	makefile
•  You	should	create	a	new	text	file,	named	“makefile”	(no	extensions),	

using	your	editor	of	choice.		
•  This	is	how	a	typical	(simple)	makefile	looks	like:	



KEPLER_OBJ:		a	list	of	all	the	object	files	that	must	be	linked	together	to	produce	
the	executable	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



CXX:	the	name	of	the	C++	compiler	(or	others)	used	to	compile	source	codes	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



CFLAGS:	list	of	flags	to	pass	to	the	compilation	command.	Here	-c	means	“compile	only		
and	produce	object	file	.o”.	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



SRC:	location	of	the	main	source	directory,	where	all	of	yours	library	routines	are		
placed.	This	is	not	the	local	working	directory.	
Environment	variables	that	make	sees	when	it	starts	up	is	transformed	into	a		
make	variable	with	the	same	name	and	value.	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



VPATH:	special	name	used	by	GNU	Make	to	specify	a	list	of	directories	that	make	
should	search.	Thus,	if	a	file	that	is	listed	as	a	target	or	dependency		does	not	exist	in	
the	current	directory,	make	searches	the	directories	listed	in	VPATH	for	a	file	with	that	
name.		

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



INCLUDE_DIRS:	specifies	the	directories	to	be	searched	for	header	files.	
Note	the	usage	of	“-I”	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



kepler:	this	is	the	main	target.	It	tells	that	the	executable	must	be	built	from	the	
object	file	list	specified	by	$(KEPLER_OBJ).	The	second	line	is	the	actual	command	to	
be	used	to	accomplish		the		target.			
The	“$@”	says	to	put	the	output	of	the	compilation	in	the	file	named	on	the	left	side	of	
the	“:”	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



%.o: %.cpp:	this	is	the	suffix	rule.	It	instruct	how	to	create	an	object	file	(.o)	from	a		
source	file	(.cpp).	The	“$<“	is	the	first	item	in	the	dependencies	list		

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
        $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
        $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



!VERY IMPORTANT	:	actions	must	be	preceded	by	a	single	<tab>	character	and	not	
spaces	!!!	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
<tab>   $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
<tab>   $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 



Compiling	the	Code	
•  Now	that	you	have	built	the	makefile,	simply	type		

						or,	if	you	have	more	than	one	target,		
	
	
	
•  If	your	program	has	already	been	built	and	no	changes	were	made,	make	will	tell	you	

that	nothing	has	to	be	done.	

> make

> make kepler



The	make	clean	target	
•  In	some	case	one	would	like	to	“clean”	and	rebuild	the	target	from	scratch.	
•  A	way	to	achieve	this	is	having	make	delete	all	the	*.o	files.		
•  A	simple	rule	can	be	added	to	the	purpose:	

KEPLER_OBJ = kepler.o  ode_solvers.o

CXX    = g++
CFLAGS = -c
SRC    = $(HOME)/Didattica/Algoritmi_Numerici/Lib
VPATH  = ./:$(SRC)
INCLUDE_DIRS = -I. -I$(SRC)
LDFLAGS      = -lm

kepler:  $(KEPLER_OBJ)
<tab>   $(CXX) $(KEPLER_OBJ) $(LDFLAGS) -o $@

%.o: %.cpp
<tab>   $(CXX) $(CFLAGS) $(INCLUDE_DIRS) $< 

clean:
<tab>   @rm -f  *.o
<tab>   @echo make clean: done


