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Writing	the	Project	
•  In	the	following	I	will	show	a	list	of	projects	for	this	course.	

•  Each	project	should	be	no	more	than	≈	10	pages	long	(excluding	the	code	listed	in	the	
appendix).		

•  A	.pdf	file	is	strongly	recommended.		

•  The	document	structure	should	consists	of	
		

–  An	abstract	/	Introductory	part	where	the	physical	problem	is	explained	and	why	we	need	
to	resort	to	numerical	integration.	

–  A	test	section	where	the	numerical	method	is	validated	against	known	analytical	/	reference	
solution.	

–  A	model	study	of	the	problem	including	plots.	
–  A	final	summary/discussion.	
–  An	appendix	including	the	code	used	for	the	project,	using	fixed-size	fonts	(a	font	whose	

letters	and	characters	each	occupy	the	same	amount	of	horizontal	space,	e.g.,	Courier,	
Courier	New,	Lucida	Console,	Monaco,	and	Consolas).	



Project	#1:	Finite	Potential	Well	
•  Consider	the	time-independent	Schrödinger	equation	in	one	dimension,	

	
							where		ψ(x)		is	the	wave	function,	m	is	the	particle	mass,	E	its	energy	and	V(x)	is	the	

potential	energy.		
							The	probability	to	find	the	particle	between	x	and	x+dx	is		
•  Consider	the	potential	well	given	by	

•  In	this	case	the	Schrödinger	equation	becomes	

	
•  Since	the	potential	is	symmetric,	we	assume	that	the	wave	functions	have	defined	

parity	(odd	or	even).	



Project	#1:	Finite	Potential	Well:	Wavefunctions	
•  For	an	even	wavefunction	we	must	have	
							
				
							
							In	x	=	a	we	impose	continuity	conditions:								
	
							
	
							
							By	solving	this	equation	we	obtain	the	eigenvalues	E.	Remember	that	α	and	β	are	

functions	of	E.	

•  For	an	odd	function,		
								and	imposing	the	same	continuity	conditions	we	get	



Project	#1:	Finite	Potential	Well:	Purpose	
•  Compute	the	eigenvalues	of	the	finite	potential	well.	

•  Use	dimensionless	units	by	introducing	
							so	that	the	equations	to	be	solved	(in	η)	are:	
	
	
	
	
	
•  Look	for	bound	states	which	satisfy	–K	<	η	<	0	and,	to	avoid	dealing	with	singularities	

in	the	tangent	it	is	better	to	rewrite	the	equations	as	
	



Project	#1:	Finite	Potential	Well:	Graphical	Solution		
•  A	graphical	representation	of	the	solution	is	given	below:	



Project	#2:	Realistic	Projectile	Motion	
•  We	consider	the	motion	of	a	particle	subject	to	drag	force	

	
	
							where																																								is	the	drag	force	due	to	air	resistance	(for	the	present					
							calculation	you	can	use	B = 4.e-5  m-1).	

•  This	force	is	always	opposite	to	velocity	and	therefore	remember	to	write	it	in	vector	
components.	

•  For	a	given	initial	velocity	v0	and	distance	L	to	a		
							target,	determine	the	angles	(if	any)	you	must		
						orient	your	cannon	at	in	order	to	hit	the	target.		

y	

x	θ	

L	



Project	#3:	Realistic	Pendulum	
•  Here	we	consider	the	equation	of	a	pendulum	for	arbitrary	amplitude	and	subject	to	

damping	as	well	as	driving	force:	

•  Here	q	is	a	measure	of	damping	while	FD	and	ΩD	are	the	amplitude	and	frequency	of	
the	driving	term.	Transform	the	problem	into	a	system	of	coupled	1st	order	ODE:	

	
•  So	that	our	vector	of	unknowns	is,	Y = (θ, ω).	

•  With	zero	driving	force	the	motion	is	damped.	
–  With	FD	=	0.5	there	are	two	regimes:		
–  An	initial	transient	decay	where	the	motion	with	angular	frequency	Omega	is	damped	
–  A	following	phase	where	the	pendulum	settles	in	into	a	steady	oscillation	in	response	to	the	

driving	force.	



Project	#3:	Realistic	Pendulum	
•  The	behavior	changes	dramatically	when	FD	=	1.2	since	the	motion	is	no	longer	simple	

even	at	long	times.	
•  The	system	does	not	settle	into	a	repeating	steady	state	behavior	and	this	is	an	

indication	of	chaotic	behavior.	



Project	#4:	the	Double	Pendulum	
•  A	double	pendulum	consists	of	one	pendulum	

attached	to	another.	It	is	an	example	of	a	simple	
physical	system	which	can	exhibit	chaotic	
behavior.		

•  Consider	a	double	bob	pendulum	with	masses		m1 
and	m2 attached	by	rigid	massless	wires	of	
lengths		L1	and	L2.	Further,	let	the	angles	the	two	
wires	make	with	the	vertical	be	denoted	θ1	and	
θ2.	

•  The	position	of	the	two	masses	are	given	by	



Project	#4:	the	Double	Pendulum	
•  After	some	tedious	algebra,	the	equations	of	motion	can	be	written	as:	

•  Using	m1 = m2 and	L1 = L2,	study	the	double	pendulum	motion	by	direct	
integration	of	the	equations	of	motion.	

•  Try	to	address	the	following	issues:	

–  Is	energy	conserved	?		
–  Can	you	determine	a	range	of	initial	condition	that	leads	the	system	to	chaos	?		
–  Does	the	pendulum	flip	?		



Project	#5:	Three-body	problem	
•  Consider	the	simplest	three-body	problem	given	by	the	earth,	the	Sun	and	Jupiter.	

•  We	know	that	without	Jupiter,	the	Earth’s	orbit	is	stable	and	does	not	change	in	time.	

•  Our	objective	is	to	quantify	how	much		
							effect	the	gravitational	field		of	Jupiter	
							has	on	Earth’s	motion.	

•  Change	the	Jupiter	mass	by	a	factor	of		
						10,	100	and	1000:	do	you	start	seeing	an	
						effect	?		



Project	#6:	Lane-Emden	Equation	
•  In	astrophysics,	the	Lane–Emden	equation	is	a	dimensionless	form	of	Poisson's	

equation	for	the	gravitational	potential	of	a	Newtonian	self-gravitating,	spherically	
symmetric,	polytropic	fluid.	It	is	named	after	astrophysicists	Jonathan	Homer	Lane	
and	Robert	Emden.	

•  A	spherically	symmetric	star	in	hydrostatic	equilibrium	must	obey	the	hydrostatic	
balance	equation	

																																													where	mass	is	related	to	density	by	

•  Assuming	an	adiabatic	“quasi-static”	change	of	state	of	the	gas	following:	

						one	can	rewrite	the	previous	equation	as	
						This	is	the	Lane-Emden	equation.		
•  The	equation	is	written	in	terms	of		
						dimensionless	variable	defined	by			
								



Project	#6:	Lane-Emden	Equation	
•  Exact	solutions	to	the	Lane-Emden	exist	for	n=0,1,5		(see	e.g.,	wikipedia)	but	

otherwise	numerical	integration	must	be	used.	
•  Boundary	conditions:	to	get	a	unique	solution	to	the	Lane-Emden	Equation,	we	need	

to	specify	two	boundary	conditions	for	this	2nd	order	ODE.	A	realistic	model	cannot	
have	a	‘cusp’	at	the	origin	which	means	that	

•  Because		ρ	≈	θn,	only	θ	≥	0	can	be	realistic:	this	defines	the	surface	of	the	polytrope	is	
defined	as	the	radius	at	which	θ		first	becomes	zero	(or	quite	small).	This	is	designated	
as	ξs,	so	

•  If	the	surface	seems	to	be	approaching	infinity	in	size,	(e.g.	for	n	=	5)	the	code	should	
stop	the	integration.	

•  Note	that,	at	the	beginning,	an	indefinite	value	of	1/	ξ	*dθ/d	ξ	exists.	This	is	solved	by	
expanding	θ	as		



Project	#6:	Lane-Emden	Equation	
•  Solve	the	Lane-Emden	equations	for	different	values	

of	n	=	0,	1,	3/2,	3.	
•  Verify	(when	possible)	against	analytical	solution	

(e.g.	n	=	1	à	θ	=	sin	ξ	/	ξ).	
•  Find	the	radius	of	the	different	polytropes	and	make	

plot	of	the	density	in	units	of	the	central	density.		

•  For	white	dwarfs	with	high	densities,	the	equation	of	
state	is	well	approximated	by	a	polytropic	equation	
of	state	with	index	n	=	3.	The	constant	K	in	the	
polytropic	equation	of	state	then	is	

•  What	is	the	mass	of	a	high	density	white	dwarf?	If	
you	have	done	everything	

•  right,	you	will	have	rediscovered	the	Chandrasekhar	
Mass!	



Project	#7:	Particle(s)	in	EM	Fields	
•  Study	the	motion	of	one	or	more	(non-relativistic)	particles	in	a	fixed	electromagnetic	

field:	

	
•  The	previous	equation	is	written	in	the		
							c.g.s	sytem	(widely	used	in	astrophysics)		
								but	dimensionless	units	are	recommended.	

•  The	equation	of	motion	(possibly)	involves	propagation	in	all	3	direction	(x,y,z).	

•  The	electric	and	magnetic	field	vector	are	given	externally	and	particles	do	not	
interact	with	each	other.	

•  The	project	involves	direct	integration	of	the	equation	of	motion	using	RK-type	
integrators	and/or	the	generalization	of	symplectic	integration	scheme	to	the	case	of	
velocity-dependent	force	(the	Boris	algorithm	is	the	progenitor	of	such	schemes).	

	



Project	#7:	Particle(s)	in	EM	Fields	
•  Provide	a	project	with	at	least	three	different	cases.	A	suggestion	is	given	here:	

Case	 Npart	 E	 B	 Notes	

Simple	gyration	 1	 (0,0,0)	 (0,0,1)	 Consider	both	perpendicular	and	parallel	
propagation.		
Check	your	results	with	analytical	
formula.	

ExB	drift	 1	 (0,E,0)		
	with	E	<	1	

(0,0,1)	 Consider	propagation	along	y-direction:	
what	motion	do	you	see	?	Does	the	
particle	accelerate	?	Explain.	

X	point		 103	 (0,0,1/2)		 (y/L,	x/L,0)	
L=103.	

Place	particles	uniformly	in	the	square	
domain	[-L,L]2	and	initialize	particle	
velocity	to	0.1	using	randomly	numbers	
distributed	angles.	Describe	your	results:		
	
-  What	kind	of	motion	is	observed	?		
-  Do	particles	accelerate	?	Where	?	



Project	#8:	Physics	of	Partially	Ionized	Hydrogen	
•  In	a	variety	of	astrpphysical	scenarios	(protoplanetary	disks,	interstellar	medium,	

stellar	interiors,	supernovae,	etc…)	the	internal	energy	of	the	plasma	is	subject	to	
radiative	cooling	due	to	a	variety	of	processes,	including	bremmstrahlung,	collisional	
ionization	and	excitation,	etc…	

•  For	a	uniform	gas	distribution	(no	spatial	variation)	and	assuming	a	partially	ionized	
hydrogen	gas,	this	equation	may	be	simplified	and	written	as	

						where	Λ(n,T)	is	the	cooling	function,	ne	is	the	number	of	electrons,	n	is	the	hydrogen		
							number	density.	
•  The	gas	internal	energy	includes	a	standard	kinetic	term	plus	the	ionization	energy	

(neutral	atoms	have	a	potential	energy	that	is	lower	than	that	of	ions	by	an	amount	
χ0=	13.6	eV).				

•  Here	x(T)	is	the	ionization	fraction,	defined	by		
	



Project	#8:	Physics	of	Partially	Ionized	Hydrogen	
•  In	dilute	gases	(as	it	is	the	case	for	several	astrophysical	environments	such	as	the	

interstellar	medium	or	a	proto-planetary	disk),	the	degree	of	ionization	x	can	be	
computed	using	Collisional	excitation	equilibrium	(CIE),	according	to	which	

						where	α	=	157890.0,	while	χ0	=	13.6.		
	
•  The	cooling	function	is	usually	tabulated	but,	as	a	very	crude	approximation,	we	can	

use	the	following	empirical	relation:		

	
							where	C	=	10-22	erg/(cm3	s).		
	
	



Project	#8:	Physics	of	Partially	Ionized	Hydrogen	
•  Assuming	an	initial	temperature	of	T	=	106	K	and	a	cloud	of	constant	density	n	=	1	cm-3,	

solve	the	internal	energy	equation		

	
•  Note	that		at	each	step,	the	temperature	must	be	found	from	the	internal	energy	by	

inverting	the	expression	for	the	internal	energy:		

	
						where	n	(the	gas	number	density)	is	fixed	throughout	the	evolution.	
							A	root	finding	algorithm	must	be	used.	
	
•  Stop	when	you	reach	T	≈	103	K.	

•  Produce	a	plot	of	the	temperature	as	a	function	of	time.		

	



Project	#9:	Potential	flow	around	cylinder		
•  The	potential	flow	around	a	circular	cylinder	is	a	classical	solution	for	the	equations	of	

an	inviscid,	incompressible	fluid	flow.	
•  Far	from	the	cylinder,	the	flow	is	unidirectional	and		
							uniform.		
•  The	flow	is	incompressible	and	has	no	vorticity	:				
								
	
						so	that	its	velocity	can	thus	be	written	

1.  as	the	gradient	of	a	potential:	
2.  using	the	stream	function:	
	
•  Both	the	velocity	potential	and	the	stream	functions	satisfy	the	Laplace	equation:		



Project	#9:	Potential	flow	around	cylinder		
•  Solve	the	problem	in	polar	coordinates	(r,θ)	

•  Discretized	the	previous	equation	on	a	domain	
defined	by		a	≤	r	≤	5a,	0	≤	θ	≤	2π			[or	similar,	set	a=1]		

	
•  Use	the	exact	solution	(simple)	to	prescribe	the	

boundary	conditions.	
	
	
	
	
•  Or	a	combination	or	Dirichlet	+	Neumann	b.c.	

•  Compute	error.	

a	



Project	#10:	Poisson	Equation	in	Axial	symmetry	
•  Three	dimensional	problems	with	axial	symmetry	can	be	treated	using	cylindrical	

coordinates	(r,z).	

•  Generalize	the	iterative	algorithms	presented	in	Ch.	10	to	to	solve	the	Poisson	
equation	in	2D	cylindrical	coordinates	

•  Apply	the	resulting	discretization	to	a	number	of	problems	such	as:		
–  Uniformly	charged	disk	
–  Uniformly	charged	ring	
–  Dipole	field	(assume	charges	are	distributed	on	a	finite	size	spheres).	

•  Compare	results	with	known	analytical	solutions	on	the	axis.		


