Numerical Methods for Partial
Differential Equations

Lecture 3: Introduction to Finite Differences

Finite Difference

© O

In order to solve numerically a PDE we have to give a discrete
representation of the unknown function.

One approach is to discretize the continuous problem domain so that ¢+ o
the unknown functions is considered to exist only at discrete points.
L < < s <
We establish a grid on the domain by replacing u(x, y) by u(iAx, jAy) |
— ¢ . 4 . 4 . 4 . 4
Another approach we approximate a function u(x) defined in an interval Ay
. . . + * + +
[a,b] by some set of basis functions ‘
n . ¢ + L 2 . g 4
U(X) - ZAL (pl(x) Y (,)I 5 . ¢ s)
i=1
spectral methods use basis functions that are generally nonzero over ‘I T :A. T
the whole domain (sines, cosines more generally exponentials x (i) v

(imaginary argument).

finite element methods use basis functions that are nonzero only on
small subdomains

Finite Difference Method

O O

Let us suppose that we are looking for the derivative of a function ¥ (x)
at some given point X.

Assume that the function f(x) is known at equally spaced point x;, such
that h=x;,; —X; is the spacing between nodes. Let

fi= f(x;) for ¢ =0,..,N, —1

In order to find the derivative f’ = df/dx, the most direct method expands
the function using a Taylor series in the neighborhood of x;:

"
i = fla+ W)~ it fin 2w Lo o)
A 77
Solving for f, we have the forward difference (FD) approximation: | ~ leh Ji _ 2;"]1

This approximation has an error proportional to h: we can make the
approximation error smaller by making h smaller, yet precision will be lost
through the subtractive cancellation on the left-hand side when h is too

small.

Backward Difference

O Similarly, we could expand f(x-h):

‘I I
fioi= flaei—h)~ fi — flh+ %h? — ’;'-, b’ + O(h")

and obtain the backward difference (BD) approximation

s fi—fier 1
-~ —/
/i L o

which still has the same error O(h).
O Both the forward and backward approximations are only first-order accurate and would give the correct

answer only when f(x) is a linear function.
O For a quadratic function f(x)=a+bx?, for instance, the forward derivative approximation would result in

f "'“]_ fi _ 2bx; + bh
1

O If you compare it with the exact derivative (f’ = 2bx), this clearly becomes a good approximation only for
small h (h << 2x;)

Central Difference

O Now consider both the right and left expansions:

(| fll . f‘!ll . 7 |
fixn = fi+ flh+ 2+"h.2 + ?h'} + O(h?)
fii ~ fi—flh+ 7?-11,2 = g' h? + O(h*)
\ 7.
O Subtracting the two equations yields the central difference (CD) approximation
= fisr — ficr 1112
' 2h 6

O During the subtraction, even powers cancel and our approximation is thus second-order accurate: you
can expect the cd approximation to be exact for a parabola.

O The FD, BD and CD approximations are quite natural in the sense that they are reminiscent of the
incremental ratio used in elementary calculus.

Higher Order Formulas

O ltis possible to obtain higher-order, more accurate, approximation by including more points.

O If we now expand also f;,, and f;_,, we obtain a system of equations

fl/ f/l/

oy A~ fit2fh+ 2 (2h)" + - (2h)" + O(n")

' N i y fl// fl///
fisr ® Jit ikt 5 “Lp? 4 = o ~h* + O(h)

) N fl/ f}///
fici =~ fi—fih+ 7/1 T “—h? + O(h")
jl/l

\ fizo fi —2fh + f2ll(2h) 3i = (2n)* + O(h*)

Q

O Getting rid of terms up the fourth derivative, we obtain

s fico — 8fi1 + 8fix1 — fz+2
‘ 12h

which is a 4" - order accurate approximation.

f(5)

Example #1

O Write a program to compute the numerical derivative f(x) = sin(x) in x=1 using FD, BD and CD (or
higher) using different increments h=0.5,0.25,0.125, ..

Plot the error
f +f
€ = Ifnum o fex
FD +
BD =

as a function of h using a log-log scaling. oonf T, L sth order -

0.0001 |

1e-06 |

err

1e-08 |

1e-10}

le-12}

le-14 * * =
1 10 100 1000 1000

1/h

2"d- and Higher-order Derivatives

O For higher order derivatives we can still make use of the Taylor expansion and solve for the second (or

higher) derivative.

fix1 ~ f; +fh+f—h, + — J; %+ O(h*)
O From { 3!
R
fir ® fim fih Tkt = et O
we can solve, e.g., for the 2™ derivative: f! Jir1 — 3{; + Jim + O(h?)
)
~F(z+2Az) + 16F(z 4+ Az) - 30F(z) + 16F(z — Az) — F(z — 2Ax)

Including more points: F'(x) =

A +0((Az)")

Example #2

O In order toincrease accuracy, is it better to decrease h or increase the order (i.e. the stencil) ?

O Compute the 2° derivative of the function e* for h = 0.1, 0.01, ... 105. Is the error decreasing or not ?

1.000000e-01 2.265990e-03
1.000000e-02 2.265242e-05
1.000000e-03 2.265441e-07
1.000000e-04 3.780617e-08
1.000000e-05 5.988602e-06

O The error does not decrease for small h because function values becomes very close = loss of
accuracy.

O Sources of error:
1. Finite number representation (round-off error);

2. Truncation error (finite number of terms in, e.g., Taylor series).

Arithmetic Precision

O Where is the error coming from?

1. Discretization error (approximation to given order for the derivative = truncation error);

2. Internal number representation (= round off error)

Float and Double precision datatype

O Singles or floats is shorthand for single- precision floating-point numbers and occupy 32 bits: 1 bit for the

sign, 8 bits for the exponent, and 23 bits for the fractional mantissa:

s e f

Bit position 31 30 23 22 0

EXAMPLE: IEEE-754 Single-Precision representation of: 3.141590

010000000100100106000111111010000

mantissa |

O The sign bit s is in bit position 31, the biased exponent e is in bits 30-23, and the fractional part of the
mantissa f is in bits 22—0. Since 8 bits are used to store the exponent e and since 22 =256 2 0 < e <

255,
O Likewise -126 < e < 127.

O In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal places of significance

and magnitudes in the range

1.4 x 10~*> < single precision < 3.4 x 10°®

Float and Double precision datatype

O Doubles are stored as two 32-bit words, for a total of 64 bits (8 B). The sign occupies 1 bit, the
exponent e, 11 bits, and the fractional mantissa, 52 bits:

S e f f (cont.)
Bit position 63 62 52 51 32 31 0

O The fields are stored contiguously, with part of the mantissa f stored in separate 32-bit words.

O Doubles have approximately 16 decimal places of precision (1 part in 252) and magnitudes in the range

4.9 x 10~%?* < double precision < 1.8 x 10398,

C and C++ Data-Type Range

In 1987, the Institute of Electrical and Electronics
Engineers (IEEE) and the American National
Standards Institute (ANSI) adopted the IEEE 754
standard for floating-point arithmetic. When the
standard is followed, you can expect the primitive
data types to have the precision and ranges given
by the following table

Key word Size in Interpretation| Possible values
bytes
bool 1 boolean true and false
unsigned char 1 Unsigned character 0 to 255
char (or signed char) 1 Signed character -128 to 127
wchar_t 2 Wide character (in windows, same 0to 21
as unsigned short)
short (or signed short) 2 Signed integer 2" t02" -1
unsigned short 2 Unsigned short integer 0to 21
int (or signed int) 4 Signed integer -2"to0 27 -1
unsigned int 4 Unsigned integer Oto 2%-1
Long (or long int or 4 signed long integer -2"t0 2" -1
signed long)
unsigned long unsigned long integer 0to 2% -1
float Signed single precision floating | 3.4*10"to 3.4*10**(both
point (23 bits of significand, 8 bits | pogsitive and negative)
of exponent, and 1 sign bit.)
long long 8 Signed long long integer 2910 2% -1
unsigned long long 8 Unsigned long long integer 0to 2% -1
double 8 Signed double precision floating 1.7*10°"to 1.7*10™*
point(52 bits of significand, 11 bits (both positive and
of exponent, and 1 sign bit.) negative)
long double 8 Signed double precision floating 1.7*10°"t0 1.7*10™

point(52 bits of significand, 11 bits
of exponent, and 1 sign bit.)

(both positive and
negative)

Overflow and Underflow

2
o
=
o
>
S

g
=)
—
<
Q
g
=

Overflow

Underflow \
NN

IIIIIIIIIII IIIII

_10+38 _1049 10 45 +10+38

Figure 1.7 The limits of single-precision floating-point numbers and the consequences of
exceeding these limits. The hash marks represent the values of numbers that can be stored;
storing a number in between these values leads to truncation error. The shaded areas
correspond to over- and underflow.

O If a single-precision number x > 2128 afault condition known as an overflow occurs. The resulting
number x. may end up being a machine-dependent pattern, not a number (NAN), or unpredictable.

O If x < 27128 an underflow occurs. The resulting number X is usually set to zero, although this can
usually be changed via a compiler option.

O In our experience, serious scientific calculations almost always require at least 64-bit (double-precision)
floats. And if you need double precision in one part of your calculation, you probably need it all over,
which means double-precision library routines for methods and functions.

Example #3: determining machine precision

O The loss of precision is categorized by defining the machine precision €., as the maximum positive number
that can be added unity without changing it:

1c+€m — 107

where the subscript ¢ is a reminder that this is a computer representation of 1.

O Consequently, an arbitrary number x can be thought of as related to its floating- point representation x. by

r.=x(lxe), |e|<enm,

but the actual value for € is not known.

O In other words, except for powers of 2 that are represented exactly, we should assume that all single-
precision numbers contain an error in the sixth decimal place and that all doubles have an errorin the

fifteenth place.

O precision.cpp: write a computer program to determine the machine precision. Define 1in float (or
double) precision arithmetic and keep adding epsilon (> epsilon/10) until 1+eps = 1.

Example #4: Function evaluation

O Consider the polynomial

flz) =2 —72% 4+ 212° — 352443523 — 2122 4+ 7x — 1

O Write a code that employs single-precision to produce equally spaced values in the range 0 < x < 2 using
NX =250 points.

O Plot your data around x=1. What do you see ? Why ? Can you improve the situation ?

A Special Class of Functions: Polynomials

O Consider P(x) = ag + a1x + avx’ + ... + a,x"

O If you’re thinking about doing | F(x) = an*pow(x,n) + ani*pow(x,n-1) + ... ai*x + a, | by using looping like:

double P

=0
for (int i =

0; i <= n; i++) P += a[n]*pow(X,n); // NOOOOO !ttt

don’t even dare! (It's obvious that there's a lot of repetitive computations being done by raising x to
successive powers).

This method is quite inefficient: it requires n additions and n(n+1)/2 multiplications.

O A possibility would be an iterative method, by simply keeping the previous power of x between iterations:

double P = 0.0, xn = 1.0;
for (int 1 = 0; i <= n; i++){
P += a[i]*xn;
Xn *= X; // the current power of x

}

It's easy to see that there are 2n multiplications and n additions for each computation. The algorithm is now
linear instead of quadratic.

Horner’s Method for Polynomial Evaluation

O An even cheaper solution is given by Horner’s Method. Take
P(x) = ap + ayx + avx’ + ...+ a,z"

O Divide the polynomial into monomials starting from the largest power: the result obtained from one
monomial is added to the result obtained from the next monomial and so forth in an addition fashion.

Then you rewrite
P(x) = ap + x(a; + x(ag + x(az + ... + x(a,—1 + xay,))

Each monomial involves a maximum of one multiplication and one addition processes: n
multiplications and n additions are involved !

O With a simple modification, we can also obtain the derivative at the same time:

p a[n];

dpdx = 0;

for (int j = n-1; j >= 0; j--){
dpdx = dpdx*x + p;
P p*x + a[j];

}

