
Numerical Methods for Partial 
Differential Equations

Lecture 3: Introduction to Finite Differences



Finite Difference
� In order to solve numerically a PDE we have to give a discrete 

representation  of the unknown function.

� One approach is to discretize the continuous problem domain so that 
the unknown  functions  is considered to exist only at discrete points.

� We establish a grid on the domain by replacing 𝑢 𝑥, 𝑦 by 𝑢 𝑖Δ𝑥, 𝑗Δ𝑦

� Another approach we approximate a function u(x) defined in an interval 
[a,b] by some set of basis functions 

� spectral methods use basis functions that are generally nonzero over 
the whole domain (sines, cosines more generally exponentials 
(imaginary argument).

� finite element methods use basis functions that are nonzero only on 
small subdomains 
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Finite Difference Method

� Let us suppose that we are looking for the derivative of a function f(x)
at some given point x.

� Assume that the function f(x) is known at equally spaced point xi, such 
that  h=xi+1 –xi is the spacing between nodes. Let

� In order to find the derivative f’ = df/dx, the most direct method expands 
the function using a Taylor series in the neighborhood of xi:

� Solving for  f’i, we have the forward difference (FD) approximation:

� This approximation has an error proportional to h: we can make the 
approximation error smaller by making h smaller, yet precision will be lost 
through the subtractive cancellation on the left-hand side when h is too 
small.



Backward Difference
� Similarly, we could expand f(xi-h): 

and obtain the backward difference (BD) approximation

which still has the same error O(h).
� Both the forward and backward approximations are only first-order accurate and would give the correct 

answer only when f(x) is a linear function.
� For a quadratic function f(x)=a+bx2, for instance, the forward derivative approximation would result in 

� If you compare it with the exact derivative (f’ = 2bx), this clearly becomes a good approximation only for 
small h (h << 2xi)



Central Difference

� Now consider both the right and left expansions:

� Subtracting the two equations yields the central difference (CD) approximation

� During the subtraction, even powers cancel and our approximation is thus second-order accurate: you 
can expect the cd approximation to be exact for a parabola.

� The FD, BD and CD approximations are quite natural in the sense that they are reminiscent of the 
incremental ratio used in elementary calculus.



Higher Order Formulas

� It is possible to obtain higher-order, more accurate, approximation by including more points.

� If we now expand also fi+2 and fi-2, we obtain a system of equations

� Getting rid of terms up the fourth derivative, we obtain

which is a 4th - order accurate approximation. 



Example #1

� Write a program to compute the numerical derivative f(x) = sin(x) in x=1 using FD, BD and CD (or 
higher) using different increments h=0.5,0.25,0.125, … 

Plot the error

as a function of h using a log-log scaling.



2nd- and Higher-order Derivatives

� For higher order derivatives we can still make use of the Taylor expansion and solve for the second (or 
higher) derivative.

� From 

we can solve, e.g., for the 2nd derivative:   

Including more points:           



Example #2 
� In order to increase accuracy, is it better to decrease h or increase the order (i.e. the stencil) ? 

� Compute the 2° derivative of the function  𝑒%	for h = 0.1, 0.01, … 10-5. Is the error decreasing or not ? 

� The error does not decrease for small h because function values becomes very close à loss of 
accuracy.

� Sources of error:

1. Finite number representation (round-off error);

2. Truncation error (finite number of terms in, e.g., Taylor series).



Arithmetic Precision 

� Where is the error coming from ? 

1. Discretization error (approximation to given order for the derivative à truncation error);

2. Internal number representation (à round off error)



Float and Double precision datatype

� Singles or floats is shorthand for single- precision floating-point numbers and occupy 32 bits: 1 bit for the 
sign, 8 bits for the exponent, and 23 bits for the fractional mantissa: 

� The sign bit s is in bit position 31, the biased exponent e is in bits 30–23, and the fractional part of the 
mantissa f is in bits 22–0. Since 8 bits are used to store the exponent e and since 28 = 256 à 0 ≤ e ≤ 
255.

� Likewise -126 ≤ e ≤ 127.

� In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal places of significance 
and magnitudes in the range 

EXAMPLE: IEEE-754 Single-Precision representation of: 3.141590

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0
|- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|
|s|      exp      |                  mantissa                   | 



Float and Double precision datatype

� Doubles	are	stored	as	two	32-bit	words,	for	a	total	of	64	bits	(8	B).	The	sign	occupies	1	bit,	the	
exponent	e,	11	bits,	and	the	fractional	mantissa,	52	bits:	

� The fields are stored contiguously, with part of the mantissa f stored in separate 32-bit words. 

� Doubles have approximately 16 decimal places of precision (1 part in 252) and magnitudes in the range 



C and C++ Data-Type Range

In 1987, the Institute of Electrical and Electronics 
Engineers (IEEE) and the American National 
Standards Institute (ANSI) adopted the IEEE 754 
standard for floating-point arithmetic. When the 
standard is followed, you can expect the primitive 
data types to have the precision and ranges given 
by the following table



Overflow and Underflow

� If a single-precision number x > 2128, a fault condition known as an overflow occurs. The resulting 
number xc may end up being a machine-dependent pattern, not a number (NAN), or unpredictable.

� If x < 2−128, an underflow occurs. The resulting number xc is usually set to zero, although this can 
usually be changed via a compiler option. 

� In our experience, serious scientific calculations almost always require at least 64-bit (double-precision) 
floats. And if you need double precision in one part of your calculation, you probably need it all over, 
which means double-precision library routines for methods and functions. 



Example #3: determining machine precision 

� The loss of precision is categorized by defining the machine precision εm as the maximum positive number 
that can be added unity without changing it:

where the subscript c is a reminder that this is a computer representation of 1.

� Consequently, an arbitrary number x can be thought of as related to its floating- point representation xc by 

but the actual value for ε is not known.

� In other words, except for powers of 2 that are represented exactly, we should assume that all single-
precision numbers contain an error in the sixth decimal place and that all doubles have an error in the 
fifteenth place.

� precision.cpp: write a computer program to determine the machine precision. Define 1 in float (or 
double) precision arithmetic and keep adding epsilon (àepsilon/10) until 1+eps = 1.



Example #4: Function evaluation
� Consider the polynomial

� Write a code that employs single-precision to produce equally spaced values in the range 0 < x < 2 using 
NX = 250 points. 

� Plot your data around x=1. What do you see ? Why ? Can you improve the situation ? 



A Special Class of Functions: Polynomials

� Consider 

� If you’re thinking about doing                                                                                               by using looping like:

don’t even dare! (It's obvious that there's a lot of repetitive computations being done  by raising x to 
successive powers).

This method is quite inefficient: it requires n additions and n(n+1)/2 multiplications.

� A possibility would be an iterative method, by simply keeping the previous power of x between iterations:

It's easy to see that there are 2n multiplications and n additions for each computation. The algorithm is now 
linear instead of quadratic.

F(x) = an*pow(x,n) + an-1*pow(x,n-1) + ... a1*x + a0

double P = 0
for (int i = 0; i <= n; i++) P += a[n]*pow(x,n);    // NOOOOO !!!!!!!

double P = 0.0, xn = 1.0;
for (int i = 0; i <= n; i++){
P += a[i]*xn;
xn *= x;          // the current power of x

}



Horner’s Method for Polynomial Evaluation

� An even cheaper solution is given by Horner’s Method. Take

� Divide the polynomial into monomials starting from the largest power: the result obtained from one 
monomial is added to the result obtained from the next monomial and so forth in an addition fashion. 
Then you rewrite

Each monomial involves a maximum of one multiplication and one addition processes: n 
multiplications and n additions are involved !

� With a simple modification, we can also obtain the derivative at the same time:

p    = a[n];
dpdx = 0; 
for (int j = n-1; j >= 0; j--){

dpdx = dpdx*x + p;
p    = p*x + a[j];

}


