Numerical Methods for Partial
Differential Equations

Lecture 4: Parabolic PDE



Parabolic PDE

O Parabolic PDE: initial value problem. Boundary
conditions must be specified at all times.

20 |

40 -

O In physics, they typically describe dissipative
processes (e.g. viscosity, conduction, resistivity,
etc..). 80 |
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O Example: Schrodinger Equation
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Parabolic PDE in 1D

Explicit and Implicit Finite Difference Methods



Parabolic PDE

O We consider the prototype diffusion equation
Y
ot

where D = diffusion coefficient, S = source term.

=V - (DVy)+ S

O This is also known as the Heat Equation.

O Note that @=¢(x,y,z,t) is now functions of four independent variables.

O Given the field ¢(x,y,z,0) for t=0 we seek solution for t>0 given some boundary conditions (e.g. heat
flux specified on the surface boundary)



Diffusion Equation in 1D

dy 0%
pri Dar.2 + S(x,t)

O For 1D problem with constant diffusion D, we have:

O Where @p=¢(x,t) is a function of space and time while

O xis the space variable, 0 < x < L;

O tis the time variable, t > 0.

O To solve the PDE we must first specify an initial condition f(x) so that Cp(:l,‘, 0) = f (:C)

O And a boundary condition: ©(0,t) = go(t), p(L,t) = gr(t),



Exact Solution

O For the heat equation subject to the following conditions

)% 0% p(z,0) = f(z) (IC)
ot~ T0a7 | p(0,t) = (L) =0 (BC)

an exact solution in terms of Fourier series can be found:

- k 2,2 2 [t k
o(xr,t) = ZAk sin (%) e~ 17 where Ap = ZA f(z)sin (%) dx

k=1

O Note that high-order harmonics (k large) are damped faster than lower order ones.



Numerical Discretization

O For 1D problem with constant diffusion D,

D 0%
ot " Ox2 (z,1)

O Discretization is performed in both space and time.

O Spatial derivatives: finite differences on a uniform lattice of N+1 points with uniform spacing Ax.
O Time derivative by a simple first-order method:
+1 . . |
pi = Pis1 =200 T 01 m
- D : + 5!
At Ax

O i = spatialindex,n = timeindex




Diffusion Equation in 1D

O At t=0 the initial condition must be provided:
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O Solution values are evolved starting from the initial
condition inside the computation domain forallt> o0




Boundary Conditions (B.C.)

O Boundary conditions require information to be specified at all times at the boundary of the
computational domain.

O This is necessary because the finite difference approximation require neighbor points:

FTCS BTCS Crank-Nicolson
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O Dirichlet b.c.: specify the value of the solution on the boundary region.

O Neumann b.c.: specify the value of the derivative of the function on the boundary region.




The FTCS scheme

O The previous expression can be used to find ™" as a function of the solution values at time

tn:
T T DAt
O = ] 5 (P — 207 + @ily) + ALS,

O This is an explicit scheme, called “FTCS” (Forward in Time, Centered in Space)

O The dimensionless number C=DAt /Ax? is called the Courant (or CFL) number and plays an
important role for stability.

O The previous equation can then be written as

it = O + C (¢l 1 — 207 + ¢Fq) + AtS,



Stability of FTCS scheme

O The FTCS is conditionally stable since, it can be shown (see von Neumann stability) that

C'<1 = At<A$2
- 2 - 2D

O A finite difference scheme is stable if the errors made at one time step of the calculation do not cause
the errors to increase as the computations are continued.



Von Neumann Stability Analysis

The von Neumann method is based on the decomposition of the errors into Fourier series. To illustrate
the procedure, consider the one-dimensional heat equation

du d*u
A o a R
ot dx?
defined on the spatial interval [,, which can be discretized! as
n+1 . n , n . n n
(1) u;t =g 4T (u.j+1 2u.j + u.j_l)
where
o At
r =
Ax?

and the solution u;‘ of the discrete equation approximates the analytical solution y(x, t) of the PDE on
the grid.



Von Neumann Stability Analysis

Define the round-off error € - as

J
n_ Nno_
€ j T4V u j
where u}” is the solution of the discretized equation (1) that would be computed in the absence of round-

off error, and f\‘? is the numerical solution obtained in finite precision arithmetic. Since the exact

" must also satisfy the discretized

solution - must satisfy the discretized equation exactly, the error € j

J
equation.[6] Thus

n+l _ n n n n

is a recurrence relation for the error. Equations (1) and (2) show that both the error and the numerical
solution have the same growth or decay behavior with respect to time. For linear differential equations
with periodic boundary condition, the spatial variation of error may be expanded in a finite Fourier
series, in the interval [,, as

M
(3)  e(@)= Y Ape

m=1



Von Neumann Stability Analysis

T :
where the wavenumber k'..rn = T with 111 = 1’ 2’ ce ey _ﬂ_[ and _ﬂ_[ — L / AI The time
dependence of the error is included by assuming that the amplitude of error .4, is a function of time.
Since the error tends to grow or decay exponentially with time, it is reasonable to assume that the

amplitude varies exponentially with time; hence

Yl
(4) €($,t) — Z eatezkmm
m=1
where (1 1s a constant.

Since the difference equation for error is linear (the behavior of each term of the series is the same as
series itself), it is enough to consider the growth of error of a typical term:

(5) e-rn.(x,t) — eate‘ikm:r

The stability characteristics can be studied using just this form for the error with no loss in generality. To
find out how error varies in steps of time, substitute equation (5) into equation (2), after noting that

e;& — eat eikm:c
€?+1 — ea(t+At) etkm:c
n _ at _ikgp(z+Ax)
€j+1 =€ e
en — eatetkm{m—.&z)’



Von Neumann Stability Analysis

Using the identities

ikmAz | —ikm Az ) B !
cos(k Az) = e —; e nd <in? kmzA:c _ 1 cosékmAa:)

equation (6) may be written as

da At
~ aAt __ 2 1~
(l) € =1-— WSIH (AmA.T/Q)
Define the amplification factor
n+1
en
— _J
G = o
J

The necessary and sufficient condition for the error to remain bounded is that | G | < 1.However,

ea(t+At) eikmz

(8) G= = g4




Von Neumann Stability Analysis

Thus, from equations (7) and (8), the condition for stability is given by

(9) ‘1 - 4§$t sinz(kmAa:/Q)' <1
Note that the term A2 sin ( k,,Ax / 2) is always positive. Thus, to satisfy Equation (9):
xr
(10) 4:?: sin?(knAz/2) < 2

For the above condition to hold at all gip? ( k., Ax / 2), we have

A TAY 1
11 <
(11) Axr? — 2

Equation (11) gives the stability requirement for the FTCS scheme as applied to one-dimensional heat
equation. It says that for a given /\ r, the allowed value of /Af must be small enough to satisfy equation

(10).



Implicit Schemes: BTCS

O If we replace the right hand side with the solution at the new time level we obtain

- n+1 N ntl 2 n+1 + .\’,gn"*'l

¥i — ¥ L Pisl Pi 1 +Srz.+1
— i

At h?
O This scheme is Backward in Time, Centered in Space (BTCS)

O Remember: the source term S does not depend on ¢, but only on x and t.
O Repeating von-Neumann stability we’d find

1

G — GaAt <
1+ 4a 5 sin?(k,, Az /2)

O The method is unconditionally stable for all At > 0 !!

O This does not, of course, tell anything about its accuracy.



Implicit Scheme: Tridiagonal Matrix

O The previous equations can be written in matrix notation as a linear system in the unknowns ¢+

(al af 0 0 0 0 0 ) » '
ay ay ay 0 0 0 0 ( P1 \ ( by \
0 a; aj a3 0 0 0 ey by
0 0 0 0 —

0 0 0 0 ay_, a¥_, ay_, 993?1111 N-1

L0000 0 0 a4y \ovt )\

O This system has tridiagonal form and can be efficiently inverted in (order) N operations (rather than N2)
by using a recurrence relation rather than inverting the full matrix.



Inversion of a Tridiagonal Matrix

O Writtenin components, i = 1, ..., N-1I: a 99:14-11 - az QOZH-I —+ a 99::*—11 — b-i

where a,zi — —C’ a? — ]_ + QC, b2 — ,\’92 + AtS7l+1

n+1 n+1 Q.
992—{—1 Qi P; + rd'l-

O To solve the system, assume that the solution satisfies as one-term forward recursion relation:

O Substituting in the original equation we obtain

a; (p:z+11 + a?¢:z+1 +a (QZ(PZH_I +z‘ji) _ bi
1

a? + a; «;

— " =, a; —oM 4 al B — bi] with 7 = —



Inversion of a Tridiagonal Matrix

O Upon comparing the previous expression with the recurrence relation we obtain
Qi = Vi1

fa + L
B; Yi+1 (ai+1«di+1 _ b'i+1)

O The previous expression is first used in a backward sweep to obtain «; and 8, for i=N-2, ..,
0. The starting value are oy, =0 and 6, = @y. This guarantees the boundary condition at the
last lattice point.

O Then perform a forward sweep to determine the solution ¢; using the recurrence relation for
i=l ¥4 oo V4 N_.Z.

O This determines the solution in only two sweeps and involve of order N arithmetic operations.



The Crank-Nicholson Scheme

O With little effort, 2"9 order accuracy in time can be achieved by replacing the backward Euler
with an average between the current level and the new level (trapezoidal rule):

(Pl — 200 4+ @) + (1 — 200 + o)
2

Pt =i +C

O This system can again be inverted using the tri-diagonal solver written before.



General 6-form

O FTCS, BTCS and CN can be cast in the following

(p:z—i—l . szz + O [(1 - 0)(529972,)2_. 4 9(5299”_{_1)2'.-

where (82@), = (®,,,— 2@+, ) is the 2" order discrete operator, 0 <6<1 so that:
O6=0 =2FTCS; ©=1 > BTCS; ©=1/2-2> Crank Nicholson

O The general form of the tridiagonal matrix is therefore

a, =a =—C0, a?=1+209,

(4 2

Sﬁ. i SgH—l
2

bi = i + C(1 6) (‘i’H—l — 2¢7 + i 1) + At”



O Let’s solve the diffusion equation with D = 1and S = 0 using at t=0 the simple Gaussian profile
o(x,0) = exp(—z?/a®) forx e [—1,1]

with a = %. Integration is carried for 0 < t < 1 using Nx = 100 points.

O The PDE has analytical solution

(2. 1) 1 [ (z/a)? ]
olz.t) = exp | — :
YT Arabte | 1+ 4Dtja

O Boundary conditions at x = #1 can be specified using the exact solution.

1. Try integrating the PDE using FTCS, BCTS and Crank-Nicholson (CN) by using different values of the CFL
number.

2. Forimplicit schemes increase C by ten times. Compare the relative error.

3.  Which scheme perform best ?



O Solve the diffusion equation with D = 1and S = 0 inside the unit interval 0 < x < 1for o <t < 1using Nx =
100 points

O Initial condition: ¢(x,0) = o;

O Boundary condition: ¢(o,t) = 0, ®(1,t) = 5.

O This situation correspond to a physical rod where the two extremities are kept at constant
temperature.

O What is the final solution ? Is this a steady state solution ?



O Solve the heat equation in the unit interval 0 < x < 1 with I.C. given by

1
o(x,0) = sin(7mx) + Esin(l()wx)

O This problem has exact solution
) o100
™tsin(wx) + T sin(107x)

plz,t) =€

which shows that high frequency are damped faster. Integrate until t = 0.01



Parabolic PDE in 2D

Explicit and Implicit ADI Methods



Two-Dimensional Diffusion Equation

O Assuming constant diffusion coefficients, the 2D heat equation reads

dp Oy 0%
ot = Deggr T vgp

O The solution now depends on 3 variables: {© = \,9(.1, Yy, t)

O Generalizing our 1D results, we now must prescribe an initial condition:

o(,9,0) = f(x,y)  (for t=0)

r".'ﬁ.’l: ,',.t — ] f..t

O And boundary conditions: P(rL,y,t) f'L(y» )
: p(xr,y,t) = fr(y,t)

p(r,yr,t) = fp(z,t)

\ Q(l,yR,t) — fT(iL,t)




Discretization in 2D

O We will assume a 2D spatial grid, with indices i,j:
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O The FTCS scheme in 1D can be readily extended to the 2D case:

Q,')n—{-l L C,")n.'

t] “1) (52 T 2 in
:ﬁ t rri] yrig

O Where the meaning of the difference operators on the rhs should now be clear.

O This is again an explicit scheme and rearranging terms yields

n+1 (n Y [, .n 0, .n n Y [, .n 0, M n
(.Dz‘j+ = @;; T C"r("f?z‘+1,j - 2'7'92’,3' + »’91'—1,]‘) + ('""y('?gi,j-i-l - 2&91‘,3‘ + 'Pz‘,j—l)
O where
. At . At
Ax? : Ay?



Stability of the 2D FTCS scheme

O Using von-Neumann analysis it is possible to show that the 2D scheme is stable under the restriction

1 |

O In order to ensure stability of the FTCS, one has to impose a restriction that is essentially twice as
strong as the analogous restriction in 1D.

O This scheme is not very computationally efficient.



Alternate Direction Implicit (ADI) Method

O Direct extension of the CN method in 2D poses serious problems since the resulting matrix is
banded tri-diagonal rather than tri-diagonal. This makes the inversion costly.

O A different approach is given by ADI methods: split the finite difference equations into two:
one with the x-derivative taken implicitly and the next with the y-derivative taken implicitly,

ik

O—(D

L] — (5204: _|_(>2 in
At /2 i v P
(n+1 { k
ONT — o,
1 1] 2 ik 2 n—i—l
= 0%0 0%
AL/2 05 T 0%

O ADI is unconditionally stable and 2" order accurate in space and time.



Implementation of ADI

O Apply boundary conditions on ¢";

O Obtain intermediate solution (x implicit, y explicit):
C, C,
5‘91] YDzJ + 7(pz+1 Y 2'1‘91J + 'sz—lj) + ?('pi,jﬂ-l o 2792] T TQzJ 1)

O Invert implicit terms using tridiagonal solver with

_ C, C
0 8 - _ T _.omn Y A2
a;, =14+C,, a; =a;] = 5 b, = i + 5 AP
O Apply boundary conditions on ¢;
O Obtain final solution (x explicit, y implicit):
C, C,
n+1 . n+1 n 1 n+1
5‘913+ ?QZJ + 7()‘9%{-1 g 2?92,] + ?Dz 1_]) + 5 9 (?91 _-):-1 o 2?9 H 'pi,;-—l)
O Invert implicit terms using tridiagonal solver with
| C, C.
0 ¥ e L ak 2
a;=1+0C,, a; =a] = 5 bj = vi; + 5 — A7}



O Solve the diffusion equation with Dx = Dy = 1 on the square domain -1 < x,y < 1 with initial condition:

;732 + y?.]

olx,y,t) = exp [— ;
a
O This is a Gaussian profile,use a = %.
O Integration is carried for 0 < t < 1 using NX,NY = 128,128 points.
O The PDE has analytical solution
1 ;132 + y‘Z

o(z.y.t) = , ——
A0 ) = 0D P | " a2+ 1D

O Boundary conditions at x = #1 can be specified using the exact solution.




