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5. MHD



Magnetic Pressure & Tension

 The JxB term can be manipulated using the following the vector identity [12] on
the formulary showing that

.B.z . N . . . BZ .
v (7) = Bx(VxB)+(B-V) B — (VxB)xB=-V ( 5 )+(B V)B
= C -
where J =—V x B
47

e With this result the Lorentz force can be written as the sum of two different
contributions corresponding, respectively to “magnetic pressure” and “magnetic
tension”:

Pressure Tension
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9.5 Magnetic stress tensor

The existence of magnetic pressure and tension shows that the magnetic force 1s differ-
ent in different directions, and so the magnetic force ought to be characterized by an
anisotropic stress tensor. To establish this mathematically, the vector identity VB2 /2 =
B-VB + B xV xB i1s invoked so that the magnetic force can be expressed as

1
JxB = —(UVxB)xB
Ho
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where I is the unit tensor and the relation V - (BB) = (V-B) B + B-VB = B-VB has
been used. At any point r a local Cartesian coordinate system can be defined with z axis
parallel to the local value of B so that Eq.(9.1) can be written as
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: 21
showing again that the magnetic field acts like a pressure in the directions transverse to B

(1.e., .y directions in the local Cartesian system) and like a tension in the direction parallel
to B.
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While the above interpretation 1s certainly useful, it can be somewhat misleading be-
cause it might be interpreted as implying the existence of a force in the direction of B
when in fact no such force exists because J x B clearly does not have a component in the
B direction. A more accurate way to visualize the relation between magnetic pressure and
tension 1is to rearrange the second line of Eq.(9.10) as

1 B? e (B2 1 B? )
JxB:—[—V( >+323-v3+33-v< )]:—[—1( )+B‘n]

Lo 2 2 o 2
(9.12)
or .
1 B* 5
J xB=— [—T_ (—) +B‘n] ) (9.13)
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Here _
: . R
k=B -VB= —— (9.14)

is a measure of the curvature of the magnetic field at a selected point on a field line and, in

particular, R 1s the local radius of curvature vector. The vector R goes from the center of
curvature to the selected point on the field line. The « term in Eq.(9.13) describes a force
which tends to straighten out magnetic curvature and is a more precise way for character-
1zing field line tension (recall that tension similarly acts to straighten out curvature). The
term involving V | B* portrays a magnetic force due to pressure gradients perpendicular
to the magnetic field and 1s a more precise expression of the hoop force.



Examples

* Consider B =(0,0,B,sin(kx))
-2 this field has only pressure

* Consider B = (By,, By sin(kx), By cos(kx)):
—> this has only tension




Example: the MHD Blast Wave Problem

90,00

A highly pressurized region in a uniform
medium, threaded by a uniform
constant magnetic field, parallel to the
X-axis.
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The relative strength between thermal

and magnetic pressure is given by the e
plasma beta parameter,
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For large values of B (B >> 1), 2 fluid dominated by hydrodynamics effects
(magnetic field has a negligible role);

For small values of B (B << 1), = fluid dominated by magnetic effects;



Example: a Blast Wave

Large plasma beta

MHD Blast {8=100.00), p{t = 0.000) MHD Blost (=100.00), p{t = 0.000)
3.26 20,00
2,72 16.84
L1019 - {1367
L lies = - {10.51
1.12 7.35
0,58 4,19
0.05 1,02
: X

The code and the visualization scripts for this simulation (PLUTO/Test_Probblems/Educational/
MHD_Blast/) can be downloaded from the webpage.



Example: a Blast Wave

Small plasma beta

MHD Blast (§=0.01), p{t = 0.000) MHD Blast (§=0.01), p{t = 0.000)

3.22 50.00
0.4 0.4
2.72 41.82
0,2 0,2
L1022 - {33.63
0.0 - 11,72 >~ 0.0 - {25.45
17.26
-0,2 -0,2
9,08
-04 -04
0.89
-0,4 -0.2 0.0 0.2 0,4 -0,4 -0.2 0.0 0.2 0,4
X X

The code and the visualization scripts for this simulation (PLUTO/Test_Probblems/Educational/
MHD_Blast/) can be downloaded from the webpage.



Flux Freezing (ideal MHD)

Across a closed surface, the divergence-free condition gives 5
2

_ y{B(t) LdS = By (1) + Ba(t) + By = 0

where
<I>3:/B-5l><uAt
¢
Now consider
53
= / [B(t+ At) — B(t)] - dS — At/B ol x u
So

Taking the limit for At — 0:

<I>2(t+AAti—‘I’1(t) _ /_ ds — /B 5l x u 51

= Vx(uxB)-dS—/B-cSlxu
So ¢

= /uxB-él—/B-élxu:O
¢ ¢
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In the limit S >> 1 (large resistivity), the induction equation reduces to the diffusion equation
which, for constant n reads

OB 5 =
— = B
5 =nV

This is a linear equation in the sense that if B (x) and B,(x) are solution of the previous
equation, than any linear combination of these two is also a solution. For this reason, we can

write the general solution using Fourier decomposition and thus set

B(Z,t) = /BA() =R

where Bk(t) is the amplitude of the k-th mode and can be found by inserting this result in the
original equation,
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" the diffusion equation, a general solution can be built by adding together many such modes at ~
different frequencies with the right ‘strength’ A.(¢). First we note that

c(7,t) = / ce(Z,t)dk where cp(Z,t) = Ag(t)e *7. (47)
Taking the time derivative gives
4 _ik-z O
FpCk =€ BtAk’ (48)

Vi = —Ap(k - k)e 2, (49)

Thus the linear operator £ acting on ¢ gives a differential equation for the coefficient Ay

o O ik
Ller(t)] =e* aAk+1),4k|k|2e M=, (50)

which simplifies to

B
o7 Ak + DA K|* = 0. (51)

This first-order differential equation in time is easily solved, yielding

Ap(t) = Ap(0)ePIFt (52)
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where A, (0) is an initial condition that we will address momentarily. The first interesting fact™
emerges here, that higher frequencies are damped quadratically, hence any sharp variations in
probability density ‘smooth out’ very quickly, while longer wavelength variations persist on a
longer time-scale. Using A (t) we construct the general solution as

o(z,t) = / Ap(0)e~ DIkt g—ik-zqf. (53)

but still need to find the Aj(0)’s using the initial condition ¢(z,0). The first way to proceed is
simply by taking the Fourier Transform on the initial condition, namely

Ap(0) = 1 / o, 0)e* % dz, (54)

where n is the number of dimensions. In some sense, this is the answer, but a more useful result
can be had if we study the impulse initial condition ¢(Z,0) = §(Z — Z’), where

1
(2m)"

A (0) = / 5(% — )R Eds = ek (55)

(2m)"

We create a solution to the PDE known as the Green’s Function, by studying the response to
this initial d-function impulse

1 0,
G(z, 7, t) = T / e~ DIk te—ik-(@=2) qp (56)
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4.5.1 Delta Function

If u(x,0) = d(x) (e.g. all the heat/chemical initially dumped at the origin — a decent
mathematical model), then ¢(x) = d(x)

and

u(x, t) =

—g)z e iDi
o(¢ Dt (¢ =
VarDt / 6 VarDt

Defn: This is the fundamental solution of the diffusion equation.



F O U r i er Tr a n S f O r m (http://www.maths.bris.ac.uk/~macpd/apde2/chap4.pdf)

e Definition Flk) = /_oo f(x)e ™ dx f(x) = %/_Zf(k)ef“dk

—X‘Z/l'lz
. . . N e - ~
Example 1: Gaussian f(x) = T F = e/
e Delta function: / o(x —c)f(x)dx = f(c)

,9?{(5(.\{)}:/_ S(x)e R dx = 1

5(x) = %/_ooe"kxdk



