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In this lecture we study some properties of the Euler equations of gasdynamics,

∂ρ

∂t
+∇ · (ρu) = 0 ,

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = ρa ,

∂p

∂t
+ u · ∇p+ γp∇ · u = 0 ,

(1)

where ρ, p and u denote that gas density, pressure and (bulk) velocity. The last equation can
be recovered from the internal energy equation (see next section) assuming an ideal gas which
satisfies ρe = p/(γ − 1), where γ is the specific heat ratio.

1 The Internal Energy Equation

In order to derive the internal energy equation for an ideal gas, we start from the conservative
form of the total energy density:

∂

∂t

(
1

2
ρu2 + ρe

)
+∇ ·

[(
1

2
ρu2 + ρe+ p

)
u

]
= ρu · a . (2)

Now consider the temporal evolution of the kinetic term. Using the momentum Eq. in (1) we
obtain:

∂

∂t

(
1

2
ρu2
)

=
u2

2
∂tρ+ ρu · ∂tu = −u

2

2
∇ · (ρu) + ρu ·

[
a− u · ∇u− ∇p

ρ

]
.

We can now replace the second term in the square bracket using the vector identity u ·∇u =
∇(u2/2) − u × (∇ × u) so that, together with the continuity equation, the previous equation
reads

∂

∂t

(
1

2
ρu2
)

= −∇
(
ρu2

2
u

)
− u · ∇p+ ρu · a .

Substituting in Eq. (2) we obtain

∂

∂t
(ρe) +∇ · (ρeu) + p∇ · u = 0 . (3)

The last term represents the work done by compression (∇ · u < 0) or expansion (∇ · u > 0) of
the gas.
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1.1 Relation to the 1st Law of Thermodynamics

Notice that Eq. (3) is actually the first law of thermodynamics, just written in a different way.
To prove this equivalence, we start directly from the 1st law which, in our notations, can be
written as,

de+ pdV = δQ = 0 (adiabatic) , (4)

where V = 1/ρ represents the volume divided by the mass and e is the specific internal energy.
The previous equation holds in a volume of fluid as it moves along a streamline and, after
dividing by dt, the derivatives must be understood as convective (Lagrangian) derivative (d/dt =
∂t + u · ∇):

∂e

∂t
+ u · ∇e+ p

[
∂

∂t

(
1

ρ

)
+ u · ∇

(
1

ρ

)]
= 0 =⇒ ∂e

∂t
+ u · ∇e− p

ρ2

(
∂ρ

∂t
+ u · ∇ρ

)
= 0 .

Now, using the continuity equation, ∂t = −∇ · (ρu), one obtains

∂e

∂t
+ u · ∇e+

p

ρ
∇ · u = 0 , (5)

or, written using the Lagrangian derivative,

de

dt
= −p

ρ
∇ · u , (6)

which, after multiplication by ρ together with the continuity equation, gives again, Eq. (3).
A different form of the energy equation can be obtained for an ideal gas by assuming ρe =

p/(γ − 1) (thas it, the gas is adiabatic). After dividing Eq. (3) (or the 3rd by ργ we obtain

d

dt

(
p

ργ

)
+

γp

ργ+1

dρ

dt
+
γp

ργ
∇ · u = 0 .

Using the continuity Eq. dρ/dt = −ρ∇ · u, terms simplify and one is left with

∂s

∂t
+ u · ∇s =

ds

dt
= 0 . (7)

where s = p/ργ . Eq. (7) simply states the conservation of entropy along a streamline as the
fluid moves, reflecting the adiabatic nature of the gas.

1.2 Definition of Temperature

Temperature can be defines in a statistical sense as

p = nkBT =
nm

〈
w2
〉

3
=⇒ T =

m
〈
w2
〉

3kB
(8)

where kB is the Boltzmann constant, p is the pressure, n is the gas number density. For a system
in local thermodynamic equilibrium the distribution function becomes a Maxwellian,

f = n
( m

2πkT

)3/2
exp

[
−mw

2

2kT

]
(9)

and the definition of the temperature given by Eq. (8) can be directly verified. Indeed, using
the fact that ∫ ∞

0
x2n exp−x

2/a2 dx =
√
π

(2n)!

n!

(a
2

)2n+1

we can compute the average value of
〈
w2
〉

in spherical coordinates in the velocity space, where
d3w = 4πw2dw: 〈

w2
〉

=

∫∞
0 w4 4πdw∫∞
0 w2 4πdw

=
3nkBT/m

n
=

3kBT

m
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2 Simple Analytical Solutions

2.1 Time-independent Solution

2.1.1 Constant Uniform Medium

Perhaps the simplest solution involves a static (u = 0) uniform fluid with constant density,
ρ = ρ0 = const and pressure p = p0 = const and no acceleration (a = 0). It can be easily
verified that this condition satisfies the system (1).

2.1.2 Hydrostatic Equilibrium

Equilibrium conditions satisfy ∂t = 0 and can be either static (u = 0) or stationary (u 6= 0).
A simple solution can be obtained by considering a static medium under the action of gravity.
We consider here a constant gravitational field so that a = (0, 0,−g). Assuming that flow
quantities depend only on the vertical coordinate (z) and neglecting variation in the horizontal
plane (∂x = ∂y = 0), only the equation of motion is non-trivial:

dp

dz
= −ρg (10)

The previous ordinary differential equation is the (one-dimensional) hydrostatic balance equa-
tion. It can be solved once a relation between p and ρ has been specified.

• Constant density: for an incompressible fluid, ρ = ρ0 = const and Eq. (10) has the simple
solution

p(z) = p(z0)− ρg(z − z0) (11)

The previous relation is know as Stevin’s law (legge di Stevino).

• Isothermal fluid, for which p = a2ρ, where a is the isothermal speed of sound. In this case,
Eq. (10) can be solved giving

p(z) = p(z0)e
−g(z−z0)/a2 (12)

Note that a2/g is the atmospheric scale height.

2.1.3 Bernoulli’s Law

We now show how, under specific conditions, the Eq. of motion (the second in Eqns 1) can be
manipulated to yield Bernoulli’s law. Using the identity

u · ∇u = ∇
(

1

2
u2

)
− u× (∇× u)

we rewrite the second equation in (1) as

∂u

∂t
+∇

(
1

2
u2

)
− u× (∇× u) +

∇p
ρ

= a

Since ∇(p/ρ) = (∇p)/ρ− (p/ρ2)∇ρ we then obtain

∂u

∂t
+∇

(
1

2
u2 +

p

ρ

)
− u× (∇× u) +

p

ρ2
∇ρ = a (13)

3



If the external force is conservative, then a potential can be defined such that a = −∇ϕ. In
addition, assuming a stationary flow (∂t = 0) and the incomprimibility condition (ρ = const),
the previous equation further simplify to

∇
(

1

2
u2 +

p

ρ
+ ϕ

)
= (u×∇× u) (14)

This equation can be projected along a fluid streamline (the fluid direction given by u), the
term on the right hand side vanishes and one is left with

u · ∇
(

1

2
u2 +

p

ρ
+ ϕ

)
= 0 (15)

This implies that in a steady inviscid and incompressible flow in an external conservative field
the quantity inside the round brakets is constant:

bl =
1

2
u2 +

p

ρ
+ ϕ (16)

Note that bl is, in general, different on different streamlines if the flow has non-zero vorticity
(∇× u 6= 0). However, if the flow happens to be also irrotational (∇× u = 0) then bl defined
by Eq. (16) is constant everywhere in the flow.

2.2 Time-Dependent Solutions

Analytical solutions in the general time-dependent case can be, in general, obtained numerically.
However, there are simple cases that are worth discussing and in which the hyperbolic nature
of the underlying partial differential equations can be understood.

2.2.1 Uniform Advection

Consider a generic density profile ρ(x, t) in a fluid with constant velocity u = u0î and constant
pressure. Then only the first of Eqns (1) is non-trivial, yielding

∂ρ(x, t)

∂t
+ u0

∂ρ(x, t)

∂x
= 0 (17)

Eq. (17) is known as the linear advection (or transport) equation and it can be considered as
the proto-type of all hyperbolic partial differential equations (PDE). Hyperbolic PDE imply, as
we shall see, that information propagates across domain at a finite speed.

It is easy to verify that the solution of Eq. (17) is a uniform shift of any initial profile. That
is, given the initial condition

ρ(x, 0) = f(x) at t = 0 ,

then Eq. (17) admits the solution

ρ(x, t) = ρ(x− u0t, 0) ≡ f(x− u0t) (18)

which describes a uniform (rigid) translation of the initial density profile. This can be easily
verified by straightforward differentiation (setting ξ = x− u0t).

A very useful concept in the theory of hyperbolic PDE is given by the notion of characteristic
curve. For Eq. (17) characteristic curves are defined by the ordinary differential equation

dx

dt
= u0 (19)
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Figure 1: Characteristic curves for the linear advection equation.

and are simply parallel straight lines. Differentiating ρ(x, t) with respect to time along a char-
acteristic curve x = x(t), one obtains

dρ

dt
=
∂ρ

∂t
+
dx(t)

dt

∂ρ

∂x
=
∂ρ

∂t
+ u0

∂ρ

∂x
= 0 ,

e.g., the solution is constant along characteristics.
At any point (x, t) we can trace the characteristic back to the initial position, see Figure 1.

2.2.2 Sound Waves: Linearizing Euler’s equations

The previous (exact) solution shows how wave propagation is a natural concept when dealing
with hyperbolic PDE. The same concept applies, of course, to the full system of equations (1)
although simple analytical solutions can not be found due to their intrinsic nonlinearity.

For this reason, we now introduce a perturbative approach that can be used to linearize the
equations of gas-dynamics. A linear approach can always be studied in terms of Fourier modes
and can be very instructive on the nature of waves, at least in the limit of small perturbations.
The term perturbation usually implies that the perturbed quantities are small compared to the
unperturbed quantities and the quadratic (or higher-order) terms of these quantities can be
neglected. This is precisely the meaning of the linear perturbation technique.

Consider a static, homegenous medium with constant density and pressure (ρ0 and p0).
Assuming small perturbations (|ρ1| � ρ0, |p1| � p0) so that ρ(x, t) = ρ0 + ρ1(x, t), p(x, t) =
p0 + p(x, t) and u(x, t) = u1(x, t) we rewrite the system (1) as

∂ρ1
∂t

+ ρ0∇ · u1 = 0

ρ0
∂u1

∂t
+∇p1 = 0

∂p1
∂t

+ γp0∇ · u1 = 0

(20)

Note that only first-order terms have been retained while second- or higher-order terms (such
as ρ1u1) have been neglected. This assumption is justified in the regime of small perturbations.
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Given the linear nature of the system we can now employ a plane wave decomposition and
write a generic perturbation in the from ∝ ei(k·x−ωt) so that ∂t → −iω while ∇ → ik. Since the
perturbation analysis is linear, the principle of superposition holds. Eqns (20) then become

−iωρ1 + ρ0ik · u1 = 0

−iωρ0u1 + ikp1 = 0

−iωp1 + γp0ik · u1 = 0

(21)

Without loss of generality, we can assume k = kî in the x direction and write the system
(21) as 

−ωρ1 + ρ0ku1 = 0

−ωρ0u1 + kp1 = 0

−ωp1 + γp0ku1 = 0

(22)

where now u1 is the x-component of the velocity perturbation. The previous system is a homo-
geneous linear system in ρ1, u1 and p1 which, in matrix notations, can be easily cast as

−ω/k ρ0 0

0 −ω/k 1/ρ0

0 γp0 −ω/k




ρ1

u1

p1

 = 0 . (23)

Eq. (23) has a non-trivial solution if the determinant of the 3× 3 matrix vanishes:

−
(ω
k

)3
+
ω

k

γp0
ρ0

= 0 =⇒
(ω
k

)
= ±

√
γp0
ρ0

(24)

which is the solution of our dispersion relation. The quantity

cs ≡
√
γp0
ρ0

(25)

defines the adiabatic speed of sound and was first obtained by Newton (1689), who assumed
pertrubations to be isothermal (γ → 1). At the temperature of T = 273 K (0◦) the adiabatic
sound speed is approximately 332 m/s.

Sound waves are longitudinal waves because particles of the medium through which the
sound is transported vibrate parallel to the direction of the wave. This can be easily recognized
by the fact that k and u1 are parallel. The result of such longitudinal vibrations is the creation
of compressions and rarefactions within the air.

3 The Vorticity Equation. Barotropic and Incompressible Flows

By using the vector identity, the momentum equation can be written as

∂u

∂t
+

1

2
∇u2 − u× (∇× u) = −1

ρ
∇p+ a .

Taking the curl of the previous equation and considering a conservative force we obtain

∂ω

∂t
= ∇× (u × ω) +

1

ρ2
∇ρ×∇p (26)

where ω = ∇× u is the vorticity.
The last term on the right hand side is the baroclinic term. It describes the production of

vorticity due to a misalignment between pressure and density gradients.
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Barotropic Fluids. A barotropic equation of state assume that the pressure is a function of
the density only, p = p(ρ). In this case the last term on the right hand side of the vorticity Eq.
(26) vanishes yielding

∂ω

∂t
= ∇× (u × ω) (27)

In astrophysics, barotropic fluids are found while studying stellar interiors, degenerate matter
(white dwarf or neutron stars) or the interstellar medium. One common class of barotropic model
used in astrophysics is a polytropic fluid, for which p ∝ ργ . A special case of a barotropic fluid is
represented by an isothermal flow, for which p = c2sρ, where cs is the isothermal speed of sound.

Incompressible Flows. In an incompressible flow, the material density in a fluid parcel is
constant (dρ/dt = 0). From the continuity equation we thus obtain

dρ

dt
= −ρ∇ · u = 0 =⇒ ∇ · u = 0

that is, the velocity is solenoidal field. Incompressibility is a reasonable good assumption for
liquids and it may also hold in the case of gases, if perturbations are considerably less than
the speed of sound. If an object moves slowly, in fact, the air in front of it can get rid of
the compression at a speed faster than the speed at which the object is trying to build up
compression (Choudhuri). Air can therefore be regarded as incompressible as long as all the
motions inside have velocities small compared to the sound speed.

The vorticity equation has the same form as in Eq. (27), which involves only two variables
(u and ω) which are not independent. If the velocity u is given, then we can easily find the
vorticity as ω = ∇× u. On the contrary, if ω is known, we can use a well-known results from
mathematical physics stating that that a vector field can be solved for if its divergence and curl
are given1. This allows one to find u from ω.

1Helmholtz’s theorem, also known as the fundamental theorem of vector calculus, states that any sufficiently
smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an irrotational (curl-free)
vector field and a solenoidal (divergence-free) vector field.
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