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Terms & Conditions of Use

The public version of PLUTO is distributed freely under the GNU general public license. Code’s devel-
opment and support requires a great deal of work and for this reason we expect PLUTO to be referenced
and acknowledged by authors who use it for their publications. In particular,

• If you’re using the static grid version, please cite:
Mignone et al. ApJS (2010) 170, 228M
https://ui.adsabs.harvard.edu/abs/2007ApJS..170..228M/abstract

• If you’re using the AMR version, please cite:
Mignone et al. ApJS (2012) 198, 7M
https://ui.adsabs.harvard.edu/abs/2012ApJS..198....7M/abstract

• Further, if you’re using the MHD-PIC module, please cite:
Mignone et al. ApJ (2018) 859, 13M
https://ui.adsabs.harvard.edu/abs/2018ApJ...859...13M/abstract

• Further, if you’re using the radiative transfer module for relativistic magnetohydrodynamics,
please cite:
Melon Fuksman & Mignone ApJS (2019) 242, 20M
https://ui.adsabs.harvard.edu/abs/2019ApJS..242...20M/abstract

Co-authorship may be solicited for those publications demanding considerable additional support
and/or changes to the code.

A note on public vs. non-public modules.

Besides the official code release, a few modules have not yet been made available with the standard
public version, as they are still under active development or testing stage. In other circumstances, a
private module may have been implemented under specific collaboration policies, which do not grant
its public distribution. These non-offical modules include:

• Lagrangian Particle Module
(Developers: B. Vaidya [bvaidya@iiti.ac.in], D. Mukherjee [dipanjan@iucaa.in]);

• Dust Module
(Developers: A. Mignone [mignone@to.infn.it], M. Flock [flock@mpia.de]);

• Relativistic Resistive MHD
(Developers: A. Mignone [mignone@to.infn.it], G. Mattia [mattia@mpia.de]);

Distribution, private sharing and usage of these modules is permitted only in the form of a collabora-
tion between our partner institutions network, requiring co-authorship from at least one of the module
developers.
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0. Quick Start

0.1 Downloading and unpacking PLUTO

PLUTO can be downloaded from http://plutocode.ph.unito.it. Once downloaded, extract all the files from
the archive:

˜> gunzip pluto-xx.tar.gz
˜> tar xvf pluto-xx.tar

this will create the folder PLUTO/ in your home directory. At this point, we advise to set the environment
variable PLUTO DIR to point to your code directory. Depending on your shell (e.g. tcsh or bash) use
either one of

˜> export PLUTO_DIR=/home/user/PLUTO # If you’re using the bash shell;
˜> setenv PLUTO_DIR /home/user/PLUTO # If you’re using the tcsh shell;

0.2 Running a simple shock-tube problem

PLUTO can be quickly configured to run one of the several test problems provided with the distribution.
Assuming that your system satisfies all the requirements described in the next chapter (i.e. C compiler,
Python, etc..) you can quickly setup PLUTO in the following way:

1. Change directory to any of the test problems under PLUTO/Test Problems, e.g.

˜> cd $PLUTO_DIR/Test_Problems/HD/Sod

2. Copy the header and initialization files from a configuration of our choice (e.g. #01):

˜/PLUTO/Test_Problems/HD/Sod> cp definitions_01.h definitions.h
˜/PLUTO/Test_Problems/HD/Sod> cp pluto_01.ini pluto.ini

3. Run the Python script using

˜/PLUTO/Test_Problems/HD/Sod> python $PLUTO_DIR/setup.py

and select “Setup problem” from the main menu, see Fig. 1.2. You can choose (by pressing Enter)
or modify the default setting using the arrow keys.

4. Once you return to the main menu, select “Change makefile”, choose a suitable makefile (e.g.
Linux.gcc.defs) and press enter.

All the information relevant to the specific problem should now be stored in the four files init.c
(assigns initial condition and user-supplied boundary conditions), pluto.ini (sets the number of
grid zones, Riemann solver, output frequency, etc.), definitions.h (specifies the geometry, number
of dimensions, reconstruction, time stepping scheme, and so forth) and the makefile.

5. Exit from the main menu (“Quit” or press ’q’) and type

˜/PLUTO/Test_Problems/HD/Sod> make

to compile the code.

6. You can now run the code by typing

˜/PLUTO/Test_Problems/HD/Sod> ./pluto

At this point, PLUTO reads the initialization file pluto.ini and starts integrating. The run should
take a few seconds (or less) and the integration log should be dumped to screen.

6
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Data can be displayed in a number of different ways. If you have, for example, Gnuplot (v 4.2 or higher)
you can display the density output from the last written file using

gnuplot> plot "data.0001.dbl" bin array=400:400:400 form="%double" ind 0

where ind 0,1,2 may be used to select density, velocity or pressure. If you have IDL installed on your
system, you can easily plot the density by1:

IDL> pload,1
IDL> plot,x1,rho

The IDL procedure pload is provided along with the code distribution.

0.3 Running the Orszag-Tang MHD vortex test

1. Change directory to PLUTO/Test Problems/MHD/Orszag Tang.

2. Choose a configuration (e.g. #02) and copy the corresponding configuration files, i.e.,

˜/PLUTO/Test_Problems/MHD/Orszag_Tang> cp definitions_02.h definitions.h
˜/PLUTO/Test_Problems/MHD/Orszag_Tang> cp pluto_02.ini pluto.ini

3. Run the Python script:

˜/PLUTO/Test_Problems/MHD/Orszag_Tang> python $PLUTO_DIR/setup.py

select “Setup problem” and choose the default setting by pressing enter;

4. Once you return to the main menu, select “Change makefile” and choose a suitable makefile (e.g.
Linux.gcc.defs) and press enter.

5. Exit from the main menu (“Quit” or press ’q’). Edit pluto.ini and, under the [Grid] block, lower the
resolution from 512 to 200 in both directions (X1-grid and X2-grid). Change single file, in
the “dbl” output under the [Static Grid Output] block, to multiple files.

6. Compile the code:

˜/PLUTO/Test_Problems/MHD/Orszag_Tang> make

7. If compilation was successful, you can now run the code by typing

˜/PLUTO/Test_Problems/MHD/Orszag_Tang> ./pluto

At this point, PLUTO reads the initialization file pluto.ini and starts integrating. The run should
take a few minutes (depending on the machine you’re running on) and the integration log should
be dumped to screen.

You can display data (e.g. density and x velocity) with Gnuplot (v 4.2 or higher) from the last written
file using

gnuplot> set pm3d map # set map style drawing
gnuplot> set palette gray # set color to black and white
gnuplot> splot "rho.0001.dbl" bin array=200x200 format="%double" # density
gnuplot> splot "vx1.0001.dbl" bin array=200x200 format="%double" # density

If you have IDL installed, you can easily display pressure from the last written output files with

IDL> pload,1
IDL> display,x1=x1,x2=x2,prs

Several other visualization options are described in more details in §12.3.

1You need to include PLUTO/Tools/IDL into your IDL search path, §12.3.2
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0.4 Setting up your own test problem

As an illustrative example, we show how PLUTO can be configured to run a 2D Cartesian hydrody-
namic blast wave from scratch. We assume that you have already followed the steps in §0.1.

1. First, in your home or work directory, you need to create a folder which will contain the necessary
files for the test. For instance,

˜> mkdir Blastwave
˜> cd Blastwave

2. You can now start the setup process by invoking the Python script to set dimensions, geometry,
numerical scheme and so on:

˜/Blastwave> python $PLUTO_DIR/setup.py

and select “Setup problem” from the main menu.

Using the arrows keys make the following changes: set “DIMENSIONS” to 2, “USER DEF PARAMETERS”
to 3 and leave the other fields as they are. User-defined parameters will be used later in the initial
condition routine. Press enter to confirm the changes and proceed to the following screen menu.
Since we don’t have to change anything here you can press enter once more.

3. We now set the names of the 3 auxiliary parameters previously introduced. To do so, use the
arrow keys to select each of them and explicitly write their names: P IN, P OUT and GAMMA and
press enter to confirm.

4. Finally, we complete the python session by setting the architecture for the makefile. In the makefile
menu choose your system configuration (e.g. Linux.gcc.defs for Linux). Press enter to confirm.

You are now done with the Python script and can exit by pressing either “q” or selecting quit. At this
point you should find the following four files inside your Blastwave folder: definitions.h, init.c, makefile,
pluto.ini, sysconf.out

Next, we need to edit the two files pluto.ini and init.c. The first one defines the computational domain
and certain properties of the run (i.e. time of integration, first timestep etc). The second one sets the
initial conditions for the blast wave problem: a circular region of high pressure in a lower pressure
ambient.

Edit pluto.ini to make the following changes:

• The domain should span from -1 to 1 in both dimensions with 200 points in each direction.

X1-grid 1 -1.0 200 u 1.0
X2-grid 1 -1.0 200 u 1.0

• The simulation should stop when time reaches 0.04:

tstop 0.04

with the first timestep being

first_dt 1.e-6

Save the files every t=0.004, in double precision and in multiple files format.

dbl 0.004 -1 multiple_files

• At the end of the file, set the numerical values for the 3 parameters P IN (the high pressure of a
region yet to be specified), P OUT (the ambient pressure) and GAMMA (polytropic index):

P_IN 8.e2
P_OUT 8.0
GAMMA 1.666666666666667

Save and exit the editor.
Next, you need to edit init.c.
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• Define inside the function Init() the radius r, a floating point value which we will be used to set
a circular region of high pressure.

double r;

• Set the global variable g gamma (polytropic index) and the radius r. Define the initial ambient
pressure (P OUT) and put an IF statement to specify the high pressure region inside a circle of r=
0.3 (P IN):� �

g_gamma = g_inputParam[GAMMA]; /* calls the auxiliary parameter GAMMA*/
r = x1*x1 + x2*x2;
r = sqrt(r);

v[RHO] = 1.0; /* initial density array */
v[VX1] = 0.0; /* initial Vx array */
v[VX2] = 0.0; /* initial Vy array */
v[VX3] = 0.0; /* initial Vz array */
v[PRS] = g_inputParam[P_OUT]; /* calls the auxiliary parameter P_OUT */

if (r <= 0.3) v[PRS] = g_inputParam[P_IN]; /* calls the input parameter P_IN */
� �
Save and exit the editor. Compile the code and run PLUTO with a the following set of commands:

˜/Blastwave> make
˜/Blastwave> ./pluto

In order to visualize the results follow the instructions described in the two previous sections.

0.5 Supplied test problems

The official distribution of PLUTO comes with several examples and test problems that can be found
under the Test Problems/ folder. Documentation is extracted from comments at the beginning of init.c
sources files using the Doxygen documentation system and an on-line documentation browser can be
found in Doc/test problems.html. Test problem documentation is still being added and more examples
will be available in future releases.
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0.6 Migrating from PLUTO 4.3 to PLUTO 4.4

PLUTO 4.4 provides several bug fixes and does not introduce major changes with respect to the previous
version in the syntax of the basic functions defined in init.c. Some optimizations and improvements have
been performed in the source distribution and a few minor changes have been introduced mainly for
uniformity and efficiency reasons. The file CHANGES lists the most relevant ones:

CURRENT RELEASE: 4.4-patch1 (November 2020)

**********************************************************
* CHANGES from 4.4

*********************************************************

- FARGO module has been fixed for restart operations and a few
other (minor) bugs;

- Added NGHOST_USR to specify number of ghost zones
different from PLUTO default;

- d->flag[][][] has changed type, from "char" to "uint16_t"
- A new macro "FAILSAFE" introduced to deal with problems
of negative density (see userguide);

- Some pyPLUTO bugs fixed.

**********************************************************
* CHANGES from 4.3

**********************************************************

- New Additions:
o New Radiation module for relativistic flows;
o New Resistive relativistic module [Under Condition]
o New Dust particles module [Under Condition]
o new parameter in pluto.ini, "tfreeze" to freeze fluid evolution;
o full compatibility with MPI 3.0;
o UCT schemes (for constrained transport, see Sec. 6.2.2.3);
o new syntax to read .dbl and .flt binary files with Gnuplot;
o new macro "MULTIPLE_LOG_FILES" to handle log files (sec. 1.4.1);
o Singularity treatment for polar / spherical coordinates at the axis;
o Acceleration term in RHD / RMHD modules has been incorporated using a

more consistent formalism (Taub 1948), see userguide.

- Permanently removed:
o "DIMENSIONAL_SPLITTING" option has been permanently removed.

All numerical scheme are now fully dimensionally UNSPLIT.
o "EXPAND()" and "COMPONENTS" macros have been removed.

From now on, PLUTO will always include 3 components.
o "VAR_LOOP()" macro removed (use "NVAR_LOOP()" instead)
o "FORCED_TURB" module has been temporarily removed.

- Changes:
o "UCT_CONTACT" changed to "CT_CONTACT";
o "D_EXPAND()" changed to "DIM_EXPAND()" (avoid conflict with Chombo lib);



1. Introduction

PLUTO is a finite-volume / finite-difference, shock-capturing code designed to integrate a system of conservation laws

∂U

∂t
+∇ · Th = ∇ · Tp + S(U) (1.1)

where U represents a set of conservative quantities, Th(U) is the (hyperbolic) flux tensor, Tp is the diffusion (parabolic) flux
tensor and S(U) defines the source terms [MBM+07, MZT+12]. An equivalent set of primitive variables V is more conveniently
used for assigning initial and boundary conditions. The explicit form of U , V , T(U) and S(U) depends on the particular physics
module selected:

• HD: Newtonian (classical) hydrodynamics, §6.1;

• MHD: ideal/resistive magnetohydrodynamics, §6.2;

• RHD: special relativistic hydrodynamics, §6.3;

• RMHD: special (ideal) relativistic magnetohydrodynamics, §6.5.1;

• ResRMHD: special (ideal) relativistic magnetohydrodynamics with resistivity §6.5;

PLUTO adopts a structured mesh approach for the solution of the system of conservation laws (1.1). Flow quantities are
discretized on a logically rectangular computational grid enclosed by a boundary and augmented with guard cells or ghost points
in order to implement boundary conditions on a given computational stencil. Computations are done using double precision
arithmetic.

The grid can be either static or dynamically adaptive as the flow evolves. In the static grid version PLUTO comes as a stand-
alone package entirely written in the C programming language, see [MBM+07] for a comprehensive description. In the adaptive
grid version the code relies on the Chombo library for adaptive mesh refinement (AMR) written in C++ and Fortran (Chapter 13).
A detailed description of the AMR implementation is given in [MZT+12].

Doxygen is used as the standard documentation system and the Application Programming Interface (API) reference guide
can be found in Doc/API-ReferenceGuide.html.

PLUTO has been successfully ported to several parallel platforms including Linux, Windows/Cygwin, Mac OS X, Beowulf
clusters, IBM power4 / power5 / power6, SGI Irix, IBM BluGene/P and several others. Figure 1.1 shows the strong scaling on a
BlueGene/P machine up to 32, 768 processors on a periodic domain with 5123 computational grid zones.

Figure 1.1: Strong scaling of
PLUTO on a periodic domain prob-
lem with 5123 grid zones. Left
panel: average execution time (in
seconds) per step vs. number of
processors. Right panel: speedup
factor computed as T1/TN where
T1 is the (inferred) execution time of
the sequential algorithm and TN is
the execution time achieved with N
processors. Code execution time is
given by black circles (+ dotted line)
while the solid line shows the ideal
scaling.

11
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1.1 System Requirements
PLUTO can run on most platforms but some software prerequisites must be met, depending on the specific configuration you
intend to use. The minimal set to get PLUTO running on a workstation with a static grid (no AMR) requires Python, a C compiler
and the make utility. These are usually installed by default on most Linux/Unix platforms. A comprehensive list is shown in
Table 1.1.

Static Grid Adaptive Grid
serial parallel serial parallel

Python (> 2.0) yes yes yes yes
C compiler yes yes yes yes
C++ compiler – – yes yes
Fortran compiler – – yes yes
GNU make yes yes yes yes
MPI library – yes – yes
Chombo library (v 3.2) – – yes yes
HDF5 library (v 1.6 or 1.8) opt opt yes yes
PNG library opt opt – –

Table 1.1: Software requirements for different applications of PLUTO. Here “opt” stands for optional, ”serial“ refers to single-
processor runs and ”parallel“ to multiple-processor architectures.

Parallelization is handled internally (no external library is required). The Chombo library is required for computations making
use of Adaptive Mesh Refinement (Chapter 13), while the PNG library should be installed only if PNG output is desired. The
HDF5 library is required for I/O with the Chombo library and may also be used with the static grid version of the code.

1.2 Directory Structure
Once unpacked, your PLUTO/ root directory should contain the following folders:

• Config/: contains machine architecture dependent files, such as information about C compiler, flags, library paths and so
on. Important for creating the makefile;

• Doc/: documentation directory;

• Lib/: repository for additional libraries;

• Src/: main repository for all *.c source files with the exception of the init.c file, which is left to the user. The physics module
source files are located in their respective sub-directories: HD/ (classical hydrodynamics), RHD/ (special relativistic hy-
drodynamics), MHD/ (magnetohydrodynamics), RMHD/ (relativistic magnetohydrodynamics). Cooling, viscosity, thermal
conduction and additional physics models are located under the folders with similar names (e.g. Cooling/, Viscosity/, Ther-
mal Conduction). The Templates/ directory contains templates for the user-dependent files such as init.c, pluto.ini, makefile
and definitions.h;

• Tools/: Collection of useful tools, such as Python scripts, IDL visualization routines, pyPLUTO, etc...;

• Test Problems/: a directory containing several test-problems used for code verification.

PLUTO should be compiled and executed in a separate working directory which may be anywhere on your local hard drive.
Although most of the current algorithms can be considered in their final stable version, the code is under constant develop-

ment and updates are released once or twice per year. When upgrading to a newer version of the code, it is recommended that
the entire PLUTO/ directory tree be deleted. Syntax changes are usually listed in the file CHANGES, in the PLUTO/ root directory.
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Option Description

--auto-update automatically update the configuration files without explicitly running the python menu;

--with-chombo enables support for adaptive mesh refinement (AMR) using the Chombo library, Chapter 13;

--with-fd enables support for finite difference schemes, §10.4

--with-fargo enables support for the FARGO-MHD module, §10.2;

--with-sb enables support for the shearing-box module, §10.1;

--no-curses
disables the curses terminal control feature of the Python script. Instead a shell-based setup will
be used. This switch can be used to circumvent problems with the ncurses library present on
some systems (e.g. Snow Leopard 10.6);

Table 1.2: Command line options available when running the Python setup script.

1.3 Configuring PLUTO
In order to configure and setup PLUTO for a particular problem, four main steps have to be followed; the resulting configuration
will then be stored in 4 different files, part of your local working directory:

• definitions.h: header file containing all problem-dependent preprocessor directives required at compilation time (physics
module, geometry, dimensions, etc.). This is the subject of Chapter 2.

• makefile: needed to compile PLUTO and it depends on your system architecture. This is described in Chapter 3.

• pluto.ini: startup initialization file containing run-time parameters (grid size, CFL,...). This is the subject of Chapter 4;

• init.c: implements initial, boundary conditions, etc.... See Chapter 5.

The Python script setup.py is used for the first two steps while the remaining files (pluto.ini and init.c) should be appropriately
edited by the user. Templates for all four files can be found in the Src/Templates/ directory. Several examples are located in the test
directories under the Test Problems/ directory.

In order to run the Python script anywhere from your hard disk we recommend to set the shell variable PLUTO DIR to point
to your PLUTO distribution. Depending on your environment shell, use either one of

˜> setenv PLUTO_DIR /home/user/PLUTO # if you’re using tcsh shell
˜> export PLUTO_DIR=/home/user/PLUTO # if you’re using bash shell

The setup.py script can now be invoked with

˜/MyWorkDir > python $PLUTO_DIR/setup.py [options]

Command line options are listed in Table 1.2 or can be briefly described by invoking setup.py with
--help. By default the Python script uses the ncurses library for enhanced terminal control. However,
this option may be turned off by invoking the setup script with the --no-curses switch. You should
then1 see the menu shown in Fig. 1.2. Additional menus, depending on the physics module, will display
later.

1Python will first create an architecture-dependent file named sysconf.out containing system-related information: this file does
not have any specific purpose but may be helpful for the user.
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Figure 1.2: Python script
main menu.

1.4 Compiling & Running the Code

After the four basic configuration files (init.c, definitions.h, makefile and pluto.ini) have been created,
PLUTO can be compiled from your local working directory by typing

˜/MyWorkDir> make # ’gmake’ is also fine

It is important to remember that the makefile created by Python (Chapter 3) guarantees that your work-
ing directory is always searched before PLUTO/Src. This turns out to be useful when modifying PLUTO
source files (§1.5).

If compilation is successful, type

˜/MyWorkDir> ./pluto [flags]

for a single processor run, or

˜/MyWorkDir> mpirun [...] ./pluto [args]

for a parallel run; [...] are options given to MPI, such as number of processors, etc, while [args] are
command line options specific to PLUTO , see Table 1.3. For example,

˜/MyWorkDir> ./pluto -restart 5 -maxsteps 840

will restart from the 5-th double precision output file and stop computation after 840 steps.

1.4.1 Output Log file
Serial mode output log. In serial mode, the output is displayed on screen and is looks something like:
...

step:0; t = 0.0000e+00; dt = 1.0000e-04; 0.0 %
[Mach = 1.236510, NRiemann = 10]

step:1; t = 1.0000e-04; dt = 1.1000e-04; 0.0 %
[Mach = 1.431883, NRiemann = 6]

step:2; t = 2.1000e-04; dt = 1.2100e-04; 0.0 %
[Mach = 1.389746, NRiemann = 6]

step:3; t = 3.3100e-04; dt = 1.3310e-04; 0.0 %
[Mach = 1.326274, NRiemann = 5]

...

where step gives the current integration step, t is the current integration time, dt is the current time
step, x.x% is the percentage of integration. The two numbers in square brackets are printed at the
end of the step and are, respectively, the maximum Mach number and maximum number of iterations
required by the Riemann solver (if an iterative one is used, e.g. two shock) during the current step.
The maximum Mach number is a very sensitive function of the numerical method it may be used as a
“robustness” indicator. Very large Mach numbers or rapid variations usually indicate problems and/or
fixes during the computation.
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Parallel mode output log. In parallel mode, no output is dumped on screen. Instead, each pro-
cessor can write to a dedicated log file, pluto.n.log, where n is the processor number. If the macro
MULTIPLE LOG FILES is set to NO (default) only pluto.0.log will be created by processor #0 on a regular
execution using the print() function. Other processors output is suppressed unless an error occurs
(in this case the printLog() function is used instead). Conversely, setting MULTIPLE LOG FILES to
YES will cause all processors to write individual log files on a regular execution. Since computations on
many cores produce the same number of log files, it is possible to write them into a dedicated directory
if desired (use the log dir in pluto.ini, see §4.6);

Notice that if a log file does not exist it will be created; if the file exists but integration starts from
initial conditions, it will be over written. Finally, if you restart from a previously saved file, the output
will be appended.

Note: When MULTIPLE LOG FILES is disabled (default), the print() function works only for
processor #0. If output is required from any other processor, then the printLog() function
should be used instead.

1.4.2 Command line options

When running PLUTO , a number of command-line switches can be given to enable or disable certain
features at run time. Some of them are available only in the static grid version, see Table 1.3 for a
description of the available flags.

1.5 Modifying the Distribution Source Files

PLUTO source files are compiled directly from the PLUTO/Src directory. Should you need to modify a
C source file other than your init.c, we strongly advise to copy the file to your local working directory
and then edit it, since the latter is always searched before PLUTO/Src during the compilation phase. In
other words, if you want to modify say, boundary.c, copy the file to your working area and introduce
the appropriate changes. When make is invoked, your local copy of boundary.c is compiled since it has
priority over PLUTO/Src/boundary.c which is actually ignored. In such a way, you can keep track of the
problem dependent modification, without affecting the original distribution.

Note: Header files (*.h or *.H) do not follow the same convention and must not be copied to the local
working directory. Modifications to header files must therefore be done in the original directory.
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Option Description work w/ AMR

-dec n1 [n2] [n3]

Enable user-defined parallel decomposition mode. The integers n1,
n2 and n3 specify the number of processors along the x1, x2, and x3
directions. There must be as many integers as the number of dimen-
sions and their product must equal the total number of processors
used by mpirun or an error will occurr.

No

-frestart n
Same as restart (see below) but for the fluid only (particles restart is
suppressed). No

-i fname Use fname as initialization file instead of pluto.ini. Yes

-h5restart n

Restart computations from the n-th output file in HDF5 double preci-
sion format (.dbl.h5, only for static grids). The input data files are
read from the directory specified by the output dir variables in
pluto.ini (default is current working directory). With Chombo-AMR
this switch is equivalent to -restart.

Yes

-makegrid Generate grid only, do not start computations. No

-maxsteps n Stop computations after n steps. Yes

-no-write Do not write data to disk. Yes

-no-x1par,
-no-x2par,
-no-x3par

Do not perform parallel domain decomposition along the x1, x2 or x3
direction, respectively. No

-restart n

Restart computations from the n-th output file in double in precision
format (.dbl, for static grid) or Chombo checkpoint file (chk.nnnn.hdf5
for Chombo-AMR). For the static grid, input data files are read from
the directory specified by the output dir variables in pluto.ini (de-
fault is current working directory).

Yes

-x1jet,
-x2jet,
-x3jet

Exclude from integration regions of zero pressure gradient that ex-
tends up to the end of the domain in the x1, x2 or x3 direction, re-
spectively. This option is specifically designed for jets propagating
along one of the coordinate axis. In parallel mode, parallel decompo-
sition is not performed along the selected direction.

No

-xres n1
Set the grid resolution in the x1 direction to n1 zones by overriding
pluto.ini. Cell aspect ratio is preserved by modifying the grid resolu-
tion in the other coordinate directions accordingly.

Yes

Table 1.3: Command line options available when running PLUTO . Compatibility with AMR version is given in the last column.
†: on parallel architectures only



2. Problem Header File: definitions.h

This chapter explains how to create the configuration header file definitions.h for a specific problem.

2.1 Basic Options

The header file definitions.h is created by the Python script setup.py by selecting Setup problem (see
Fig. 2.1). If you do not have an existing definitions.h, a new one will be created for you, otherwise the
Python script will try to read your current setup from the existing one.

Figure 2.1: The Setup prob-
lem menu, needed for your def-
initions.h and makefile creation;
by moving the arrow keys
you should be able to browse
through different options.

The header file definitions.h also contains other more advanced options (user-defined constants) that
are not accessible via the Python script and should be changed manually (§2.3). We now describe the
options accessible through the Python script.

2.1.1 PHYSICS

Specifies the fluid equations to be solved. The available options are:

• HD: classical hydrodynamics described by the Euler equations, §6.1;

• MHD: single fluid, ideal/resistive magnetohydrodynamics, §6.2;

• RHD: special relativistic hydrodynamics, §6.3;

• RMHD: special relativistic magnetohydrodynamics, §6.5.1.

• ResRMHD: special relativistic magnetohydrodynamics with resistivity, §6.5.

2.1.2 DIMENSIONS

DIMENSIONS sets the number of spatial dimensions of your problem. Starting with PLUTO 4.4, the
number of vector components will always be 3 (e.g. even in 1D, we evolve vx, vy and vz). In addition,
it is now possible to exclude the intermediate dimension (x2) by setting the macro INCLUDE JDIR to

17
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NO in your definitions.h. This feature can be used, for instance, in axisymmetric calculations in the (r, z)
coordinates in polar geometry by excluding the φ coordinate, or for 2D Cartesian simulation in the x− z
Cartesian plane.

2.1.3 GEOMETRY

Sets the geometry of the problem. Spatial coordinates are generically labeled with x1, x2 and x3 and
their physical meaning depends on the value assigned to GEOMETRY:

• CARTESIAN : Cartesian coordinates {x1, x2, x3} = {x, y, z};

• CYLINDRICAL: cylindrical axisymmetric coordinates {x1, x2} = {r, z} (1 or 2 dimensions);

• POLAR: polar cylindrical coordinates {x1, x2, x3} = {r, φ, z};

• SPHERICAL: spherical coordinates {x1, x2, x3} = {r, θ, φ}.

Note that when DIMENSIONS = 2, the third coordinate x3 is meaningless and will be set to zero
(similarly in 1-D x2 and x3 do not play any role). The corresponding vector component is, however,
integrated regularly (e.g. vz in 2D Cartesian coordinates).

We warn that non-Cartesian geometries are handled better when a multi-stage integrator (i.e. Runge-
Kutta) is used, especially if angular coordinates are present and/or steady state solutions are sought.

Note: Computations in polar or spherical including the pole (R = 0 in the former, θ = 0, π for
the latter) suffer from a time step restriction due to the grid singularity. The correct boundary
condition to be applied is “polaraxis” (§4.5). In order to increase the computational time step,
the RING AVERAGE macro can be turned on to enable the ring average technique by [ZSL+19].
With this option, computational zones near the pole are grouped into larger chunks. See table C.1.

2.1.4 BODY FORCE

Include a body force in the momentum and energy equations. Possible values are:

• POTENTIAL: body force is derived from a scalar potential, ρa = −ρ∇Φ;

• VECTOR: body force is expressed as a three-component vector ρa = ρg.

• (VECTOR+POTENTIAL): body force is prescribed using both, ρa = ρ(−∇Φ + g).

More details can be found in §5.4.

2.1.5 COOLING

Optically thin thermal losses can be included by appropriately setting this flag to one of the following:

• POWER LAW : radiative losses are proportional to ρ2Tα (§9.1);

• TABULATED: radiative losses are computed as n2Λ(T ), where Λ(T ) is a user-supplied tabulated
function of temperature, see §9.2. Alternatively, this module can be used to provide user-defined
cooling functions;

• SNEq : simplified non-equilibrium cooling function for atomic hydrogen. See §9.3 for more details;

• H2 COOL: optically thin cooling function for molecular and atomic hydrogen. See §9.4.

• MINEq : multi-ion non-equilibrium cooling model. It evolves the standard equations augmented
with a chemical network of 29 ions, see §9.5 and the work by [TMM08].
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2.1.6 RECONSTRUCTION

Sets the spatial order of integration. In the standard (finite volume) version of the code, the following
options are available:

• FLAT: first order reconstruction. The stencil is 1 point.

• LINEAR: piecewise TVD linear reconstruction is applied to primitive variables. It is 2nd order
accurate in space. Stencil is 3 point wide.

• WENO3: provides 3rd order weighted essentially non-oscillatory reconstruction [YC09] inside a cell
using is 3-point stencil.

• LimO3: provides 3rd order limiter function [ČT09] based on a 3-point stencil.

• PARABOLIC: piecewise parabolic method (PPM) as implemented by [Mig14]. The stencil requires
either 3 or 5 zones (see PPM ORDER in §C.3)

• MP5: the 5th-order monotonicity preserving scheme of Suresh & Huynh[SH97]. Note that MP5 has
been implemented only for Cartesian regular meshes.

The default is LINEAR. Both WENO3 and LimO3 employ a local three-point stencil to achieve piecewise-
quadratic reconstruction for smooth data and preserves their accuracy at local extrema thus avoiding
clipping of classical second-order TVD limiters and PPM. Non-uniform grid spacing and curvilinear
coordinates are handled more correctly with LINEAR and PARABOLIC using the approach presented in
[Mig14].

Note that although 3rd-order reconstructions are available, the finite volume version of the code
retains a global 2nd-order accuracy as fluxes are computed at the interface midpoint. On the contrary,
genuine 3rd and 5th order accurate schemes can be employed using the conservative finite difference
framework, §10.4.

2.1.7 TIME STEPPING

If ∆tn = tn+1 − tn is the time increment between two consecutive steps and L denotes the discretized
spatial operator on the right hand side of Eq. (1.1), the possible options are:

• EULER: 1st (explicit) Euler algorithm is used to evolve from Un to Un+1:

Un+1 = Un + ∆tnLn

• RK2, RK3: 2nd or 3rd-order TVD Runge Kutta is used to advance the solution to the next time level:

RK2 RK3

U∗ = Un + ∆tnLn U∗ = Un + ∆tnLn

− U∗∗ = 1
4

(
3Un +U∗ + ∆tnL∗

)
Un+1 = 1

2

(
Un +U∗ + ∆tnL∗

)
Un+1 = 1

3

(
Un + 2U∗∗ + 2∆tnL∗∗

)
(2.1)

The right hand side include contributions from all directions simultaneously.

• CHARACTERISTIC TRACING, HANCOCK: they evolve Un according to

Un+1 = Un + ∆tnL(V n+ 1
2 )

where V n+ 1
2 is computed by suitable Taylor expansion. Although the final step is in diver-

gence form, these methods require the primitive formulation of the equations, not yet available
for all modules. They are 2nd order accurate in space and time and less dissipative than the
previous multi-step algorithms. HANCOCK should be combined with linear reconstruction while
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CHARACTERISTIC TRACING which does a more sophisticated characteristic limiting, can be com-
bined with all reconstruction algorithms. The original PPM scheme of [CW84, MM96] is available
for the HD, MHD and RHD modules by selecting TIME STEPPING to CHARACTERISTIC TRACING,
together with RECONSTRUCTION to PARABOLIC and a two-shock Riemann solver (Roe or hlld
alternatively).

This yields the spatially unsplit fully corner-coupled method of [Col90, MPB05]. This scheme is
stable under the condition CFL . 1 (in 2D) and CFL . 1/2 (in 3D) and it is slightly more expensive
than RK2.

Note: If you’ve chosen CHARACTERISTIC TRACING, we recommend to avoid using approximate
Riemann solvers such as hll or tvdlf since the accuracy of the method may reduce to 1st-order
for subsonic motion (see the discussion after Eq. 43 in [SGT+08]).

Multi-step algorithms (RK2, RK3) work in all system of coordinates and are the default choice. Single-
step schemes (HANCOCK, CHARACTERISTIC TRACING) are more sophisticated, have less dissipation
and have been tested mainly on Cartesian and cylindrical grids. Have a look at Table 2.1 for a compari-
son between different (suggested) integration schemes commonly adopted in testing the code.

RECONST. TIME ST. Cost Comments

LINEAR RK2 2Ndim

Default setup. Compatible with almost every algorithms of the
code and work in all system of coordinates and physics modules.
Stable up to CFL . 1/Ndim, where Ndim is the number of di-
mensions.

PARABOLIC,
WENO3,LimO3 RK3 3Ndim

Similar to the previous setup, but it has better stability proper-
ties for higher than 2nd order interpolants. Stable up to CFL .
1/Ndim.

PARABOLIC ChTr 2Ndim

Gives the original Piecewise-Parabolic-Method (PPM) of [CW84].
Suggested for HD, RHD or MHD (with DIVERGENCE CLEANING
or EIGHT WAVES) in Cartesian (1,2,3 dimensions) or cylindrical
geometries. It is stable up to CFL . 1 and it has small dissipa-
tion.

LINEAR
ChTr,
HANCOCK

2Ndim

Yields the Corner-Transport Upwind method of [Col90, Sal94,
MPB05] and [GS05] for the HD/RHD or MHD/RMHD modules
(the RMHD version works only with HANCOCK). It is fully un-
split and stable up to 1 (in 2-D) and ∼ 0.5 in 3D. It is one of the
most sophisticated algorithms available. It is suitable for com-
putations in Cartesian and cylindrical grids in the HD, RHD and
MHD module.

Table 2.1: Suggested algorithm configurations. The cost (3rd column) is given in terms of number of Riemann problems per cell
per step. Ndim is the number of spatial dimensions. ChTr stands for CHARACTERISTIC TRACING.

Time Step Determination. The time step ∆tn is computed using the information available from the
previous integration step and it can be controlled by the Courant-Friedrichs-Lewy (CFL) number Ca
within the limits suggested in Table 2.2, see [Bec92]. If ∆l is the cell physical length, the time step
roughly scales as ∼ ∆l for hyperbolic problems and as ∼ ∆l2 when parabolic terms are included via a
standard explicit scheme (§8.5.1). On the contrary, when parabolic terms are included via STS or RKL
integration (§8.5.2, 8.5.3) the time step can be much larger being computed solely from the advection
time scale (i.e. τd = 0 in the table below).
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SCHEME CFL Limit

RK
∆tn

Ndim

[
max
ijk

(∑
d

|λd|
∆ld

)
+ max

ijk

(∑
d

2τd
∆l2d

)]
= Ca ≤

1

Ndim

HNCK/ChTr ∆tn max
d

[
max
ijk

(
|λd|
∆ld

)
+ max

ijk

(
2τd
∆l2d

)]
= Ca ≤

{
1 in 2D

1/2 in 3D

Table 2.2: CFL conditions used by PLUTO for different explicit time stepping methods. For a given direction d, ∆ld represents
the cell physical length in that direction, λd provides the largest signal speed while τd accounts for diffusion processes. Here HNCK
and ChTr stand for HANCOCK and CHARACTERISTIC TRACING, respectively. These limits are based on a stability analysis on the
constant coefficient advection-diffusion equation by Beckers (1992), [Bec92].

2.1.8 NTRACER

The number of passive scalars or ”colors” (denoted with Qk) obeying simple advection equations of the
form:

∂Qk
∂t

+ v · ∇Qk = 0 ⇐⇒ ∂(ρQk)

∂t
+∇ ·

(
ρQkv

)
= 0 (2.2)

The second form gives the conservative equation and it is the one actually being discretized by the code.
The array index used to access tracer variables (§5.1,§5.3) is TRC for the first tracer, TRC+1 for the second
one and so on. The maximum number is 8.

2.1.9 PARTICLES

Used to enable one of the available particle modules (Ch. 11). Available options are:

• NO: particles are not enabled

• PARTICLES CR: enable the cosmic rays particle module, §11.2;

• PARTICLES LP: enable the lagrangian particle module, §11.4;

• PARTICLES DUST enable the dust grain module, §11.3;

Note that this module works only with the static version of the code.

2.1.10 USER DEF PARAMETERS

Sets the number of user-defined parameters that can be changed at runtime and accessed from any-
where in the code. The explicit numerical value is read at runtime from pluto.ini and can be changed
before execution without re-compiling the code. The parameters are identified by means of a label
corresponding to an index of the global array g inputParam visible anywhere in the program. If,
for instance, USER DEF PARAMETERS has been set equal to 3, you will be prompted to define 3 differ-
ent “labels”, say FOO 1, FOO 2 and FOO 3, as in Fig. 2.2. These names are the integer indexes of the
g inputParam array: g inputParam[FOO 1] will contain the actual value of the first user-defined
parameter, g inputParam[FOO 2] the second one and so forth.

The maximum number is 31 and parameter names should be chosen with care in order to avoid
overlapping conflicts with names that are already defined in the code. Although there are no strict
rules, we strongly advise to use capital letters, to avoid short labels such as “V0” or “VX” and to choose
a more representative name that explains the use of the variable on its own, e.g., PAR INFLOW VEL.

Parameter names (and values) are automatically inserted inside pluto.ini in the correct order after the
execution of the python script. However, if you use a different initialization file than pluto.ini, you may
have to set the parameter names together with their values manually.
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Figure 2.2: User-defined pa-
rameter names are chosen in
this sub-menu.

2.2 Physics-Dependent Options

After the physics module has been selected, further options become available in a following menu.
Depending on the selected physics module, different options may appear. They are described in the
following.

2.2.1 BACKGROUND FIELD [MHD]

If set to YES, the magnetic field is split into a static curl-free contribution and a time dependent deviation.
This option is only available for the MHD module and it is described in detail in §6.2.3.

2.2.2 DIVB CONTROL [MHD, RMHD, ResRMHD]

Numerical methods do not naturally preserve the condition∇·B = 0. For this reason, this option allows
the user to select a control strategy to enforce the∇ ·B = 0 constraint. Possible values are

• NO
divergence constraint is not enforced. Recommended for one-dimensional problems or 2D config-
urations with purely azimuthal fields.

• EIGHT WAVES
magnetic fields retain a cell average representation and the eight wave formulation introduced by
Powell [Pow94] is used, see §6.2.2.1;

• DIV CLEANING
magnetic fields retain a cell average representation and the mixed hyperbolic/parabolic diver-
gence cleaning technique of [DKK+02, MTB10] is used, see §6.2.2.2. A new scalar variable, the
generalized Lagrange multiplier ψ (PSI GLM) is introduced.

• CONSTRAINED TRANSPORT
the magnetic field has a staggered representation and the constrained transport is used, see §6.2.2.3.

2.2.3 EOS

Select the equation of state (EOS):

• IDEAL
use the perfect gas law with constant specific heat ratio. This EOS is available for all physics
module and it is described in §7.2.
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• ISOTHERMAL
use an isothermal equation of state (§7.1). In this case, the energy equation is not included.

• PVTE LAW
allows the user to employ / implement more complex equations of state by specifying the caloric
EOS as e = e(ρ, T ). This EoS works for the HD and MHD module and is described in §7.3.

• TAUB
use the Taub-Matthews equation of state (only for relativistic modules), see §7.4.

Please refer to Chapter 7 for a detailed description.

2.2.4 ENTROPY SWITCH

By enabling this switch (only for the IDEAL or TAUB EOS), the equation of entropy is added to the
system of conservation laws:

∂σc
∂t

+∇ · (σcv) = Sσ (2.3)

where σc = ρσ (for HD or MHD) or σc = Dσ (for relativistic flows), σ is the entropy (e.g., σ = p/ρΓ for the
IDEAL EOS) and Sσ is a source term accounting for dissipative terms in the HD or MHD modules (see
Eq. [3.27] of [BS03]):

Sσ = (Γ− 1)ρ1−Γ

[
∇ · (κ∇T ) + ηJ2 + µΠij

∂vi
∂xj

]
. (2.4)

Equation (2.3) is solved in a conservative way and entropy is essentially treated as a passive scalar. How-
ever, the source term (2.4) is never actually included since the total energy equation is always employed
when adding parabolic terms in a conservative fashion, see the documentation of ParabolicUpdate().
This allows the entropy switch to be used with any of the nonideal terms described in Chapter 8.

The entropy switch acts in a selective way allowing gas pressure to be recovered from either the total
energy or the entropy: {

p = p(E) if Fσ = 0

p = p(σc) if Fσ = 1
(2.5)

Here Fσ tells if a zone has been flagged with FLAG ENTROPY at the beginning of the step and it depends
on the value assigned to ENTROPY SWITCH:

• NO
the entropy equation is not included (Fσ = 0 everywhere);

• SELECTIVE
a selective update is employed. By default, all zones are flagged to be updated using the entropy
equation unless they lie in proximity of a shock wave. Thus for each zone, we evaluate

Fσ =

{
0 if ∇̃ · v < 0 and ‖∇̃p‖/p > εp

1 otherwise,
(2.6)

where ∇̃ is a three-point undivided difference operator and εp sets the shock strength threshold
(see EPS PSHOCK ENTROPY in Appendix C.3). The first criterion acts as shock detector. The im-
plementation can be found in the source file Src/flag shock.c.

Note that by enabling this selective update, neither the total energy nor the entropy will generally
be conserved at the numerical level.

• ALWAYS
the entropy equation is used everywhere in the computational domain to update the solution
array, i.e., Fσ = 1 always in Eq. (2.5). This choice is consistent only with smooth flows (no shocks).
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• CHOMBO REGRID
the energy equation is used everywhere in the computational domain, that is, Fσ = 0 in Eq. (2.5).
However, pressure is still computed from entropy after projection, coarse-to-fine prolongation and
restriction operations (AMR only). This option violates energy conservation but has the advantage
of preserving entropy and pressure positivity in those situations where kinetic and/or magnetic
energies are the dominant contributions to the total energy density.

The ENTROPY SWITCH is also compatible with super-time-stepping although it will only be used
during the hydro steps.

2.2.5 HALL MHD [MHD]

This option is available only for the MHD module. It enables Hall MHD terms, see §8.1 and the available
options are

• NO: Hall effects are not not included;

• EXPLICIT: Hall effects are included using explicit time stepping, see §8.5.1;

2.2.6 RESISTIVITY [MHD]

Include resistive terms in the MHD equations, see §8.2. The available options are

• NO: resistivity is not included;

• EXPLICIT: resistivity is included explicitly, §8.5.1;

• SUPER TIME STEPPING: resistivity is treated using super-time-stepping, §8.5.2.

• RK LEGENDRE: resistivity is treated using RK-Legendre, §8.5.3.

2.2.7 ROTATING FRAME [HD, MHD]

When set to YES, it solves the equations in a frame of reference rotating with constant angular velocity
Ωz around the vertical polar axis z. This feature should be enabled only when GEOMETRY is one of
CYLINDRICAL, POLAR or SPHERICAL. The value of Ωz is specified using the global variable g OmegaZ
inside your Init() function. The discretization of the angular momentum and energy equations is
then done in a conservative fashion [Kle98, MFS+12]. For example, in polar geometry, we solve

∂

∂t
(ρvR) +∇ · (ρvRv) +

∂p

∂R
=

ρ(vφ + wφ)2

R

∂

∂t

[
ρ(vφ + wφ)

]
+∇R · [ρ(vφ + wφ)v] +

1

R

∂p

∂φ
= 0

∂

∂t

(
E +

w2
φ

2
ρ+ wφρvφ

)
+∇ ·

[
FE + pwφ̂+

w2
φ

2
ρv + wφρvφv

]
= 0

(2.7)

where wφ = RΩz , R is the cylindrical radius and FE is the standard energy flux and body force terms
have been omitted only for the sake of exposition. The additional terms under temporal derivatives
are replaced, in the code, with the corresponding flux divergence terms only during the r sweep. The
pressure term inside the divergence of the energy equation cancels with the w∂φp/R term coming from
the temporal derivative.

Note that the source term in the radial component of the momentum equation implicitly contains
the Coriolis force and centrifugal terms:

ρ(vφ + wφ)2

R
=
ρv2
φ

R
+ 2ρvφΩz + ρΩ2

zR (2.8)

On the other hand, the azimuthal component of the Coriolis force has been incorporated directly into the
fluxes using the conservation form. An example of such a configuration in polar or spherical geometry
may be found in the directory Test Problems/HD/Disk Planet.
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2.2.8 THERMAL CONDUCTION [HD, MHD]

Include thermal conduction effects, see §8.3. The available options are

• NO: thermal condution is not included;

• EXPLICIT: thermal conduction is treated explicitly, §8.5.1;

• SUPER TIME STEPPING: thermal conduction is treated using super-time-stepping, §8.5.2.

• RK LEGENDRE: thermal conduction is treated using RK-Legendre, §8.5.3.

2.2.9 VISCOSITY [HD, MHD]

Include viscous terms, see §8.4. Options are

• NO: viscous terms are not included;

• EXPLICIT: viscosity is treated explicitly, §8.5.1;

• SUPER TIME STEPPING: viscosity is treated using super-time-stepping, §8.5.2.

• RK LEGENDRE: viscosity is treated using RK-Legendre, §8.5.3.

See §8.4 for details.

2.3 User-defined Constants

In addition to the options described so far, the user can insert an arbitrary number of user-defined
symbolic constants (macros) in the header file definitions.h. This should be done manually in the section
delimited by� �
/* [Beg] user-defined constants (do not change this line) */

/* [End] user-defined constants (do not change this line) */
� �
of this file. Only lines beginning with #define should appear in this section as they will not be changed
by the python script. The value of a symbolic constant can be either a number or another symbolic
constant previously defined by the code (e.g. YES or NO) and cannot be changed at runtime.

User-defined symbolic constants are useful in the following circumstances:

1. Conditional compilation: useful when your initial configuration contains computationally expen-
sive code blocks that should be compiled separately. As an example, define (in your definitions.h)
the symbolic constant name as SETUP VERSION and give it the value of 0 or 1:� �
/* [Beg] user-defined constants (do not change this line) */

#define SETUP_VERSION 1

/* [End] user-defined constants (do not change this line) */
� �
This symbolic macro name can then be used inside init.c (or any other source file) for conditional
compilation:� �
#if SETUP_VERSION == 0
{

/* implements version 0... */
}
#elif SETUP_VERSION == 1
{

/* implements version 1... */
}
#endif
� �
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2. Advanced options (expert users): override the default value of special constant macros used through-
out the code, a comprehensive list of which is given in Appendix C.3. This gives the user more
control on the code and it avoids copying and modifying source files in the local working directory.

A simple example is given by configuration #04 in the Test Problems/MHD/Rayleigh Taylor/ problem
where the symbolic constants� �
/* [Beg] user-defined constants (do not change this line) */

#define USE_RANDOM_PERTURBATION NO
#define CHOMBO_REF_VAR RHO

/* [End] user-defined constants (do not change this line) */
� �
are be used in init.c to enable/disable a random perturbation and to tell PLUTO-Chombo that density
must be used as the refinement variable. Another typical example is provided by the CGS physical units
described §5.1.1.



3. Makefile Selection: makefile

The makefile contains instructions to compile and link C source code files and produce the executable
pluto. The Python script creates a new makefile every time you choose Change makefile from the
menu; otherwise, it automatically updates the existing one after you have finished the problem setup.

If you choose to create a new makefile, Python will ask you to select an appropriate .defs file con-
taining architecture-dependent flags from the Config/ directory. The template Config/Template.defs can
be used to create a new configuration from scratch.

The simplest example is a definition file for a single-processor without any additional library. In this
case it suffices to set:� �
CC = cc
CFLAGS = -c -O
LDFLAGS = -lm

PARALLEL = FALSE # TRUE/FALSE: enable/disable parallel mode
USE_HDF5 = FALSE # TRUE/FALSE: enable/disable support for HDF5 library
USE_PNG = FALSE # TRUE/FLASE: enable/disable support ofr PNG library
� �
where CC is the name of your C compiler (cc, gcc, mpicc, etc...), CFLAGS are command line options
(such as optimization, search path, etc...) and LDFLAGS contains options to be passed to the linker.

The variables PARALLEL, USE HDF5 and USE PNG can be set to either TRUE or FALSE to enable or
disable parallel mode, support for HDF5 library and support for PNG library respectively in the static
grid version of PLUTO . When set to TRUE the same variable name is passed to PLUTO as a #define
directive with value 1.

As an example, if USE HDF5 is set to TRUE inside a .defs file then any C source file containing instruc-
tions inside a preprocessor directive #ifdef USE HDF5 ... #endif statement will be compiled.

Note: These switches are effective only in the static grid version of the code and have no effect
when creating a PLUTO-Chombo makefile, §13.2.

3.1 MPI Library (Parallel) Support

Parallel executables for the static grid version of PLUTO are created by specifying the name of the MPI
C compiler (e.g. mpicc) and by setting the makefile variable PARALLEL to TRUE in your .defs file:� �
CC = mpicc # or similar
...

PARALLEL = TRUE
...

###############################
# MPI additional spefications
###############################

ifeq ($(strip $(PARALLEL)), TRUE)
endif
� �
In this case, you may also modify existing variables or add new ones inside the conditional statement
beginning with ifeq. When parallel mode is enabled, C source code sections that are specific to MPI
should be enclosed inside #ifdef PARALLEL ... #endif statements.

27
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3.2 HDF5 Library Support

If your system is already configured with serial or parallel HDF5 libraries, you may enable support
for HDF5 I/O in the static grid version of PLUTO by turning the makefile variable USE HDF5 to TRUE
inside your .defs file. If you do not have HDF5 installed, you may follow the installation guidelines
given in §13.1.1. Note that the same HDF5 library can be used for both the static and AMR versions of
PLUTO although support for HDF5 in the AMR version is enabled differently, see §13.1.2.

Once USE HDF5 has been set to TRUE, add the HDF5 library path to the list of directories to be
searched for header files as well as the corresponding linker option for HDF5 library files. Note that
different pathnames should be given if you are building PLUTO in serial or parallel mode. These infor-
mation are supplied using the INCLUDE DIRS and LDFLAGS variables, respectively:� �
...
USE_HDF5 = TRUE
...

###############################
# HDF5 library options
###############################

ifeq ($(strip $(USE_HDF5)), TRUE)
HDF5_LIB = /usr/local/lib/HDF5-1.xx
INCLUDE_DIRS += -I$(HDF5_LIB)/include
LDFLAGS += -L$(HDF5_LIB)/lib -lhdf5 -lz

endif
� �
Note: PLUTO uses the HDF5 1.6 API although it may be linked with HDF5 1.8.x without any
problem since the H5 USE 16 API macro (defined in hdf5 io.c) forces the library to use HDF5 1.6
macro definitions.

3.3 PNG Library Support

Whenever the portable network graphics (PNG) library is installed on your system, you may enable
support for 2D output using PNG color images. To do so, simply set to TRUE the corresponding USE PNG
variable inside your .defs file and add the linker option to the LDFLAGS variable:� �
...
USE_PNG = TRUE
...

###############################
# PNG library options
###############################

ifeq ($(USE_PNG), TRUE)
LDFLAGS += -lpng

endif
� �
3.4 Including Additional Files: local make

Additional (e.g. user defined) files may be added to the standard object list created by Python in your
makefile. To this end, create a new file named local make like:� �
OBJ += myfile.o
HEADERS += myheader.h
� �
This will instruct make that PLUTO has to be compiled and linked together with the (user-supplied) file
myfile.c which depends on myheader.h. This is particularly useful when the user wants to compile and
link the code together with supplementary routines contained in external files.



4. Runtime initialization file: pluto.ini

At start-up, the code checks for the pluto.ini input file (or a different one if the -i command flag is
given) that contains all the runtime information necessary for the computation. The initialization file
controls several options used by the code at runtime, such as grid generation, CFL number, boundary
conditions, output type and so forth. A template for this file can be found in the Src/Templates directory.
The initialization file is divided into different “blocks” enclosed by a pair of square brackets

[
· · ·
]
. Each

block contains a set of labels and corresponding mandatory or optional fields:� �
[Block]

label ... fields ...
label ... fields ...
label ... fields ...
� �

Tag labels on the left side identify appropriate field(s) following on the same line and must not be
changed.

There’re in total 9 blocks:

• [Grid]: controls grid generation;

• [Chombo Refinement]: Chombo amr specific options;

• [Time]: time-stepping options;

• [Solver]: select the Riemann solver(s);

• [Boundary]: used to specify boundary conditions;

• [Static Grid Output]: controls output in the static grid version of PLUTO ;

• [Chombo HDF5 output]: controls output in the AMR version of PLUTO ;

• [Particles]: particle-related options (mainly output);

• [Parameters]: used to provide user-defined input parameters;

Block ordering is irrelevant. Runtime parameters can be accessed anywhere in the code through the
members of the Runtime structure, (see Doc/Doxygen/html/structs 8h.html) using the function RuntimeGet(),
e.g.� �
cfl = RuntimeGet()->cfl; /* Obtain the cfl number */
char fname[64];
sprintf (fname,"%s/mydata.dat",RuntimeGet()->output_dir); /* Prepend output dir to file name */
� �

The quantities (and related data-types) read from the file are now described.

29
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4.1 The [Grid] block� �
[Grid]

X1-grid 1 0.0 100 u 1.0
X2-grid 1 0.0 100 u 1.0
X3-grid 1 0.0 1 u 1.0
� �

In the static version of PLUTO , it defines the physical domain and generates the whole computation
mesh while in the AMR version is used to specify the base grid, corresponding to level 0.

• X1-grid (int) (double) (int) (char) (...) (double);

• X2-grid (int) (double) (int) (char) (...) (double);

• X3-grid (int) (double) (int) (char) (...) (double);

For each dimension: the first (int) defines the number of non-overlapping, adjacent one-dimensional
grid patches making up the computational domain (Note: this has nothing to do with parallel decom-
position which is separately carried out by MPI).

If, say, a uniform grid covers the whole physical domain this number should be set to 1. If two
consecutive adjacent grids are used, then 2 is the correct choice and so on. For each patch, the triplet
(double) (int) (char) specifies, respectively, the leftmost node coordinate value, number of points and
grid type for that patch; there must be as many triplets (...) as the number of patches. Since patches do
not overlap, the rightmost node value of one grid defines the leftmost node value of the next adjacent
one. The last (double) specify the rightmost node coordinate value of the last segment, which is also
the rightmost node value in that direction. If a dimension is ignored, then 1 grid-point only should be
assigned to that grid.

The global domain therefore extends, in each direction, from the first (double) node coordinate to
the last (double) node coordinate. These values can be accessed from anywhere in the code using
the global variables g domBeg[d] and g domEnd[d], where d=IDIR,JDIR,KDIR is used to select the
direction.

The grid-type (char) entry can take the following values:

• u or uniform: A uniform grid patch is constructed; if xL and xR are the leftmost and rightmost
point of the patch, the grid spacing becomes:

∆x =
xR − xL

N

• s or stretched: a stretched grid is generated. Stretched grids can be used only if at least one
uniform grid is present. The stretching ratio r is computed as follows:

∆x
(
r + r2 + · · ·+ rN

)
= xR − xL =⇒ r

1− rN

1− r
=
xR − xL

∆x

where ∆x is taken from the closest uniform grid, N is the number of points in the stretched grid
and xL and xR are the leftmost and rightmost points of the patch.

• l±: a logarithmic grid is generated. When l+ is invoked, the mesh size is increasing with the
coordinate:

∆xi =
(
xi− 1

2
+ |xL| − xL

)
(10∆ξ − 1) , ∆ξ =

1

N
log10

(
xR + |xL| − xL

|xL|

)
when l- is invoked, the mesh size decreases with the coordinate:

∆xi =
(
xi− 1

2
− |xL| − xR

)
(10∆ξ − 1) , ∆ξ = − 1

N
log10

(
xR + |xL| − xL

|xL|

)
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In practice, the mesh spacing in the l+ grid is obtained by reversing the spacing in the l- grid.

Note: The interval should not include the origin when using a logarithmic grid.

In CYLINDRICAL or SPHERICAL coordinates, a radial logarithmic grid has the advantage of pre-
serving the cell aspect ratio at any distance from the origin. In addition, the condition to obtain
approximately squared cells (aspect ratio ≈ 1) is ∆r1 ≈ r1∆φ where ∆r1 = rL

(
e∆ξ − 1

)
is the

radial spacing of the first active computational zone. This condition can be be used to determine
either the number of points in the radial direction or the endpoint:

log10

rR
rL

= Nr log10

2 + ∆φ

2−∆φ
.

Beware that non-uniform grids may introduce extra dissipation in the algorithm. Changes in the grid
spacing are correctly accounted for when RECONSTRUCTION is set to either LINEAR, PARABOLIC or
WENO3.

Example # 1: A simple uniform grid extending from xL = 0.0 to xR = 10.0 with 128 zones can be
specified using:

X1-grid 1 0.0 128 u 10.0

Example # 2: consider a one-dimensional physical domain extending from 0.0 to 10.0 with a total
of 18 zones, but a finer grid is required for 0 ≤ x ≤ 3. Then one might specify

X1-grid 2 0.0 12 u 3.0 6 s 10.0

which generates a uniform grid with 12 zones for 0 ≤ x ≤ 3, and a stretched grid with 6 zones for
3 ≤ x ≤ 10, see Fig.4.1

6 zones (s)

x=0 x=3

12 zones (u)

18 zones 

x=10 Figure 4.1: Example of one
dimensional grid with a uni-
form (left) and stretched seg-
ment (right in red) covering the
interval [0, 10].

When the computational grid is generated, each processor owns a domain portion defined by the
global integer variables IBEG ≤ i ≤ IEND, JBEG ≤ j ≤ JEND and KBEG ≤ k ≤ KEND. Ghost cells are
added outside the local computational domain to complete the stencil at the boundaries, see Fig. 4.2.
The global variables NX1, NX2 and NX3 define the total number of points (boundaries excluded) such
that IEND - IBEG + 1 = NX1, JEND - JBEG + 1 = NX2, KEND - KBEG + 1 = NX3. The total
number of zones (for a given processor, boundaries included) is given by the global variables NX1 TOT,
NX2 TOT and NX3 TOT, see Fig. 4.2.

However, the cell aspect ratio can be different from unity, that is, rectangular cells are allowed. The
grid type u, s or l± is ignored and a uniform grid is always assumed unless the CHOMBO LOGR switch
is enabled to generate a logarithmic radial grid, see Appendix C.3. Cells must not necessarily have the
same physical length in each direction (e.g., squares in 2D, cubes in 3D) and can have an aspect ratio
different from 1. The refinement options are set in the Chombo Refinement section, §4.2.
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i

NX1_TOT

NX1

N
X

2

N
X

2
_
T

O
T

JEND
IEND,

JBEG
IBEG,

j

Figure 4.2: Computational grid in 2 dimensions with
NX1 = NX2 = 4 and 1 ghost zone. Internal zones (solid
boxed) are spanned by IBEG ≤ i ≤ IEND, JBEG ≤ j ≤
JEND. Dashed boxes represent boundary ghost zones.

4.2 The [Chombo Refinement] Block
� �
[Chombo Refinement]

Levels 4
Ref_ratio 2 2 2 2 2
Regrid_interval 2 2 2 2
Refine_thresh 0.3
Tag_buffer_size 3
Block_factor 4
Max_grid_size 32
Fill_ratio 0.75
� �

Controls the grid refinement if PLUTO has been compiled with the Chombo library, §13. It is ignored
otherwise. The relevant parameters for refinement are

• Levels (int)
Sets the finest allowable refinement level, starting from the base grid (level 0) defined by the [Grid]
block. 0 means there will be no refinement.

• Ref ratio (int) (int) (...)
Sets the refinement ratios between all levels. First number is ratio between levels 0 and 1, second
is between levels 1 and 2, etc. There must be at least Levels+1 elements or an error will result.

• Regrid interval (int) (int) (...)
Sets the number of timesteps to compute between regridding. A negative value means there will
be no regridding. There must be at least Levels elements or an error will result.

• Refine thresh (double)
Sets the threshold value χr above which cells are tagged for refinement during the grid generation
process, see §13.3. When χ(U) > χr = Refine thresh, the cell is tagged to be refined.

• Tag buffer size (int)
Sets the amount by which to grow tags (as a safety factor) before passing to MeshRefine.

• Block factor (int)
Sets the number of times that grids will be coarsenable by a factor of 2. A higher number produces
”blockier” grids.

• Max grid size (int)
Sets the largest allowable size of a grid in any direction. Any boxes larger than that will be split
up to satisfy this constraint.
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• Fill ratio (double)
A real number between 0 and 1 used to set the efficiency of the grid generation process. Lower
number means that more extra cells which are not tagged for refinement wind up being refined
along with tagged cells. The tradeoff is that higher fill ratios lead to more complicated grids,
and the extra coarse-fine interface work may outweigh the savings due to the reduced number of
fine-level cells.

4.3 The [Time] Block� �
[Time]

CFL 0.4
CFL_max_var 1.1
CFL_par 0.3 # optional
rmax_par 40.0 # optional
tstop 1.0
tfreeze 1.0 # optional
first_dt 1.e-4
� �

This section specifies some adjustable time-marching parameters:

• CFL (double)
Courant number: it controls the time step length and, in general, it must be less than 1. The
actual limit can be inferred from Table 2.2. In the case of unsplit Runge-Kutta time stepping, for
instance, CFL . 1/Ndim where Ndim is the number of spatial dimensions. Certain combinations
of algorithms may have more stringent limitations: a second-order Runge-Kutta algorithm with
parabolic reconstruction, for example, requires CFL . 0.4 for stability reasons.

• CFL max var (double)
Maximum value allowed for ∆tn/∆tn−1 (maximum time step growth between two consecutive
steps).

• CFL par (double) [optional]
When parabolic terms are integrated using operator splitting (with Super-Time-Stepping, §8.5.2),
it controls the diffusion Courant number. The default value is 0.8/Ndim. This parameter has no
effect when parabolic terms are included via standard explicit integration.

• rmax par (double) [optional]
When parabolic terms are integrated using operator splitting (with STS), it sets the maximum
ratio between the actual time step and the explicit parabolic time step (i.e. ∆tn/∆tnpar). The default
value is 100. This parameter has no effect when parabolic terms are included via standard explicit
integration.

• tstop (double)
Integration ends when t = tstop, unless a maximum number of steps (§1.4) is given. tstop has
to be > 0.0.

• tfreeze (double) [optional]

Skip integration of fluid quantities when t > tfreeze. However, particles can still be integrated
after this time. The default value is tfreeze = tstop+1.

• first dt (double)
The initial time step. A typical value is 10−6.
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HD RHD MHD RMHD ResRMHD RadRMHD

two shock
√ √

- - - -

roe
√

-
√

- - -

ausm+
√

- - - - -

hlld - -
√ √

- -

mhllc - - - -
√

-

hllc
√ √ √ √

-
√

gforce - -
√ √

-

hll
√ √ √ √

-
√

tvdlf
√ √ √ √ √ √

Table 4.1: Available Riemann solvers for the different physics modules.

4.4 The [Solver] Block� �
[Solver]

Solver tvdlf
RadSolver hll
� �
• Solver (string)

Sets the Riemann solver for flux computation. From the most accurate (i.e. least diffusive) to the
least accurate (i.e. most diffusive):

– two shock: The Riemann problem is solved exactly or approximately (depending on the
particular solver implemented for a given physics module) at every interface; this is usually
more accurate, but computationally intensive. See [CW84] for the HD module, and [MB05]
for the relativistic hydro equations;

– roe: Linearized Roe Riemann solver based on characteristic decomposition of the Roe matrix,
[Roe81].

– ausm+: Advection Upstream Splitting Method of [Lio96] (only for the HD module);
– hlld: The hlld approximate Riemann solver of [MK05] (for the adiabatic case), [Mig07] (for

the isothermal case) and [MUB09] for the relativistic MHD equations;
– hllc: Harten, Lax, Van Leer approximate Riemann Solver that restores with the middle con-

tact discontinuity;
– gforce: The Generalize FORCE scheme by [TT06], where the intercell numerical flux is ob-

tained from a weighted average of the Lax-Friedrichs (LF) and Lax-Wendroff (LW) fluxes;

F̂ = ωgF
LW + (1− ωg)FLF . (4.1)

If not specified ωg = GFORCE OMEGA= 1/(1 + CFL) by default. Otherwise, you may define a
different value of GFORCE OMEGA in your definitions.h.

– hll: Harten, Lax, Van Leer approximate Riemann Solver;
– tvdlf: A simple Lax-Friedrichs scheme is used.

Note that not all solvers are available for a given physics module, see Table 4.1. We warn the user
that, under some circumstances (high Mach number flows, low density plasmas), more diffusive
solvers such as HLL or TVDLF turn out to be more robust than accurate solvers. This may be used
to prevent the occurrence of negative pressures / densities, see §A. However, hybrid/adaptive
strategies can be turned on when SHOCK FLATTENING is set to MULTID, §C.3.
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• RadSolver (string)
Sets the Riemann solver for flux computation of radiation fields if the RadRMHD module is used
(see §10.3). From the most accurate (i.e. least diffusive) to the least accurate (i.e. most diffusive):

– hllc: Harten, Lax, Van Leer approximate Riemann Solver by [MM19] including a middle
contact discontinuity;

– hll: Harten, Lax, Van Leer approximate Riemann Solver by [GAH07];

– tvdlf: A simple Lax-Friedrichs scheme is used.

4.5 The [Boundary] Block
� �
[Boundary]

X1-beg outflow
X1-end outflow
X2-beg outflow
X2-end outflow
X3-beg outflow
X3-end outflow
� �

Specifies the boundary conditions to be applied in the ghost zones of the computational domain:

• X1-beg (string)

• X1-end (string)

• X2-beg (string)

• X2-end (string)

• X3-beg (string)

• X3-end (string)

Assuming that q is a scalar quantity and n is the coordinate direction orthogonal to the boundary
plane, string can be one of the following:

- axisymmetric
Same as reflective, except for the angular component of vφ or Bφ which also changes sign:

q → q ,

{
vn → −vn
Bn → −Bn

,

{
vφ → −vφ
Bφ → −Bφ

,

{
vaxis → vaxis

Baxis → Baxis

where axis is (r = 0, z) or (r, θ = 0) in cylindrical or spherical coordinates.

- eqtsymmetric
Sets equatorial symmetry with respect to a given plane. It is similar to reflective, but with
reversed sign for the magnetic field:

q → q ,

{
vn → −vn
Bn → Bn

,

{
vt → vt

Bt → −Bt

- outflow

Sets zero gradient across the boundary:
∂q

∂n
= 0 ,

∂v

∂n
= 0 ,

∂B

∂n
= 0
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- reflective
Reflective (rigid walls) boundary conditions. Variables are symmetrized across the boundary and
normal components of vector fields flip signs,

q → q ,

{
vn → −vn
Bn → −Bn

,

{
vt → vt

Bt → Bt

where n (t) is normal (tangential) to the interface.

- periodic
Sets periodic boundary conditions on both sides of the computational domain.

- polaraxis
Set boundary conditions across a pole or an axis. Used at R = 0 in polar coordinates or at θ → 0, π
in spherical coordinates. Values in the ghost zones are simply copied from the active zones after a
rotation of π around the pole. Velocity components (except the parallel one) reverse sign. This b.c.
can be used in conjunction with the ring average technique [ZSL+19] to remove the severe time
step restriction near a singular axis, see “RING AVERAGE” in table C.1. Note: parallelization in not
possible in the azimuthal direction with this b.c.

- shearingbox
Shearingbox boundary conditions are similar to periodic, except that they are sheared in one di-
rection (only X1-beg and X1-end support this type at this moment). This particular boundary
condition can be used only if the ShearingBox module (described in §10.1) is enabled.

- userdef
User-supplied boundary conditions (it requires coding your own boundary conditions in the func-
tion UserDefBoundary() in init.c, see §5.3).

Like the [Grid] block, you should include the x3 boundaries for 2D runs, even if they will not be consid-
ered.

4.6 The [Static Grid Output] Block
� �
[Static Grid Output]

uservar 0
output_dir ./ # optional
dbl 1.0 -1 single_file
flt -1.0 -1 single_file
vtk -1.0 -1 single_file # optional
dbl.h5 1.0 2.40h # optional
flt.h5 1.0 -1 # optional
tab -1.0 -1 # optional
ppm -1.0 -1 # optional
png -1.0 -1 # optional
log_dir ./Log_Files # optional
log 1
analysis -1.0 -1 # optional
� �

This block controls the output options in the static grid version of the code. Output files are written
at specific times in a specific directory (local working directory by default) using different file formats,
described in Chapter 12. The available fields are:

• uservar (int) (string1 string2 ...)
Defines supplementary variables to be written to disk in any of the format described below. The
first integer represents the number of supplementary variables. When greater than zero, it must
be followed by as many variable names separated by spaces, see Chapter 12.
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• output dir (string)
Sets the directory name for writing and reading simulation data. The directory must already ex-
ist at runtime or an error will occur. When writing, any of the data formats available below and
the corresponding .out log files will be written in the directory specified by output dir. In par-
allel, processor log files will also be written to the same directory unless log dir (see below)
is explicitly set to a different value. When reading (during restarts), .dbl or .dbl.h5 files and the
corresponding *.out must be present in this directory or an error will occur.

If output dir is not specified, the directory from which pluto is executed is assumed.

• dbl (double) (int/string) (string)
Assigns the output intervals for double precision (8 bytes) binary data. A negative value sup-
presses output with this format.

– The first field (double) specifies the time interval (in code units) between consecutive out-
puts.

– The second field can be an int giving the number of steps between consecutive outputs or
a string giving the wall-clock time between consecutive outputs. A value, for instance, of
2.40h tells PLUTO to write one .dbl file every two hours and 40 minutes. Negative values
will be ignored for this control parameter.

– The last field (string) can be either single file (one single output file per time step con-
taining all of the variables) or multiple files (different variables are written to different
files).

Double-precision format files can be used to restart the code using the -restart n command
line argument.

• flt (double) (int/string) (string) [cgs]
Like dbl, but for single-precision (4 bytes) data files. The last value (cgs) is optional and can be
given to save datafiles directly in cgs physical units rather than in code units.

• vtk (double) (int/string) (string) [cgs]
Like flt, but for VTK legacy file format, see §12.1.3.

• dbl.h5 (double) (int/string)
Like dbl, but for hdf5 double-precision format §12.1.2. This format can also be used for restarting
the code by supplying the -h5restart n command line argument.

• flt.h5 (double) (int/string)
Like dbl but for hdf5 single-precision format §12.1.2;

• tab (double) (int/string)
Sets the time and the number of steps interval for tabulated ascii format, §12.1.4;

• ppm (double) (int/string)
Sets time and the number of step intervals for 2D color images in PPM format, §12.1.5;

• png (double) (int/string)
Sets time and the number of step intervals for 2D color images in PNG format §12.1.5;

• log dir (string)
The name of the directory where output log files will be written. The directory must already be
present at runtime. If not specified, the value of output dir is used by default.

• log (int)
Sets how often (in number of steps) the log file should be dumped to screen (in serial mode) or to
disk (in parallel).

• analysis (double) (int)
Sets time and number of steps interval between consecutive calls to the function Analysis(), see
5.5.
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4.7 The [Chombo HDF5 output] Block
� �
[Chombo HDF5 output]

Output_dir ./ # optional
Checkpoint_interval -1.0 0
Plot_interval 1.0 0
� �

Relevant only for AMR-Pluto with the Chombo library (§13), this block controls how often restart
and plot files are dumped to disk in the AMR version of the code. The relevant options are:

• Output dir (string)
Sets the output directory name for writing and reading simulation data. Both plotfiles and check-
point files will be written to and read from this directory. If Output dir is omitted, the current
directory is used. Not to be confused with output dir in §4.6.

• Checkpoint interval (double) (int/string)
Assigns the output interval(s) for checkpoint (restart) files.

– The first field (double) can be used to set the time interval (or period) in code units.

– The second field can be either an int or a string.
An int value determines the number of steps between consecutive outputs.
Alternatively, a string value can be used to set the wall-clock time between successive out-
puts: a value of 3.55h, for instance, means that a checkpoint file is saved every 3 hours and
55 minutes.

Checkpoints files contain conservative variables.

• Plot interval (double) (int)
Sets the output frequency for plot (data) files. The meaning of the fields is the same used for
Checkpoint interval except that no wall-clock interval is permitted. Output files are stored
using the HDF5 file format and numbered as data.nnnn.hdf5 where n is a zero-padded, sequentially
increasing integer. Data files contain primitive variables.

Note that a negative number means that checkpoint- or plot-files are never written, 0 means that
checkpoint files are written before the initial timestep and after the final one.

4.8 The [Particles] Block� �
[Particles]

Nparticles 8 -1
particles_dbl -1.0 5.59h
particles_flt -0.4 -1
particles_vtk 15.0 -1
particles_tab -1.0 -1
� �

The particles block is used to provide relevant information for the particle module (see Chapter 11)
used at runtime. Additional information describing the datafile formats are given in §11.5. The available
fields, mostly controlling output, are:

• Nparticles (int) (int)
Specifies the number of particles used at initialization.

– when positive, the first integer sets the total number of particles in the global computational
domain;

– when positive, the second integer specifies the number of particles per cell.

More details can be found in §11.1.1. Note that only one of the two initialization is possible and
thus one of the two integers must be always negative.
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• particles dbl (double) (int/string)
Controls output intervals for double precision particle datafiles. The two fields have the same
meaning used in the [Static Grid Output] block:

– The first field (double) specifies the time interval (in code units) between consecutive outputs.

– The second field can be an integer giving the number of steps between consecutive outputs
or a string giving the wall-clock time between consecutive outputs. A value, for instance, of
5.50h tells PLUTO to write one .dbl file every five hours and 50 minutes.

Negative values will suppress the option.

• particles flt (double) (int/string)
Same as dbl, but for single precision data files.

• particles vtk (double) (int/string)
Same as dbl, but for VTK legacy format.

• particles tab (double) (int/string)
Same as dbl, but for tabulated (ASCII) format (serial only).

4.9 The [Parameters] Block� �
[Parameters]

SCRH 0
� �
• PAR NAME 1 (double)

• ...

• PAR NAME n (double)

User-defined parameter values are read at runtime in this section. The labels on the left identify the
parameter labels (i.e. the corresponding indices of the array g inputParam) while the (double) values
on the right are the actual user-defined parameter values. The number of parameters specified in this
section must exactly match the number and the order given in definitions.h



5. Initial and Boundary Conditions

The source file init.c provides a set of functions that are used to set the fluid configuration for your own
specific problem. These include:

• Init(): sets (fluid) initial conditions locally, as functions of the spatial coordinates x1, x2, x3;

• InitDomain(): sets initial conditions by looping over the computational domain;

• UserDefBoundary(): sets user-defined boundary conditions at the physical boundary sides of
your computational domain if necessary;

• Analysis(): run-time data analysis and reduction;

• BodyForceVector(), BodyForcePotential(): define, respectively, the vector components
of the acceleration vector and/or the gravitational potential.

• BackgroundField(): sets a background, force-free magnetic field.

The init.c must be part of your local working directory and a template can be found in Src/Tem-
plates/init.c. Functions are described in the next sections. Note that, if you’re using the particle module,
initial conditions must be supplied using a different function, see Chapter 11.

5.1 Inital Conditions: the Init() function

The Init() function is used to assign the initial condition as a function of the spatial coordinates.

Syntax:

void Init (double *v, double x1, double x2, double x2)

Arguments:

• v: a pointer to a vector of primitive quantities. A particular variable is located by means of an
index: ρ =v[RHO], vx =v[VX1], vy =v[VX2] ... and so forth. Although VX1, VX2 and VX3
should be used in any coordinate system, in order to avoid confusion, an alternative set may be
adopted if the geometry is not Cartesian, see columns 2-4 in Table 5.1.

Temperature (in Kelvin) can also be used to initialize density or pressure, see §5.1.2.

• x1,x2,x3: coordinates x1, x2, x3 of the computational cell where v is initialized;

Example #1:

The following code sets a disk with radius 1 centered around the origin in a 2D Cartesian domain.
The flow is stationary and the disk has higher density and pressure (ρ = 10, p = 30) with respect
to the background state (ρ = 1, p = 1):

40
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� �
void Init (double *v, double x1, double x2, double x3)
{

double r;

r = sqrt(x1*x1 + x2*x2);
v[VX1] = v[VX2] = 0.0;
if (r < 1.0){
v[RHO] = 10.0;
v[PRS] = 30.0;

}else{
v[RHO] = 1.0;
v[PRS] = 1.0;

}
}
� �
With a small modification, the same initial condition can be written in a dimension-independent
way (e.g. a line in 1D, a disk in 2D and a sphere in 3D):� �
void Init (double *v, double x1, double x2, double x3)
{

double r2,r;

r2 = DIM_EXPAND(x1*x1, + x2*x2, + x3*x3);
r = sqrt(r2);
v[VX1] = 0.0;
v[VX2] = 0.0;
v[VX3] = 0.0;

if (r < 1.0){
v[RHO] = 10.0;
v[PRS] = 30.0;

}else{
v[RHO] = 1.0;
v[PRS] = 1.0;

}
}
� �
The macro DIM EXPAND(a,b,c) is used to write dimension-independent code by conditionally
compiling one, two or three comma-separated arguments on the value taken by DIMENSIONS.
Function-like macro are documented in the file macro.h of the API reference guide, see ./Doc/Doxy-
gen/html/macros 8h.html.

Index Cylindrical Polar Spherical Quantity Physics Module

RHO - - - density ALL

VX1 iVR iVR iVR x1-velocity ALL

VX2 iVZ iVPHI iVTH x2-velocity ALL

VX3 iVPHI iVZ iVPHI x3-velocity ALL

PRS - - - (thermal) pressure ALL

BX1 iBR iBR iBR x1 cell-centered magnetic field MHD, RMHD

BX2 iBZ iBPHI iBTH x2 cell-centered magnetic field MHD, RMHD

BX3 iBPHI iBZ iBPHI x3 cell-centered magnetic field MHD, RMHD

BX1s iBRs iBRs iBRs x1 staggered magnetic field MHD, RMHD

BX2s iBZs iBPHIs iBTHs x2 staggered magnetic field MHD, RMHD

BX3s iBPHIs iBZs iBPHIs x3 staggered magnetic field MHD, RMHD

TRC - - - tracer (passive scalar, Q) ALL

Table 5.1: Array indices used for labeling primitive variables. Staggered components (“s” suffix) are used only for magnetic
fields in the boundary conditions, see §6.2.2.3.



CHAPTER 5. INITIAL AND BOUNDARY CONDITIONS 42

5.1.1 Units and Dimensions

In general, PLUTO works with non-dimensional (or “code”) units so that flow quantities can be properly
scaled to “reasonable” numbers. Although it is possible, in principle, to work directly in c.g.s. units (i.e.
cm, sec and gr), we strongly recommend to scale all quantities to non-dimensional units, in order to
avoid occurrences of extremely small (. 10−9) or large (& 1012) numbers that may be misinterpreted by
numerical algorithms.

For simple adiabatic simulations involving no source term, the dimensionalization process can be
avoided since the HD or MHD equations are scale invariant. However, dimensionalization is strictly
necessary when specific length, time or energy scales are introduced in the problem and they must
compare to the dynamical advection scales. For such problems, PLUTO requires three fundamental
units to be specified through the definitions of the following symbolic constants:

UNIT DENSITY (ρ0) : sets the reference density in gr/cm3;

UNIT LENGTH (L0) : sets the reference length in cm;

UNIT VELOCITY (v0) : sets the reference velocity in cm/s.

All other units are derived from a combination of the previous three: time is measured in units of
t0 = L0/v0, pressure in units of p0 = ρ0v

2
0 , while magnetic field (for the MHD module only, see §6.2) in

units of B0 = v0

√
4πρ0, i.e.:

ρ =
ρcgs
ρ0

, v =
vcgs
v0

, p =
pcgs
ρ0v2

0

, B =
Bcgs√
4πρ0v2

0

. (5.1)

where ρ, v, p andB are now dimensionless.

Note: The dimensionless form of the equations can be derived by factoring out ρ0, v0, L0 (and t0)
from the original equations written in c.g.s units. For instance, starting from the HD equation in
presence of thermal conduction and cooling one has to write:

ρ0

t0

∂ρ

∂t
+

ρ0v0

L0
∇ · (ρv) = 0

ρ0v0

t0

∂m

∂t
+

ρ0v20
L0
∇ · (mv) +

ρ0v20
L0
∇p =

ρ0

L0
(−ρ∇Φcgs) + ρ0ρgcgs

ρ0v20
t0

∂(E + ρΦ)

∂t
+

ρ0v30
L0
∇ ·
[(

ρv2

2
+ ρe+ p+ ρΦ

)
v

]
−

1

L2
0

∇ · (κcgs∇Tcgs) = ρ0v0m · gcgs − Λcgs

(5.2)
Since t0 = L0/v0 and Tcgs = Kµp/ρ is the temperature express in Kelvin (see §5.1.2), straightfor-
ward manipulation yields the dimensionless form of the equations:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂m

∂t
+ ∇ · (mv) +∇p = −ρ∇Φ + ρg

∂(E + ρΦ)

∂t
+ ∇ ·

[(
ρv2

2
+ ρe+ p+ ρΦ

)
v

]
−∇ ·

[
κ∇
(
µp

ρ

)]
= m · g − L0

ρ0v3
0

Λcgs

(5.3)

where Φ = Φcgs/v
2
0 , g = gcgsL0/v

2
0 , and

κ = κcgs
mu

ρ0v0L0kB
(5.4)

is the dimensionless form of the conduction coefficient.

If not specified, the default values of UNIT DENSITY, UNIT LENGTH, UNIT VELOCITY are, respec-
tively, ρ0 = 1 mp gr/cm3, L0 = 1 AU and v0 = 1 Km/s. The values of the three fundamental units can
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be changed by redefining them in your definitions.h, e.g.,� �
/* [Beg] user-defined constants (do not change this line) */

#define UNIT_DENSITY 1.67e-23
#define UNIT_LENGTH 3.1e18
#define UNIT_VELOCITY 1.e5

/* [End] user-defined constants (do not change this line) */
� �
Note that, when the relativistic modules are used, v0 must be the speed of light.

Output files can be directly saved in cgs units using the .flt or .vtk data format, see §4.6.

Example #2:

Consider a flow with typical number densities of the order of n ≈ 10 cm−3, temperatures T ≈
104 K (corresponding to typical sound speeds of cs0 ≈ 10 Km/s). Suppose, also, that the flow
propagates with uniform speed v ≈ 50 Km/s and the typical scale size of the problem is L ≈
1 pc ≈ 3.1 · 1018 cm. Then one may choose

ρ0 = n0mp ≈ 1.67 · 10−23 gr/cm
3
, v0 = 1 Km/s = 105 cm/s , L0 = 3.1 · 1018 cm

From the python script, this is done by including the following line in definitions.h:� �
/* [Beg] user-defined constants (do not change this line) */

#define UNIT_DENSITY (10.0*CONST_mp)
#define UNIT_LENGTH CONST_pc
#define UNIT_VELOCITY 1.e5

/* [End] user-defined constants (do not change this line) */
� �
where CONST mp and CONST pc are pre-defined symbolic constants (proton mass and parsec in
c.g.s units) and are defined, together with several other constants, in Appendix C.1. Please remem-
ber using parenthesis around a macro expression to avoid incorrect expansion.

With this choice of units, the piece of code describing the initial condition becomes� �
v[RHO] = 1.0; /* means 1 * [1.67 10ˆ{-23} gr/cmˆ3 or 10/cmˆ3] */
v[VX1] = 50.0; /* means 50 * [1 Km/sec] */
cs = 10.0; /* means 10 * [1 Km/sec] */

/* -- define pressure to that sound speed = 1 * 1.e6 = 10 Km/sec -- */

v[PRS] = v[RHO]*cs*cs/g_gamma; /* means 100/gmm * [\rho_0*v_0ˆ2] */
� �
where CONST PI (= π) is another pre-defined constant. With this initialization, the sound speed
is exactly cs = 10 Km/s.

5.1.2 Specifying Temperature and Gas Composition.

In many applications, it may be more convenient to use a reference temperature to initialize pressure
or velocity. In PLUTO , a direct relation between pressure and density (in “code”, or non-dimensional
units) and temperature (in Kelvin) is provided by

T =
p

ρ

µmuv
2
0

kB
≡ p

ρ
Kµ , (5.5)

where kB is the Boltzmann constant, mu is the atomic mass unit, µ is the mean molecular weight while p
and ρ are in “code” (i.e. non-dimensional) units. The conversion factor K depends on UNIT VELOCITY
and it is provided by the macro KELVIN :

K ≡ muv
2
0

kB
(5.6)

see also Chapter 7.
Eq. (5.5) can be easily used to determine pressure once the temperature is known, for instance:
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� �
v[RHO] = 0.5; /* Density in code units */
T = 1.e3; /* Temperature in KELVIN */
mu = MeanMolecularWeight();
v[PRS] = v[RHO]*T/(KELVIN*mu); /* Obtain pressure in code units */
� �

where µ is the mean molecular weight:
ρ = µntotmu (5.7)

while ntot is the total number density of particle and it depends, in general, on the composition of the
gas. The mean molecular weight may be computed:

• by calling the MeanMolecularWeight() function when the gas composition does not explicitly
depend on temperature and density, e.g.� �

mu = MeanMolecularWeight(v);
� �
where v is an array of primitive variables of which only ion fractions need to be defined (den-
sity and pressure are ignored). The mean molecular weight is implemented in the source file
mean mol weight.c for a variety of different cooling/reaction network (Ch. 9) and also when no
cooling is used.

For the SNEq cooling module, for instance, the mean molecular weight is computed as

µ =
AH +AHefHe +AZfZ
2− fHI + fHe + 2fZ

(5.8)

where each metal contributes for one electron. In the previous equation, AH (CONST AH) and AHe
(CONST He) are the atomic mass numbers of hydrogen and helium whereas fHI , fHe and fZ are
the number fractions of neutral hydrogen helium and metals with respect to hydrogen:

fHI =
NHI
NH

, fHe =
NHe
NH

=
Y

AHe

AH
X

, fZ =
NZ
NH

=
Z

AZ

AH
X

,

where X = munHAH/ρ, Y = munHeAHe/ρ while Z = 1 −X − Y . Notice that while fHe and fZ
are fixed, fHI is a time-dependent quantity that evolves with flow variables.

Without any cooling / network, the mean molecular weight is computed from the given mass
fractions assuming a fully ionized gas (fHI = 0):

µ =
AH +AHefHe +AZfZ

2 + 3fHe + fZ(1 +AZ/2)
, (5.9)

where AZNZ/2 is the number of electrons due to metals.

The value of X and Y can be specified through the user-defined constants H MASS FRAC and
He MASS FRAC which, by default, are set to be equal to solar abundances (X = 0.711, Y = 0.2741,
see also Appendix C.3).

• by calling the GetMu() function when the PVTE LAW equation of state is adopted with equili-
brum ionization, see §7.3. In this case temperature (in Kelvin) and density (in code units) must be
supplied as input arguments:� �

T = 2.5e3; /* In Kelvin */
rho = 1.0; /* In code units. Means rho*UNIT_DENSITY in cgs units */
GetMu(T, rho, &mu);
� �

Example #3:

Consider a flow with typical number densities of the order of n ≈ 4 × 103 cm−3, temperature
T = 2.5 × 103 K and Mach number M = v/cs = 15 while the typical length scale is L0 ≈ 10
AU. Suppose also that a magnetic field with strength of 10 µG is also present. Units can be set in
definitions.h:
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� �
/* [Beg] user-defined constants (do not change this line) */

#define UNIT_DENSITY (1.e3*CONST_mp)
#define UNIT_LENGTH (10.0*CONST_au)
#define UNIT_VELOCITY 1.e5

/* [End] user-defined constants (do not change this line) */
� �
The sound speed cs is defined, for an adiabatic equation of state, by the relation

cs =

√
Γp

ρ
=

√
ΓT

Kµ
.

The initial condition is then implemented as follows:� �
v[RHO] = 4.0; /* means 4 * [10ˆ3 * 1.67e-24 gr/cmˆ3] */
T = 2.5e3; /* Temperature in Kelvin */
#if COOLING == SNEq
CompEquil (n, T, v); /* Compute ionization fraction at equilibrium */

#endif
mu = MeanMolecularWeight(v);
v[PRS] = v[RHO]*T/(KELVIN*mu); /* Pressure in units of rho0*v0ˆ2 */

/* -- Define sound speed and velocity -- */

cs = sqrt(g_gamma*v[PRS]/v[RHO]); /* in units of [1 Km/s] */
v[VX1] = M*cs; /* in units of 15*cs*[1 Km/sec] */

/* -- Assign a magnetic field of 10ˆ{-5} Gauss -- */

v[BX1] = 1.e-5/sqrt(4.0*CONST_PI*UNIT_DENSITY)/UNIT_VELOCITY;
� �
The CompEquil() function is not strictly necessary but it has been introduced to compute ioniza-
tion equilibrium values for a given reference temperature and number density. Its implementation
may differ depending on the cooling module. In alternative, the fraction of neutrals could have
been specified directly, .e.g, v[X HI] = 0.6;.

Finally, we notice that it is customary, sometimes, to assign magnetic field values in terms of the
plasma β = 2p/B2. Since β is already a dimensionless parameter, one should not worry about proper
dimensionalization, and the line defining the magnetic field must be replaced by� �
beta = 4.0; /* this is my plasma beta = 2p/Bˆ2 */
v[BX1] = sqrt(2.0*v[PRS]/beta); /* in units of v_0\sqrt{4\pi\rho_0} */
� �

5.2 Initial Conditions: the InitDomain() function

The InitDomain() function has been introduced in PLUTO 4.3 to provide an alternative and more
flexible way to provide initial conditions using a multidimensional loop. It is called after the Init()
function to fill the values of

• the cell-centered primitive variable array d->Vc[nv][k][j][i];

• the staggered magnetic field array d->Vs[nv][k][j][i], at cell faces);

• the vector potential arrays d->Ax1[k][j][i], d->Ax2[k][j][i] and d->Ax3[k][j][i] at
cell edges.

Location inside the cell (centered, face-centered or edge-centered) are shown in Fig. 5.1. Values given
here will overwrite any previous assignment.

The InitDomain() is preferable to Init() when the value of a primitive quantities needs to be
assigned using neighbour values (a derivative, for example) or when a variable assignment depends on
the total integral of a previous one or when initial conditions are specified from an external file (§5.2.1).

Syntax:
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Figure 5.1: Schematic representation of cell- and face-centered (left panel) and edge-centered (right panel) collocation of physi-
cal variables inside a 3D cell i, j, k. Here Vc, Vs and Ax1 are members of the PLUTO data structure.

void InitDomain (const Data *d, Grid *grid)

Arguments:

• *d: a pointer to the PLUTO data structure, containing:

– d->Vc[nv][k][j][i]: a four-index array of primitive variables defined at the cell center.
The integer nv=RHO, VX1, ..., NVAR-1 labels the variable (see Table 5.1), while k, j and i are
the zone indices of the x3, x2 and x1 direction (note the reversed order), respectively.

– d->Vs[nv][k][j][i] (staggered MHD only): a four-index array containing the three com-
ponents of the staggered magnetic field (BX1s, BX2s, BX3s, if any) defined at zone faces, see
Fig 5.2. These components only exists in the MHD or RMHD modules when using the Con-
strained Transport algorithm to control the∇ ·B = 0 condition, see §6.2.2.3 for more details.

– d->Ax1[k][j][i], d->Ax2[k][j][i], d->Ax3[k][j][i] (centered or staggered MHD):
three-index arrays containing the three components of the vector potential defined at zone
edges, see Fig 5.1. In the static grid version of PLUTO , the vector potential must be always
defined at cell-edges regardless of the discretization of the ∇ · B = 0 condition: for stag-
gered MHD, B will be computed by differentiating the vector potential at cell faces, while
for cell-centered MHD (eight wave of GLM)B is obtained by differentiating the same vector
potential at cell centers.

Important: Face-centered (staggered) magnetic fields, cell-centered fluid variables and vector po-
tential are defined on different zone stencils, see Figure 5.1. The zone-centering and the corre-
sponding index range is encoded in the box structure (see below).

• *grid: a pointer to the Grid structure containing all of the relevant grid information. See the
code documentation for more details on the members of the Grid structure.

A typical example is:� �
void InitDomain (Data *d, Grid *grid)
{
int i, j, k;
int id;
double *x1 = grid->x[IDIR];
double *x2 = grid->x[JDIR];
double *x3 = grid->x[KDIR];

TOT_LOOP(k,j,i){
d->Vc[RHO][k][j][i] = 1.0 + exp(-x1[i]*x1[i]);

}
}
� �
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Note: With PLUTO -Chombo, the InitDomain() function cannot be used to assign the vector
potential and magnetic field components should be assigned directly.

5.2.1 Assigning Initial Conditions from Input Files

It is possible to assign initial conditions from user-supplied binary data by providing i) one or more
grid data files and the corresponding ii) raw binary files containing the variable(s) to be read. The size,
dimensions and even the geometry of the input grid may be different from the actual grid employed
by PLUTO, as long as the coordinate transformation is implemented. Even different input data files
with different size and geomery may be used. This provides a flexible and efficient tool to assign initial
conditions by mapping data values originally defined on different computational domains. For instance,
you can map a 2D spherical grid onto a 2D axisymmetric cylindrical domain, generate a 3D Cartesian
domain by rotating any 2D axisymmetric data and so forth.

The module is initialized by calling the function InputDataOpen() which reads and stores input
grid information such as size, number of variables, geometry and dimensions. This function should be
called once per variable from your InitDomain() function:

id = InputDataOpen (data_fname, grid_fname, endianity, offset, vpos);

where the arguments are:

1. data fname: a string giving the name of the input binary file, with the extension .dbl or .flt
for double or single precision, respectively.

2. grid fname: the name of the input grid file;

3. endianity: a string specifying the endianity of the input data file. Either "big", "little" or
and empty string " " to leave things unchanged.

4. offset: a long integer giving the offset of the variable (in units of double or float) from the
beginning of the file. For a typical double-precision datafile, density and the x1-velocity compo-
nent (RHO and VX1) are stored, respectively, as the 1st and 2nd records. Since each block has Nb
= nx1×nx2× nx3 “words”, we will use offset = 0 for the former and offset = Nb for the
latter. Here nx1, nx2 and nx3 are the sizes of the input data fie.

5. vpos: the variable position with respect to the cell center (CENTER / X1FACE / X2FACE / X3FACE).

The return argument (id) is a file handle that can be used later.
The input binary data file(s) should be written in binary format using either single or double preci-

sion with extensions ”.flt” (for the former) or ”.dbl” (for the latter). Both single and/or multiple data files
are supported. If a single file containing more variables is supplied, variables should be stored sequen-
tially; otherwise you can provide one file per variable. You may provide only some of the variables used
by PLUTO and not necessarily all of them. The input grid file should be written using the same format
employed by PLUTO , see §12.1.6. Each field must contain as many points as specified by the input grid
file.

After initialization, the grid size can be retrieved with the function InputDataGridSize() by
supplying the file id and and array of integer containing, on output, the grid size (see the example
below). Interpolation can then be done using, e.g.,

d->Vc[RHO][k][j][i] = InputDataInterpolate (id, x1[i], x2[j], x3[k]);

which will read input data (in chunks) and interpolate them using bi- or tri-linear interpolation at the
desired coordinate location (x1[i], x2[j], x3[k]). Input data are read from disk in chunks of size
nx1, nx2, ID NZ MAX where ID NZ MAX is an integer number (default is 4) which can be changed in
your definitions.h (see C.3).
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Note: Note that when interpolating between different geometries (e.g. from Cartesian to spherical),
data values may not be contiguous and the input data files are read several times slowing down
the process. In this case it may be advisable to set the macro ID NZ MAX equal to the number of
zones in the third direction of the input grid.

The function InputDataClose() is finally used to free the memory structure when not needed.
In the example below, density, velocity components and pressure are assigned from the input binary

file tmp/data.0010.flt defined on the computational domain specified in tmp/grid.out:� �
void InitDomain (Data *d, Grid *grid)
{
int i, j, k, id, size[3];
long int offset, offset1;
double *x1 = grid->x[IDIR], *x1r = grid->xr[IDIR];
double *x2 = grid->x[JDIR], *x2r = grid->xr[JDIR];
double *x3 = grid->x[KDIR], *x3r = grid->xr[KDIR];
char grid_file[32];

sprintf (grid_file,"single_file/grid.out");

/* Interpolate density (1st record in the file) */
id = InputDataOpen("single_file/data.0002.dbl",grid_file," ", 0, CENTER);

InputDataGridSize (id, size); /* Get grid data size */
offset = (long)size[0]*(long)size[1]*(long)size[2]; /* Offset of a single data block */

TOT_LOOP(k,j,i) d->Vc[RHO][k][j][i] = InputDataInterpolate (id,x1[i],x2[j],x3[k]);
InputDataClose(id);

/* Interpolate x-velocity (2nd record in the file) */
id = InputDataOpen("single_file/data.0002.dbl",grid_file," ",1*offset, CENTER);
TOT_LOOP(k,j,i) d->Vc[VX1][k][j][i] = InputDataInterpolate (id,x1[i],x2[j],x3[k]);
InputDataClose(id);

/* Interpolate pressure (8th record in the file) */
id = InputDataOpen("single_file/data.0002.dbl",grid_file," ",7*offset, CENTER);
TOT_LOOP(k,j,i) d->Vc[PRS][k][j][i] = InputDataInterpolate (id,x1[i],x2[j],x3[k]);
InputDataClose(id);

}
� �
Note: When the input geometry differs from the one used by PLUTO , vector components are not
automatically transformed to the current geometry. Staggered magnetic fields may not be assigned
in this way since the divergence free condition is not necessarily maintained. Using the vector
potential components is more advisable.

A configuration example may be found in the Test Problems/HD/Blast/ directory, where the initial
condition sets an isothermal blast wave propagating in a non-uniform density medium. The inital den-
sity distribution is created by the separate file Turbulence.c in the same directory and interpolated at
runtime by PLUTO using the method outlined above.

5.3 User-defined Boundary Conditions

The UserDefBoundary() function is used to assign user-defined boundary conditions to a particular
physical boundary (see Fig 5.2) if this has been tagged userdef inside your pluto.ini.

Alternatively, this function may also be used to control the solution array at the beginning of every
time step inside the computational domain (set floor values, override the solution, etc...) by first enabling
INTERNAL BOUNDARY to YES inside definitions.h, see §5.3.1.

Syntax:

void UserDefBoundary (const Data *d, RBox *box, int side, Grid *grid)

Arguments:
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Cell Centered Variables

Boundary values

Interior values

Y−Face boundary values

Face Staggered Variables

X−Face boundary values

X−Face interior values Y−Face interior values

Figure 5.2: Schematic representation of cell-centered (left panel) and face-centered (right panel) collocation of physical variables
on a 2D grid. X and Y-face centered staggered quantities are shown by squares and triangles, respectively. Filled symbols (circles,
boxes and triangles) are considered interior values part of the solution, whereas boundary values are identified by empty symbols
and must be prescribed by the user if the boundary is userdef.

• *d: a pointer to the PLUTO data structure (see the description in InitDomain()

All variables must be assigned at a user-defined boundary with the exception of the staggered
component of magnetic field normal to the interface if you are using the Constrained Transport
(CT) method, see §6.2.2.3.

• *box: a pointer to a RBox structure, defining the rectangular portion of the domain over which
ghost zone values should be assigned. Since cell-centered and face-centered data are defined on
different box structures, its usage is maily intended to

– discriminate between cell-centered variables and face-centered variables using the structure
member box->vpos which specifies the location of the variable inside the cell (=CENTER,
X1FACE, X2FACE, X3FACE);

– provide an efficient way of looping through the ghost boundary zones using the macro
BOX LOOP(box,k,j,i) which automatically takes care of the index range of definition.

Note: Using the box structure is not mandatory and the usual macros X1 BEG LOOP() , ...,
X3 END LOOP() may still be employed without any modifications. However, these macros per-
form loops over cell-centered data stencils and staggered field are not completely defined since the
loops do not include one row of zones at the furthest left edges of the boundary zones. On the
contrary, the BOX LOOP() macro takes into account the full range of definition of the variable and
should be used whenever possible.

• side: an input integer label specifying on which side of the physical domain user-defined values
should be prescribed. It can take on the following values:

– X1 BEG, X1 END: boundary conditions can be assigned in the ghost zones at the beginning
and end of the physical domain in the x1 direction
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– X2 BEG, X2 END: boundary conditions can be assigned in the ghost zones at the beginning
and end of the physical domain in the x2 direction

– X3 BEG, X3 END boundary conditions can be assigned in the ghost zones at the beginning
and end of the physical domain in the x3 direction

– 0 (zero): change/control the solution inside the computational domain. This feature can be
used only if the macro INTERNAL BOUNDARY has been enabled in your definitions.h, see §5.3.1.

If, say, X1-beg has been tagged userdef inside your pluto.ini, the user has to specify the boundary
values at the beginning of the x1 direction when side==X1 BEG.

• *grid: a pointer to the Grid structure containing all of the relevant grid information. See the
code documentation for more details on the members of the Grid structure.

Example #1:� �
void UserDefBoundary (const Data *d, RBox *box, int side, Grid *grid)
{
int i, j, k, nv;
double *x1, *x2, *x3;

x1 = grid->x[IDIR]; /* -- array pointer to x1 coordinate -- */
x2 = grid->x[JDIR]; /* -- array pointer to x2 coordinate -- */
x3 = grid->x[KDIR]; /* -- array pointer to x3 coordinate -- */

if (side == X2_BEG){ /* -- select the boundary side -- */
BOX_LOOP(box,k,j,i){ /* -- Loop over boundary zones -- */

if (x1[i] <= 1.0){ /* -- set jet values for r <= 1 -- */
d->Vc[RHO][k][j][i] = 1.0;
d->Vc[iVR][k][j][i] = 0.0;
d->Vc[iVZ][k][j][i] = g_inputParam[MACH];
d->Vc[PRS][k][j][i] = 1.0/gmm;

}else{ /* -- reflective boundary for r > 1 --*/
d->Vc[RHO][k][j][i] = d->Vc[RHO][k][2*JBEG - j - 1][i];
d->Vc[iVR][k][j][i] = d->Vc[iVR][k][2*JBEG - j - 1][i];
d->Vc[iVZ][k][j][i] = -d->Vc[iVZ][k][2*JBEG - j - 1][i];
d->Vc[PRS][k][j][i] = d->Vc[PRS][k][2*JBEG - j - 1][i];

}
}

}
}
� �
As a first example we show how to prescribe a fixed inflow boundary condition for a jet model. The
computational domain is a 2D box in cylindrical geometry, so that x1 ≡ R, x2 ≡ z. A constant inflow is
prescribed a the jet nozzle located at the z = 0 boundary for R ≤ 1 while reflective boundary conditions
are assigned for R > 1. The inflow values are specified as

ρ

vR

vz

p

 =


1

0

M

1/Γ

 for R ≤ 1 ,


ρ(R,−z)

vR(R,−z)

vz(R,−z)

p(R,−z)

 =


ρ(R, z)

vR(R, z)

−vz(R, z)

p(R, z)

 for R > 1

whereM is the Mach number. The previous piece of code is executed only if you have selected userdef
at the X2-beg boundary inside your pluto.ini.

The macro BOX LOOP(box,k,j,i) performs a loop over the bottom boundary zones and, for cell-
centered data, it is equivalent to the macro X2 BEG LOOP(k,j,i) . Similar macros may be used at any
of the other boundaries (X1 BEG, X1 END, X2 END, X3 BEG, X3 END), although the BOX LOOP()
macro has the advantage of being more general since it automatically embeds the stencil index range
for the corresponding variable position (i.e. centered or staggered).

Example #2:
As a second example, we discuss the user-defined boundary condition employed in the shock-cloud
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problem (Test Problems/MHD/Shock Cloud/). Here we want to prescribe, at the X1-end boundary, con-
stant pre-shock values on both cell-centered quantities and staggered magnetic fields. The variable
box->vpos is used to select the desired data set.� �
void UserDefBoundary (const Data *d, RBox *box, int side, Grid *grid)
{
int i, j, k;

if (side == X1_END){ /* -- select the boundary side -- */
if (box->vpos == CENTER){ /* -- select the variable position -- */

BOX_LOOP(box,k,j,i){ /* -- Loop over boundary zones -- */
d->Vc[RHO][k][j][i] = 1.0;
d->Vc[VX1][k][j][i] = -11.2536;
d->Vc[VX2][k][j][i] = 0.0;
d->Vc[VX3][k][j][i] = 0.0;
d->Vc[PRS][k][j][i] = 1.0;
d->Vc[BX1][k][j][i] = 0.0;
d->Vc[BX2][k][j][i] = g_inputParam[B_PRE];
d->Vc[BX3][k][j][i] = g_inputParam[B_PRE];

}
}else if (box->vpos == X2FACE){ /* -- y staggered field -- */

#ifdef STAGGERED_MHD
BOX_LOOP(box,k,j,i) d->Vs[BX2s][k][j][i] = g_inputParam[B_PRE];
#endif

}else if (box->vpos == X3FACE){ /* -- z staggered field -- */
#ifdef STAGGERED_MHD
BOX_LOOP(box,k,j,i) d->Vs[BX3s][k][j][i] = g_inputParam[B_PRE];
#endif

}
}

}
� �
As in the previous example, the macro BOX LOOP() is preferable to the macro X1 END LOOP() as it is
automatically embeds the stencil for cell centered or staggered data.

Function-like macros are described in the code documentation: ./Doc/Doxygen/html/macros 8h.html

5.3.1 Internal Boundary

When UserDefBoundary() is called with side==0 and INTERNAL BOUNDARY has been turned to
YES inside your definitions.h, the user has full control over the solution array. This feature can be used to
adjust the value of selected cell-centered primitive (and conservative) variables inside a specific region of
the computational domain rather than at boundaries. In this case, the TOT LOOP() macro should be em-
ployed to loop over the (local) computational domain and a user-defined criterion (typically spatially-
or variable-dependent) is used to modify the solution array in the selected zones.

A typical example may occur when a lower (or upper) threshold value should be imposed on phys-
ical variables such as density, pressure or temperature. For instance, the following piece of code sets a
floor value of 10−3 on density:� �
void UserDefBoundary (const Data *d, RBox *box, int side, Grid *grid)
{
int i,j,k;

if (side == 0){
RBox dom_box;
TOT_LOOP(k,j,i){

int convert_to_cons = 0;

if (d->Vc[RHO][k][j][i] < 1.e-3) {
d->Vc[RHO][k][j][i] = 1.e-3;
convert_to_cons = 1;

}
if (convert_to_cons) {
RBoxDefine (i, i, j, j, k, k, CENTER, &dom_box);
PrimToCons3D(d->Vc, d->Uc, &dom_box);

}
} /* DOM_LOOP() */

} /* if (side == 0) */
...
� �
Please note that changing a primitive variable in an active zone requires recomputing the conservative
variables in that zone as well (this is done by the call to PrimToCons3D()).
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A more complex example consists of a time-independent region of space where variables are fixed
in time and should not be evolved by the algorithm. If this is the case, you may additionally tell PLUTO
not to update the solution in the specified computational zones during the current time step by enabling
the FLAG INTERNAL BOUNDARY flag. Conversion to conservative is not necessary in this case.

Example:
The following example (taken from Test Problems/HD/Stellar Wind ) shows how to set up a radially sym-
metric spherical wind in cylindrical coordinates inside a small spherical region of radius 1 centered
around the origin. This is achieved by prescribing fixed inflow values for density, pressure and velocity:� �
void UserDefBoundary (const Data *d, RBox *box, int side, Grid *grid)
{
int i, j, k, nv;
double *x1, *x2, *x3;
double r, r0, cs;
double Vwind = 1.0, rho, vr;

x1 = grid->xgc[IDIR];
x2 = grid->xgc[JDIR];
x3 = grid->xgc[KDIR];

if (side == 0){
r0 = 1.0;
cs = g_inputParam[CS_WIND];
TOT_LOOP(k,j,i){

r = sqrt(x1[i]*x1[i] + x2[j]*x2[j]);
if (r <= r0){
vr = tanh(r/r0/0.1)*Vwind;
rho = Vwind*r0*r0/(vr*r*r);
d->Vc[RHO][k][j][i] = rho;
d->Vc[VX1][k][j][i] = Vwind*x1[i]/r;
d->Vc[VX2][k][j][i] = Vwind*x2[j]/r;
d->Vc[PRS][k][j][i] = cs*cs/g_gamma*pow(rho,g_gamma);
d->flag[k][j][i] |= FLAG_INTERNAL_BOUNDARY;

}
}

}
...
� �

The symbol |= (a combination of the bitwise OR operator | followed by the equal sign) turns the
FLAG INTERNAL BOUNDARY bit on in the 3D array d->flag[][][]. This is used by the code to reset
the right hand side of the conservative equations in the selected zones to zero. These computational
cells are thus not evolved in time by PLUTO .

Note: The *box structure should not be used here and staggered magnetic field variables should
not be altered.

5.4 Body Forces

Body forces are introduced by enabling the BODY FORCE flag in your definitions.h. The force is computed
in terms of the acceleration vector a:

a = −∇Φ + g , (5.10)

where Φ is the scalar potential and g = (g1, g2, g3) is a three-component acceleration vector. Beware that
non-intertial effects due to a rotating frame of reference (such as Coriolis and centrifugal forces) should
not be specified here since they are automatically handled by PLUTO by enabling the ROTATING FRAME
flag in the HD and MHD module, see §2.2.7.

• The scalar potential can be employed when the BODY FORCE flag is set to POTENTIAL in your
definitions.h. In this case, g = 0 and the function BodyForcePotential() should be used to
prescribe the analytical form of Φ ≡ Φ(x1, x2, x3):

double BodyForcePotential(double x1, double x2, double x3)
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where x1,x2,x3 are the local zone coordinates and the return value of the function gives the
potential. In this way, PLUTO employs a conservative discretization that conserves total en-
ergy+gravitational energy, see Eq. (6.1) and Eq. (6.4). The gravitational potential, however, must
not change in time.

As an example, a spherically symmetric point-mass potential Φ = −1/r can be defined using� �
double BodyForcePotential(double x1, double x2, double x3)
{

#if GEOMETRY == CARTESIAN
return -1.0/sqrt(x1*x1 + x2*x2 + x3*x3);
#elif GEOMETRY == CYLINDRICAL
return -1.0/sqrt(x1*x1 + x2*x2);
#elif GEOMETRY == SPHERICAL
return -1.0/x1;
#endif

}
� �
for the three coordinate systems.

• The acceleration vector can be employed when the BODY FORCE flag is set to VECTOR and the three
components of g are prescribed using the function BodyForceVector():

void BodyForceVector(double *v, double *g,
double x1, double x2, double x3)

where

– *v: a pointer to a vector of primitive quantities (e.g., v[RHO], v[VX1], etc...);
– *g: a three-component array (g[IDIR], g[JDIR], g[KDIR]) specifying the gravity vector g

components along the coordinate directions;
– x1,x2,x3: local zone coordinates.

As an example, let’s consider again a point-mass source located at the origin of coordinates. Then
one needs to define, depending on the geometry (= CARTESIAN , CYLINDRICAL or SPHERICAL),� �

void BodyForceVector(double *v, double *g, double x1, double x2, double x3)
{
double gs, rs;

#if GEOMETRY == CARTESIAN
rs = sqrt(x1*x1 + x2*x2 + x3*x3); /* spherical radius in cart. coords */

#elif GEOMETRY == CYLINDRICAL
rs = sqrt(x1*x1 + x2*x2); /* spherical radius in cyl. coords */

#elif GEOMETRY == SPHERICAL
rs = x1; /* spherical radius in sph. coords */

#endif

gs = -1.0/rs/rs; /* spherical gravity */

#if GEOMETRY == CARTESIAN
g[IDIR] = gs*x1/rs;
g[JDIR] = gs*x2/rs;
g[KDIR] = gs*x3/rs;

#elif GEOMETRY == CYLINDRICAL
g[IDIR] = gs*x1/rs;
g[JDIR] = gs*x2/rs;
g[KDIR] = 0.0;

#elif GEOMETRY == SPHERICAL
g[IDIR] = gs;
g[JDIR] = 0.0;
g[KDIR] = 0.0;

#endif
}
� �

It is also possible to prescribe the body force in terms of a vector and a potential by setting, in your
definitions.h, BODY FORCE to (VECTOR+POTENTIAL).

A word of caution about using reflective, equatorial symmetric (or similar) boundary conditions:
strictly speaking, gravity should be defined consistently with the antisymmmetric behavior of the veloc-
ity component normal to the given boundary plane. More precisely, the normal component of g should
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be antisymmetric while the potential should be an even function about the boundary plane. Consider,
for instance, a reflective (or equatorial symmetric) conditions at the lower and upper boundaries zb and
ze in the z direction. Then one should have:{

gz(x, y, zb − z) = −gz(x, y, zb + z)

Φ(z, y, zb − z) = Φ(x, y, zb + z)
,

{
gz(x, y, ze + z) = −gz(x, y, ze − z)

Φ(z, y, ze + z) = Φ(x, y, ze − z)

If gravity does not satisfy this property then it must be imposed manually. As an example you can look at
the Test Problems/MHD/Rayleigh Taylor or Test Problems/MHD/Shearing Box setups where reflective and
equatorial symmetric boundaries are used in the y- and z- directions.

Note: Relativistic flows: Body forces are compatible with the relativistic modules in the formula-
tion explained before Eq. 6.12. Only VECTOR may be used.

5.5 The Analysis() function

The Analysis() function can be used to perform run-time data analysis/reduction in order to save
intensive I/O for data post-processing. This function call frequency is set in pluto.ini, see §4.6.

Syntax:

void Analysis (const Data *d, Grid *grid)

Arguments:

• *d a pointer to the PLUTO data structure as in §5.3

• *grid: a pointer to the Grid structure containing all the relevant grid information.

Example:
In the next example we show how to compute, at run-time, the total integrated kinetic energy and the
maximum internal energy:

〈Ekin〉 ≡
1

∆V

∫
1

2
ρv2dx dy dz =

1

∆V
∑
i,j,k

1

2
ρi,j,kv

2
i,j,k∆Vi,j,k (ρe)max = max

i,j,k

(
p

Γ− 1

)

where ∆V is the total volume of the computational domain, ∆Vi,j,k = ∆xi∆yj∆zk is the volume of
a single cell, (i, j, k) extend over the entire computational domain (a Cartesian 3D domain is used for
simplicity). The output file name is averages.dat and it is written as a 4-column tabulated ascii file con-
taining the current integration time, the time step, the volume-integrated kinetic energy and maximum
internal energy for the required time level. The example works also for parallel computations and can
be safely used at restart since the last position of the file is automatically searched for and subsequent
writing is appended starting from the correct row.
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� �
void Analysis (const Data *d, Grid *grid)
{
int i, j, k;
double dV, vol, scrh;
double Ekin, Eth_max, vx2, vy2, vz2;
double *dx, *dy, *dz;

/* ---- Set pointer shortcuts ---- */

dx = grid->dx[IDIR];
dy = grid->dx[JDIR];
dz = grid->dx[KDIR];

/* ---- Main loop ---- */

Ekin = Eth_max = 0.0;
DOM_LOOP(k,j,i){

dV = dx[i]*dy[j]*dz[k]; /* Cell volume (Cartesian coordinates) */

vx2 = d->Vc[VX1][k][j][i]*d->Vc[VX1][k][j][i]; /* x-velocity squared */
vy2 = d->Vc[VX2][k][j][i]*d->Vc[VX2][k][j][i]; /* y-velocity squared */
vz2 = d->Vc[VX3][k][j][i]*d->Vc[VX3][k][j][i]; /* z-velocity squared */

scrh = 0.5*d->Vc[RHO][k][j][i]*(vx2 + vy2 + vz2); /* cell kinetic energy */
Ekin += scrh*dV;

scrh = d->Vc[PRS][k][j][i]/(g_gamma - 1.0); /* cell internal energy */
Eth_max = MAX(Eth_max, scrh);

}

vol = g_domEnd[IDIR] - g_domBeg[IDIR]; /* Compute total domain volume */
vol *= g_domEnd[JDIR] - g_domBeg[JDIR];
vol *= g_domEnd[KDIR] - g_domBeg[KDIR];

Ekin /= vol; /* Compute kinetic energy average */

/* ---- Parallel data reduction ---- */

#ifdef PARALLEL
MPI_Allreduce (&Ekin, &scrh, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
Ekin = scrh;

MPI_Allreduce (&Eth_max, &scrh, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
Eth_max = scrh;

MPI_Barrier (MPI_COMM_WORLD);
#endif

/* ---- Write ascii file "averages.dat" to disk ---- */

if (prank == 0){
char fname[512];
static double tpos = -1.0;
FILE *fp;

sprintf (fname, "%s/averages.dat",RuntimeGet()->output_dir);
if (g_stepNumber == 0){ /* Open for writing only when we’re starting */

fp = fopen(fname,"w"); /* from beginning */
fprintf (fp,"# %7s %12s %12s %12s\n", "t", "dt", "<Ekin>","Max(Eth)");

}else{ /* Append if this is not step 0 */
if (tpos < 0.0){ /* Obtain time coordinate of to last written row */
char sline[512];
fp = fopen(fname,"r");
while (fgets(sline, 512, fp)) {}
sscanf(sline, "%lf\n",&tpos); /* tpos = time of the last written row */
fclose(fp);

}
fp = fopen(fname,"a");

}
if (g_time > tpos){ /* Write if current time if > tpos */

fprintf (fp, "%12.6e %12.6e %12.6e %12.6e \n",g_time, g_dt,Ekin, Eth_max);
}
fclose(fp);

}
}
� �



6. Basic Physics Modules

In this chapter we describe the basic equation modules available in the PLUTO code for the solution of
the fluid equations under different regimes: HydroDynamics (HD), MagnetoHydroDynamics (MHD)
and their relativistic extensions (RHD and RMHD and ResRMHD).

We remind that only first-order spatial derivatives accounting for the hyperbolic part of the equations
are described in this chapter whereas the reader is referred to Chap. 8 for a comprehensive description
of the diffusion terms (thermal conduction, viscosity and magnetic resistivity) and cooling.

6.1 The HD Module

The HD module may be used to solve the Euler or the Navier-Stokes equations of classical fluid dynam-
ics. The relevant source files and definitions for this module can be found in the Src/HD directory.

With the HD module, PLUTO evolves in time following system of conservation laws:

∂

∂t


ρ

m

Et + ρΦ

+∇ ·


ρv

mv + pI

(Et + p+ ρΦ)v


T

=


0

−ρ∇Φ + ρg

m · g

 (6.1)

where ρ is the mass density,m = ρv is the momentum density, v is the velocity, p is the thermal pressure
and Et is the total energy density:

Et = ρe+
m2

2ρ
. (6.2)

An equation of state provides the closure ρe = ρe(p, ρ).
The source term on the right includes contributions from body forces and is written in terms of the

(time-independent) gravitational potential Φ and and the acceleration vector g (§5.4).
The right hand side of the system of Eqns (6.1) is implemented in the RightHandSide() function

inside Src/MHD/rhs.c1 employing a conservative discretization that closely follows the expression given
in §B.1.1, §B.1.2 and §B.1.3 for Cartesian, polar and spherical geometries (without magnetic fields).

Primitive variables are defined by V = (ρ,v, p)T , where v = m/ρ while p = p(ρ, ρe) depends on
the equation of state, see Chapter 7. The maps U(V ) and its inverse are provided by the functions
PrimToCons() and ConsToPrim().

Primitive variables are generally more convenient and preferred when assigning initial/boundary
conditions and in the interpolation algorithms. The vector of primitive quantities V obeys the quasi-
linear form of the equations:

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0

∂v

∂t
+ v · ∇v +

∇p
ρ

= −∇Φ + g

∂p

∂t
+ v · ∇p+ ρc2s∇ · v = 0 ,

(6.3)

where cs =
√

Γp/ρ is the adiabatic speed of sound for an ideal EOS. The quasi-linear form (6.3) is
implemented in the Src/HD/prim eqn.c source file and it is required during the predictor stages of the
HANCOCK or CHARACTERISTIC TRACING time-stepping schemes.

1HD and MHD share the same RightHandSide() function.

56
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6.2 The MHD Module

The MHD module is suitable for the solution of ideal or resistive (non-relativistic) magnetohydrody-
namical equations. Source and definition files are located inside the Src/MHD directory.

With the MHD module, PLUTO solves the following system of conservation laws:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂m

∂t
+ ∇ ·

[
mv −BB + I

(
p+

B2

2

)]T
= −ρ∇Φ + ρg

∂B

∂t
+ ∇× (cE) = 0

∂(Et + ρΦ)

∂t
+ ∇ ·

[(
ρv2

2
+ ρe+ p+ ρΦ

)
v + cE ×B

]
= m · g

(6.4)

where ρ is the mass density, m = ρv is the momentum density, v is the velocity, p is the gas (thermal)
pressure,B is the magnetic field2 and Et is the total energy density:

Et = ρe+
m2

2ρ
+
B2

2
. (6.5)

where an additional equation of state provides the closure ρe = ρe(p, ρ) (see Chapter 7). The source term
on the right includes contributions from body forces and is written in terms of the (time-independent)
gravitational potential Φ and and the acceleration vector g (see §5.4).

In the third of Eq. (6.4), E is the electric field defined by the expression

cE = −v ×B +
η

c
· J +

J

ne
×B

(
J = c∇×B

)
(6.6)

where the first term is the convective term, the second term is the resistive term (η denotes the resistivity
tensor, see §8.2) while the third term is the Hall term (§8.1). Note that the speed of light c never enters
in the equations but we keep it for the sake of completeness. In the ideal case (only the first term in Eq.
6.6) is retained), the energy flux takes the form:

∂(Et + ρΦ)

∂t
+∇ · [(Et + pt + ρΦ)v −B (v ·B)] = m · g . (6.7)

The hyperbolic contributions from the divergences terms on the left hans side of Eqns (6.4) are
implemented in the RightHandSide() function inside Src/MHD/rhs.c employing a conservative dis-
cretization that closely follows the expression given in §B.1.1, §B.1.2 and §B.1.3 for Cartesian, polar and
spherical geometries.

The sets of conservative and primitive variables U and V are given by:

U =
(
ρ, m, Et, B

)T
, V =

(
ρ, v, p, B

)T
.

The maps U(V ) and its inverse are provided by the functions PrimToCons() and ConsToPrim().
The primitive form of the equations, neglecting diffusion terms, is

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0

∂v

∂t
+ v · ∇v +

1

ρ
B × (∇×B) +

1

ρ
∇p = −∇Φ + g

∂B

∂t
+B(∇ · v)− (B · ∇)v + (v · ∇)B = v (∇ ·B)

∂p

∂t
+ v · ∇p+ ρc2s∇ · v = 0 ,

(6.8)

where the (∇·B) on the right hand side of the third equation is kept for reasons of convenience, although
zero at the continuous level.

2A factor of 1/
√

4π has been absorbed in the definition of magnetic field.
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6.2.1 Assigning Magnetic Field Components

Magnetic field components are initialized in your Init() function just like any other flow quantity.
Depending on the value of ASSIGN VECTOR POTENTIAL in your definitions.h, two alternative initializa-
tions are possible:

1. By setting ASSIGN VECTOR POTENTIAL to NO (default) you can assign the component of magnetic
field in the usual way by directly prescribing the values for us[BX1], us[BX2] and us[BX3].

2. When ASSIGN VECTOR POTENTIAL is set to YES, the vector potential A is used instead and the
magnetic field is recovered from B = ∇×A. This option guarantees that the initial field has zero
divergence in the discretization which is more appropriate for the underlying formulation (i.e.,
cell or face centered fields, §6.2.2).

Note: In 2D, only the third component of A (that is us[AX3]) should be used. Likewise, the third
component of the magnetic field (Bz) cannot be assigned through the vector potential and must be
prescribed in the standard way, see the third example in Table 6.1.

Table 6.1 shows some examples of magnetic field initializations with and without using the vector
potential.

Magnetic Field Standard Using Vector Potential

B = (0, 5, 0)
Cartesian, 2D

v[BX1] = 0.0;
v[BX2] = 5.0;
v[BX3] = 0.0;

v[AX1] = 0.0;
v[AX2] = 0.0;
v[AX3] = -x1*5.0;

B = (0, 5, 0)
Cylindrical, 2D

v[BX1] = 0.0;
v[BX2] = 5.0;
v[BX3] = 0.0;

v[AX1] = 0.0;
v[AX2] = 0.0;
v[AX3] = 0.5*x1*5.0;

B = (− sin y, sin 2x, 2)
Cartesian, 2.5D

v[BX1] = -sin(x2);
v[BX2] = sin(2.0*x1);
v[BX3] = 2.0;

v[AX1] = 0.0;
v[AX2] = 0.0;
v[AX3] = cos(x2)+0.5*cos(2.0*x1);
v[BX3] = 2.0;

Table 6.1: Examples of how the magnetic field may be initialized. Direct initialization (standard) is possible when
ASSIGN VECTOR POTENTIAL is set to NO. Otherwise, the components of the vector potential are used (third column).

6.2.2 Controlling the∇ ·B = 0 Condition

6.2.2.1 Eight-Wave Formulation

In the eight-wave formalism [Pow94, PRL+99] the magnetic field has a cell-centered representation. In
the ideal case, additional source terms are added on the right hand side of Eqns (6.4):

∂

∂t


ρ

m

Et

B

+∇ · (...) = −∇ ·B


0

B

v ·B

v


Contributions to ∇ ·B are taken direction by direction. Note that the 8-wave method keeps ∇ ·B = 0
only at the truncation level and NOT to machine accuracy. More accurate treatments of the solenoidal
condition can be achieved using the other two formulations. The 8-wave algorithm should be used in
conjunction any Riemann solver with the exception of hlld.
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6.2.2.2 Hyperbolic Divergence Cleaning

In [DKK+02] (see also [MT10, MTB10] for additional discussion), the divergence free constraint is en-
forced by solving a modified system of conservation laws, where the induction equation is coupled to
a generalized Lagrange multiplier (GLM). Using the mixed GLM hyperbolic/parabolic correction, the
induction equation and the solenoidal constraint are replaced, respectively, by

∂B

∂t
+∇× (cE) +∇ψ = 0

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ

(6.9)

where ch = CFL×∆lmin/∆t
n is maximum speed compatible with the step size, cp =

√
∆lminch/α and

∆lmin is the minimum cell length. The free parameter α controls the rate at which monopole are damped
[MT10] and its value is set by the user-defined constant GLM ALPHA (default value 0.1). A number of
tests suggests that the optimal range can be found for 0.05 . α . 0.3. In the mixed formulation,
divergence errors are transported to the domain boundaries with the maximal admissible speed and are
damped at the same time. By default, ψ is set to zero in the initial and boundary conditions but the
user is free to change it at a user-defined boundary by prescribing d→Vc[PSI GLM][k][j][i] (inside
UserDefBoundary()) which has the usual cell-centered representation. The scalar multiplier is not
written to disk except for the double format, §12, needed for restart.

The advantage of this formulation (GLM-MHD) is that the equations retain a conservative form (no
source terms are introduced), all variables (including magnetic fields) retain a cell-centered representa-
tion and standard 7-wave Riemann solvers (with a single value of the normal component of magnetic
field) may be used.

A slightly different version, called the extended GLM formulation, that breaks momentum and en-
ergy conservation, has been found to be more robust in problems involving strongly magnetized media
(see, for example, configuration # 11 in Test Problems/MHD/Blast). The extended form of the equations
[DKK+02, MT10] can be enabled by adding the user-defined constant GLM EXTENDED to definitions.h and
setting its value to YES from the Python script. For a complete description of the GLM- and Extended
GLM-MHD formulation and its implementation in PLUTO refer to [MT10, MTB10].

6.2.2.3 Constrained Transport (CT)

In this formulation [BS99, Ld04, GS05], two sets of magnetic fields are used:

• face-centered magnetic field (B(s) hereafter);

• cell-centered magnetic field (B hereafter).

The primary set is the first one, where the three components of the field are located at different spatial
points in the control volume, that is

B(s)
xf
≡ Bx1,i+

1
2 ,j,k

, B(s)
yf
≡ Bx2,i,j+

1
2 ,k

, B(s)
zf
≡ Bx3,i,j,k+ 1

2
(6.10)

see Fig. 6.1. In Cartesian coordinates, for instance, B(s)
xf is located at x-faces whereas B(s)

yf lives at Y-faces
and so on, see the boxes and triangles in Fig. 5.2. With CT, the solenoidal condition is maintained at
machine accuracy as long as field initialization is done using the vector potential, §6.2.1.

The staggered magnetic field is treated as an area-weighted average on the zone face and Stoke’s
theorem is used to update it:∫ (

∂B(s)

∂t
+∇×E

)
· dSd = 0 =⇒ dB

(s)
xd

dt
+

1

Sd

∮
E · dl = 0 (6.11)

Please note that the staggered components are initialized and integrated also on the boundary interfaces
in the corresponding staggered direction. In other words, the interior values are

B(s)
xf

; IBEG− 1 ≤ i ≤ IEND , JBEG ≤ j ≤ JEND , KBEG ≤ k ≤ KEND
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Figure 6.1: Collocation points in 2 D (left) and in 3D (right). Cell-centered quantities are given as green circles, face-centered
quantities (magnetic field) as red squares and edge-centered values (electric field) as blue diamonds.

B(s)
yf

; IBEG ≤ i ≤ IEND , JBEG− 1 ≤ j ≤ JEND , KBEG ≤ k ≤ KEND

B(s)
zf

; IBEG ≤ i ≤ IEND , JBEG ≤ j ≤ JEND , KBEG− 1 ≤ k ≤ KEND

Thus B(s)
xf is NOT a boundary value for i = IBEG − 1, JBEG ≤ j ≤ JEND, KBEG ≤ k ≤ KEND but it is

considered part of the solution. Similar considerations hold for B(s)
yf and B(s)

zf components at the x2 and
x3 boundaries, respectively.

The electric field E is computed at zone edges, see Fig. 6.1 by a proper averaging/reconstruction
scheme (set by CT EMF AVERAGE inside your definitions.h) selected among

• ARITHMETIC: yields a simple arithmetic averaging [BS99] of the fluxes computed during the up-
wind steps. Despite its simplicity, this average procedure may suffer from insufficient dissipation
in some circumstances ([GS05, Ld04]) and does not reduce to its one dimensional equivalent algo-
rithm for plane parallel grid aligned flows.

• CT FLUX: Similar to Arithmetic but it doubles the amount of dissipation at zone edges and it
reduces to the one dimensional algorithm for grid-aligned flows;

• CT CONTACT (or CT0): employs the face-to-edge integration procedures proposed by [GS05], where
electromotive force derivatives are averaged from neighbor zones (UCT0) or selected according to
the sign of the contact mode (UCT CONTACT). The former has reduced dissipation and is prefer-
ably used with linear interpolants and RK integrators, while the latter shows better dissipation
properties.

• UCT HLL: two dimensional Riemann solver based on a four-state HLL flux function, see [DBL03,
Ld04]. If the fully unsplit HANCOCK or CHARACTRISTIC TRACING scheme is used, the Courant
number must be CFL . 0.7 (in 2D) and CFL . 0.35 (in 3D).

• UCT HLLD: A multidimensional extension of the HLLD Riemann solver for the induction system.
This is descrbibed in the paper by Mignone & Del Zanna (2020) [MZ20].

• UCT GFORCE: A multidimensional extension of the GFORCE solver for the induction system. This
is descrbibed in the paper by Mignone & Del Zanna (2020) [MZ20].

Options are described in the paper by [MZ20]
UCT averaging schemes employ only staggered field components in the definition of the fluid nu-

merical fluxes in the corresponding inter-cell positions, in order to avoid the formation of magnetic
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monopoles [Ld04, MZ20]. Non-UCT schemes relies on electric field evaluation from the cell interface
where fluxes give the following components: 0

−Ex3

Ex2


i+ 1

2 ,j,k

,

 Ex3

0
−Ex1


i,j+ 1

2 ,k

,

 −Ex2

Ex1

0


i,j,k+ 1

2

during the x1, x2 and x3 sweeps, respectively.
All algorithms, with the exception of the arithmetic averaging, reduce to the corresponding one

dimensional scheme for grid aligned flows. The CT formulation works with any of the Riemann solvers.

Assigning Boundary Conditions. Within the CT framework, user-defined boundary conditions (b.c.)
must be assigned on the staggered components as well. This is done in your UserDefBoundary()
function using the d→Vs[nv][k][j][i] array, where nv gives the staggered component: BX1s, BX2s
or BX3s.

Note: In PLUTO we follow the convention that the cell “center” owns its right interface, e.g., ‘i’
means i+ 1

2 . Thus:

B
(s)
xf ≡ d->Vs[BX1s][k][j][i] ;

B
(s)
yf ≡ d->Vs[BX2s][k][j][i] ;

B
(s)
zf ≡ d->Vs[BX3s][k][j][i] ;

where the subscripts xf , yf and zf are defined in Eq. (6.10).

Beware that the three staggered components have different spatial locations and the BOX LOOP()
macro introduced in §5.3 automatically implements the correct loop over the boundary ghost zones.
Thus, at the x1 boundary, for instance, one needs to assign

B
(s)
yf at x1,i, x2,j+ 1

2
, x3,k

B
(s)
zf at x1,i, x2,j , x3,k+ 1

2

 for i = 0, · · · , IBEG-1

The component normal to the interface (B(s)
xf in this case) should NOT be assigned since it is automat-

ically computed by PLUTO from the ∇ · B = 0 condition after the tangential components have been
set.

Example:
The following example prescribes user-defined boundary conditions at the lower x2 boundary for a
MHD jet problem in cylindrical coordinates (x1 ≡ R, x2 ≡ z).
Inflow conditions are given as (ρ, vR, vz, p, Br, Bz) = (1, 0, 10, 1/Γ, 0, 3) for R ≤ 1 while a symmetric
counter-jet is assumed for R > 1:� �

if (side == X2_BEG){

JetValues(vjet); /* -- beam/jet values -- */
R = grid->x[IDIR]; /* -- cylindrical radius -- */

if (box->vpos == CENTER){ /* -- select cell-centered varaibles only -- */
BOX_LOOP(box, k, j, i){ /* -- loop on boundary zones -- */
for (nv = 0; nv < NVAR; nv++) vout[nv] = d->Vc[nv][k][2*JBEG-j-1][i];
vout[VX2] *= -1.0;
#if PHYSICS == MHD
vout[BX1] *= -1.0;
#endif
for (nv = 0; nv < NVAR; nv++) /* -- smooth out the two solutions -- */

d->Vc[nv][k][j][i] = vout[nv] + (vjet[nv] - vout[nv])*Profile(R[i],nv);
}

}else if (box->vpos == X1FACE){ /* -- select x1-staggered component -- */
#ifdef STAGGERED_MHD
Rp = grid->A[IDIR]; /* -- right interface area -- */
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BOX_LOOP(box, k, j, i){
bxsout = -d->Vs[BX1s][k][2*JBEG - j - 1][i];
d->Vs[BX1s][k][j][i] = bxsout*(1.0 - Profile(rp[i],BX));

}
#endif

}
}
� �

Here STAGGERED MHD is defined only in the MHD constrained transport and the boundary conditions
are assigned on B(s)

x1 ≡ B
(s)
R only (i.e. the orthogonal component).

6.2.3 Background Field Splitting

In situations where an intrinsic background magnetic field is present (e.g. planetary magnetosphere,
stellar dipole fields), it may be convenient to write the total magnetic field asB(x, t) = B0(x)+B1(x, t)
where B0 is a background curl-free magnetic field and B1(x, t) is a deviation. The background field
must satisfy the following conditions:

∂B0

∂t
= 0 , ∇ ·B0 = 0 , ∇×B0 = 0 .

In this case one can show [Pow94] that the MHD equations reduce to:

∂ρ

∂t
+∇ · (ρv) = 0

∂m

∂t
+∇ ·

(
mv −B1B −B0B1

)
+∇pt = ρ(−∇Φ + g)

∂(Et1 + ρΦ)

∂t
+∇ ·

[
(Et1 + pt + ρΦ)v − (v ·B1)B

]
= m · g

∂B1

∂t
−∇× (v ×B) = 0

where

pt = p+
B2

1

2
+B1 ·B0 , Et1 =

p

Γ− 1
+

1

2

(
ρv2 +B2

1

)
Thus the energy depends only on B1, a feature that turns out to be useful when dealing with low-beta
plasma. The sets of conservative and primitive variables are the same as the original ones, withB → B1,
E → Et1.

In order to enable this feature, the macro BACKGROUND FIELD must be turned to YES in your
definitions.h. The initial and boundary conditions must be imposed on B1 alone while the function
BackgroundField() can be added to your init.c to assignB0:

void BackgroundField (double x1, double x2, double x3, double *B0)

Note that when writing output datafiles to disk, only the deviationB1 is written.
Examples can be found in the 4th configuration of Test Problems/MHD/Rotor/ and in the 4th or 5th

configurations of Test Problems/MHD/Blast/.

Note: Background field splitting works, at present, with the CT and GLM divergence cleaning
techniques, with most Riemann solvers but only with RK-type integrators.
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6.3 The RHD Module

The RHD module implements the equations of special relativistic fluid dynamics in 1, 2 or 3 dimensions.
Velocities are always assumed to be expressed in units of the speed of light. The special relativistic
module comes with 2 different equations of state, and it also works in curvilinear coordinates. Gravity
in Newtonian approximation can also be incorporated. The relevant source files and definitions for this
module can be found in the Src/RHD directory.

The special relativistic module evolves the conservative set U of state variables

U =
(
D, m1, m2, m3, Et

)T
where D is the laboratory density, mx1,x2,x3 are the momentum components, Et is the total energy
(including contribution from the rest mass). The evolutionary conservative equations are

∂

∂t


D

m

Et

+∇ ·


Dv

mv + pI

m


T

=


0

fg

v · fg


where v is the velocity, p is the thermal pressure. Primitive variables V always include the rest-mass
density ρ, three-velocity v = (vx1, vx2, vx3) and pressure p. With PLUTO 4.4, the acceleration term fg is
treated consistently3 with the formalism of [Tau48]. If a is the acceleration vector,

fg = ργ2
[
γ2v (v · a) + a

]
. (6.12)

(A test problem may be found under PLUTO/Test Problems/RHD/Blast3D.)
The relation between U and V is expressed by

D = ργ , m = ρhγ2v = ρhγu , Et = ρhγ2 − p ,

where h is the specific enthalpy (see Chapter 7 for available equation of states).
In order to express the equations in primitive (quasi-linear) form, one assumes δp = c2sδe, where cs

is the adiabatic speed of sound:

∂ρ

∂t
+ v · ∇ρ− 1

c2sh
v · ∇p =

1

c2sh

∂p

∂t

∂v

∂t
+ v · ∇v +

1

ρhγ2
∇p = − v

ρhγ2

∂p

∂t
+

1

h
a

∂p

∂t
+

1

1− v2c2s

[
c2sρh∇ · v + (1− c2s)v · ∇p

]
= − γ2ρc2s

1− v2c2s
v · a .

The above set of equations coherently reduces to (eq. 6.3) in the non-relativistic limit, where a = −∇Φ+
g. For more detailed expressions and the characteristic decomposition, see [MPB05].

Spatial reconstruction may be performed on the four-velocity rather than on the three-velocity by
enabling the macro RECONSTRUCT 4VEL to YES manually in your definitions.h (see also Appendix C.3).
Using the four-velocity in place of the three-velocity offers (in some circumstances) the advantage that
the total velocity |v| = |u|/

√
1 + u2 is always less than 1 by construction, for any 0 ≤ |u| < ∞. This is

not always the case when the three-velocity is used and precautionary measures are used to ensure that
|v| < 1.

3Credit: A. Pavan (DFA, Padova University, email: andrea.pavan.20@phd.unipd.it)
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6.4 The RMHD Module

The RMHD module implements the equations of (ideal) special relativistic magnetohydrodynamics in
1, 2 or 3 dimensions. Velocities are always assumed to be expressed in units of the speed of light. Source
and definition files are located inside the Src/RMHD directory.

The RMHD module solves the following system of conservation laws:

∂

∂t


D

m

Et

B

+∇ ·


Dv

wtγ
2vv − bb+ Ipt

m

vB −Bv


T

=


0

fg

v · fg
0

 (6.13)

where D is the laboratory density, m is the momentum density, E is the total energy (including contri-
bution from the rest mass) while fg is an acceleration term (see 6.3).

Primitive variables are similar to the RHD module but they also contain the magnetic field, V =
(ρ,v, p,B). The relation between V and U is

D = γρ

m = wtγ
2v − b0b

Et = wtγ
2 − b0b0 − pt

,



b0 = γv ·B

b = B/γ + γ(v ·B)v

wt = ρh+B2/γ2 + (v ·B)2

pt = p+
B2/γ2 + (v ·B)2

2

Notice that the components of the momentum tensor may also be written as:

M ij = wtu
iuj − bibj = mivj − biBj

γ
= mivj −

(
Bi

γ2
+ viv ·B

)
Bj

The quasi-linear form of the RMHD is not available yet and algorithms using the characteristic
decomposition of the equations or the quasi-linear form are not available. Therefore, the HANCOCK
scheme works by default using the conservative predictor step rather than the primitive one while the
CHARACTERISTIC TRACING step cannot be employed. On the other hand, Runge-Kutta type integra-
tors works well for the RMHD module.

The available equations of state are IDEAL and TAUB already introduced for the RHD module (see
[MM07] for the extension of this EOS to the RMHD equations).

The RMHD sub-menu offers some of the switches already discussed in the MHD module (§6.2) or in
the RHD (§6.3) module. Divergence control is achieved using the same algorithms introduced for MHD,
namely: 8-wave (§6.2.2.1), divergence cleaning (§6.2.2.2) and the constrained transport (§6.2.2.3).

Computation of the fast characteristic speeds can be perfomed by replacing the numerical solution
of a quartic equation (see [MM07]) with the analytical solution of an approximate quadratic equtions
thus making computation faster. This is achieved by setting RMHD FAST EIGENVALUES to YES (as in
[DZBL07]), see the Appendix C.3.
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6.5 The Resistive RMHD (ResRMHD) Module

Note: This module is not part of the public code release, see “Terms & Conditions of Use” at the
beginning of this guide

The ResRMHD module deals with the non-ideal relativistic MHD equations using the approaches
discussed in [MMBD19]. Source and definition files are located inside the Src/ResRMHD directory.

The set of resistive relativistic equations arising from the time and space split of the covariant are, in
vectorial form,

∂D

∂t
+ ∇ · (Dv) = 0,

∂m

∂t
+ ∇ · (wuu+ pI + T) = 0,

∂E
∂t

+ ∇ ·m = 0,

∂B

∂t
+ ∇×E = 0,

∂E

∂t
−∇×B = −J ,

(6.14)

where I is the identity matrix and the fluid conserved variables are the density D = ργ as measured in
the laboratory frame, the total momentum densitym = wγu+E ×B, and the total energy density

E = wγ2 − p+ PEM . (6.15)

In the expressions above, w = ε + p is the specific enthalpy and PEM = (E2 + B2)/2 denotes the EM
energy density. Finally,

T = −EE −BB + 1
2 (E2 +B2)I (6.16)

is the Maxwell’s stress tensor. Note that, unlike the MHD and RMHD modules, the electric field vector
E is an independent variable and it is evolved through Ampere’s law (the last equation in 6.14).

The current density vector J comes from Ohm’s law (J ′ = σE′ in the rest frame) which, in the lab
frame, reads

J =
1

η

[
γE + u×B − (E · u)v

]
+ qv, (6.17)

where q = ∇ · E from Gauss’ law, so that the current is determined once the fluid velocity and the
electromagnetic fields are known, for a given value of the resistivity η.

The ResRMHD sub-menu offers some of the RMHD switches (§6.5.1): both the ideal EoS (§7.2) and
Taub (§7.4) equations of state are supported; divergence control is achieved with divergence cleaning
(§6.2.2.2) and the constrained transport (§6.2.2.3), as described in [MMBD19]. When employing con-
strained transport (CT), magnetic field always has a staggered representation while the electric field
may be discretized at cell faces or at zone centers. This is controlled by the macro DIVE CONTROL (visi-
ble from the Python menu):

• CONSTRAINED TRANSPORT: the electric field has a staggered formulation (default, according to
[MMBD19]);

• NO: the electric field has a cell-centered representation.

The ResRMHD module works only with RK time-stepping (IMEX schemes) and supports only Carte-
sian coordinates.
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6.5.1 Controlling Resistivity

The resistivity is defined through the function Resistive eta():

Syntax:

double Resistive_eta(double *u, double x1, double x2, double x3)

Arguments:

• u: a pointer to a vector of conservative variables;

• x1,x2,x3: local spatial coordinates;



7. Equation of State

In the current implementation, PLUTO describes a thermally ideal gas obeying the thermal Equation of
State (EOS)

p = nkBT =
ρ

muµ
kBT (7.1)

where p is the pressure, n is the total particle number density, kB is the Boltzmann constant, T is the tem-
perature, ρ is the density, mu is the atomic mass unit and µ is the mean molecular weight. The thermal
EOS describes the thermodynamic state of a plasma in terms of its pressure p, density ρ, temperature
T and chemical composition µ. Eq. (7.1) is written in CGS physical units. Using code units for p and ρ
while leaving temperature in Kelvin, the thermal EOS is conveniently re-expressed as

p =
ρT

Kµ
⇐⇒ T =

p

ρ
Kµ

(
where K =

muv
2
0

kB

)
(7.2)

where K is the KELVIN macro which depends explictly on the value of UNIT VELOCITY.
Another fundamental quantity is the (specific) internal energy e whose rate of change under a phys-

ical process is regulated by the first law of thermodynamics:

de = dQ− pd
(

1

ρ

)
. (7.3)

where Q represents the heat absorbed or released. The internal energy is a state function of the system
and can also be related to temperature and density via the caloric equation of state [Tor97]

e = e(T, ρ) . (7.4)

The thermal and caloric equations of state given by Eq. (7.2) and (7.4) constitutes the basis for the
consideration discussed in the next sections.

7.1 The ISOTHERMAL Equation of State

In an isothermal gas, the temperature is constant and the pressure is readily obtained as

p = ρc2iso (7.5)

where ciso (the isothermal sound speed) can be either a constant value or a spatially-varying quantity.
This EOS is available only in the HD and MHD modules. No energy equation is present and the labels
ENG and PRS are undefined.

The value of ciso can be set using the global variable g isoSoundSpeed in your init.c, e.g.� �
g_isoSoundSpeed = 2.0; /* sets the sound speed to be 2 */
� �

If not set, the default value is ciso = 1.
In order to have a space-dependent isothermal speed of sound, one has to copy the source file Sr-

c/EOS/Isothermal/eos.c to your local working directory and make the appropriate modification.

7.2 The IDEAL Equation of State

For a calorically ideal gas, the ratio of specific heats Γ is constant and the internal energy can be written

ρe =
p

Γ− 1
. (7.6)

67
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The value of Γ is stored in the global variable g gamma and can be modified in your Init() function
(default value 5/3).

For a relativistic flow, the constant-Γ EOS is more conveniently expressed through the specific en-
thalpy:

ρh = ρ+
Γ

Γ− 1
p . (7.7)

The ideal EOS is compatible with all physics modules, algorithms and Riemann solvers in the code.
It can be found in Src/EOS/Ideal/eos.c

7.3 The PVTE LAW Equation of State

The PVTE (Pressure-Volume-Temperature-Energy) EOS allows the user to specify the internal energy as
a general function of the temperature T and chemical fractions (or concentrations)X as described in the
paper by [VMBM15].

The thermal EOS (7.1) together with the caloric EOS (7.4) link the five quantities p, ρ, T ,X and e and
are used by the code to compute two of them given the remaining three: p =

ρ

µ(X)mu
kBT

e = e(T,X)

(7.8)

where mu is the atomic mass unit and µ(X), the mean molecular weight, depends on the gas compo-
sition. The PVTE LAW EOS allows the user to provide explicit definitions for µ(X) and e(T,X) in a
thermodynamically consistent way1.

The implementation of this EOS depends on how chemical fractions are computed and a major dis-
tinction should be made between non-equilibrium and equilibrium cases:

- Non equilibrium case: a chemical network is used to evolveX(t) through rate equations under non-
equilibrium conditions, see §9. This occurs, for example, when this EOS is used in conjunction
with a cooling module that includes a time-dependent reaction network. In this case, species
are evolved independently and their value is at disposal when performing conversion between
pressure, temperature and internal energy. In particular, recovering temperature from internal
energy, T = T (e,X) requires inverting a nonlinear equation by means of an iterative root finder.

- Equilibrium case: there’s no chemical network and fractions are not evolved independently but are
computed when necessary using some sort of equilibrium assumptions such as Saha (LTE, valid in
the high density limit) or collisional-ionization equilibrium (CIE, valid at low densities). This cor-
responds to express fractions asX = X(T, ρ) so that quantities depending onX become functions
of (T, ρ). For example, the thermal EOS becomes p = p(ρ, T ) while internal energy becomes a func-
tion of two variables, e = e(T, ρ). In this case, the inverse functions T = T (p, ρ) and T = T (e, ρ)
are computed by finding the roots of nonlinear equations.

The implementation of the PVTE LAW EOS can be found in the Src/EOS/PVTE directory. The source
file pvte law.c (or pvte law template.c if you are starting from scratch) provides the interface between the
user implementation and the module through the following functions:

• InternalEnergyFunc(): compute and return the internal energy density ρe where e ≡ e(T,X)
in non-equilibrium chemistry or e ≡ e(T, ρ) in the equilibrium case;

• GetMu(): compute the mean molecular weight µ = µ(X) or µ(T, ρ).

1For a thermally ideal gas, it can be shown that the specific internal energy e is a function of the temperature T and chemical
composition X . Also, e(T ) must be monotonically increasing.
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• Gamma1(): compute the value of the first adiabatic index,

Γ1 =
1

cV

p

ρT
χ2
T + χ2

ρ where


χT =

(
∂ log p

∂ log T

)
ρ

= 1− ∂ logµ

∂ log T

χρ =

(
∂ log p

∂ log ρ

)
T

= 1− ∂ logµ

∂ log ρ

(7.9)

needed to evaluate the sound speed, cs =
√

Γ1p/ρ. Note that Γ1 has the upper bound of 5/3 and
may not be straightforward to compute. Fortunately, its value is only needed to estimate the wave
propagation speed during the Riemann solver and an approximate value should suffice.

Two different implementations are provided with the current distribution: pvte law H+.c is suitable
for a partially hydrogen gas in LTE (described in the next section) while pvte law dAngelo.c can be used
for molecular and atomic hydrogen cooling as in D’Angelo, G. et al ApJ (2013) 778. More technical
details can be found under the Src/EOS/PVTE folder in the API reference guide or following this link.

Note: The PVTE LAW EOS is not compatible with algorithms requiring characteristic decomposi-
tion and cannot be used with the ENTROPY SWITCH. We suggest to use RK time-stepping and the
tvdlf, hll or hllc Riemann solvers. This EOS is, at present, available for the HD and MHD
modules only.

7.3.1 Example: EOS for a Partially Ionized Hydrogen Gas in LTE

As a simple non-trivial example, consider a partially ionized hydrogen gas in Local Thermodynamic
Equilibrium (LTE, no cooling), see also §2.4 of [VMBM15]. Let the particle number densities be

n0 (neutrals) , np = ne (charge neutrality) =⇒ n = n0 + np + ne = n0 + 2np

Density and pressure can then be written as
ρ = mpnp + (mp +me)n0 +mene ≈ mp(np + n0) = µ(2np + n0)mp

p = (ne + np + n0)kBT = (1 + x)(np + n0)kT =
ρkBT

µmp

where µ = 1/(1+x) is the mean molecular weight, x = np/(np+n0) is the degree of ionization computed
from Saha equation:

x2

1− x
=

(2πmekBT )3/2

h3(np + n0)
e−χ/(kBT ) , (7.10)

where χ = 13.6 eV and np + n0 = ρ/mp.
The (specific) internal energy includes two contributions:

e =
3

2

kBT

µmp
+

χ

mp
x =

3

2

p

ρ
+

χ

mp
x (7.11)

where the first one represents the standard kinetic energy while the second one corresponds to the
ionization energy (neutral atoms have a potential energy that is lower than that of ions). Note that the
latter introduces a temperature, or equivalently, a velocity scale in the problem so that computations are
no longer scale-invariant but depend on the value of UNIT VELOCITY (used to obtain the temperature
in Kelvin) and UNIT DENSITY (used in Saha equation) that must be defined in your Init() function,
see §5.1.1. Fig. 7.1 shows the classical Sod shock tube solution at t = 0.2 obtained with the IDEAL
equation of state and the PVTE LAW with UNIT DENSITY= 105mp and UNIT VELOCITY= 10 Km/s.
The equivalent Γ, defined as

Γeq =
p

ρe
+ 1 , (7.12)



CHAPTER 7. EQUATION OF STATE 70

Figure 7.1: Density plot for the Sod shock
tube test at t = 0.2 obtained with the IDEAL
EOS (red) and the PVTE LAW EOS (green)
with reference density 105mp and reference
velocity 106 cm/s.

Figure 7.2: Equivalent Γ = p/(ρe) + 1 for
the PVTE LAW EOS of a partially ionized hy-
drogen gas.

is no longer a constant but a function of the temperature, see Fig. 7.2.
The implementation of this particular EOS can be found in Src/EOS/PVTE/pvte law H+.c (simply copy

it to your working directory as pvte law.c). Eq. (7.11) is implemented by the InternalEnergyFunc()
function while the mean molecular weights µ is defined by the GetMu() function.

7.3.2 Analytic vs. tabulated approach

As PLUTO performs conversions between primitive (e.g. density and pressure) and conservative vari-
ables (e.g. total energy and momentum) during a single update step, the PVTE LAW Eqns. (7.8) must
often be inverted to obtain the temperature from pressure or internal energy. Since Eqns (7.8), specially
the second one, can be nonlinear functions of T , the inversion must be taken numerically using a root
finder and this can be an expensive task.

In the equilibrium case, however, a faster and often more convenient approach is to have PLUTO
pre-compute tabulated versions of the EOS so as to replace expensive function evaluations with tables.
In this case no root finder is used and computations involving EOS require (direct or inverse) simpler
lookup table operations and cubic/linear interpolation (see §3.2.2 of [VMBM15]). This feature is always
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turned on by default but can be overridden through the user-defined constants PV TEMPERATURE TABLE
and/or TV ENERGY TABLE in your definitions.h (see §2.3). For example, the following definitions� �
#define PV_TEMPERATURE_TABLE YES
#define TV_ENERGY_TABLE NO
� �

tell PLUTO to replace the thermal EOS with a temperature table T = T (pi, ρj) while still using the
analytical approach (i.e. direct function evaluation or root finder) for the caloric EOS.

The tables T (pi, ρj) and ρe(Ti, ρj) are initialized at runtime and used throughout the integration. The
number of points needed to construct such tables is fixed by the constants {PV TEMPERATURE TABLE NX,
PV TEMPERATURE TABLE NY} for the first table and {TV ENERGY TABLE NX, TV ENERGY TABLE NY}
for the second one. To avoid the occurrence of spurious waves in the solution of the Riemann problem,
a monotone cubic spline is always used in the temperature grid, see Appendix C of [VMBM15].

7.4 The TAUB Equation of state

The Taub-Matthews (TM) equation of state is available to describe a relativistic perfect gas, for which
the adiabatic exponent is a function of the temperature. The actual expression for the Synge gas [Syn57]
is rather complex and PLUTO employs a quadratic approximation to the theoretical relativistic perfect
gas EOS (Γ→ 5/3 in the low temperature limit, and Γ→ 4/3 in the high temperature limit), see [MPB05,
MM07]: (

h− p

ρ

)(
h− 4

p

ρ

)
= 1 , (7.13)

where h is the specific enthalpy related to the internal energy and pressure through

h = 1 + e+
p

ρ
.



8. Nonideal Effects

In this chapter we give an overview of the code capabilities for treating dissipative (or diffusion) terms
which, at present, include

• Hall MHD (MHD), described in §8.1;

• Resistivity (MHD), described in §8.2;

• Thermal conduction (HD, MHD), described in §8.3.

• Viscosity (HD, MHD), described in §8.4;

Each modules can be individually turned on from the physics sub-menus accessible via the Python
script.

Numerical integration of diffusion processes (viscosity, resistivity and thermal conduction) requires
the solution of mixed hyperbolic/parabolic partial differential equations which can be carried out using
either a standard explicit time-stepping scheme or the Super-Time-Stepping (STS) technique, see §8.5.
Depending on the time step restriction, you may include diffusion processes by setting the correspond-
ing sub-menu choice(s) to EXPLICIT or to SUPER TIME STEPPING, respectively.

72
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8.1 Hall MHD

The Hall MHD term can be enabled from the python menu by setting HALL MHD to EXPLICIT. In Hall
MHD the electric field includes the convective term and the Hall term (see Eq. 6.6):

cE = −(v + vH)×B ,

where
vH = − J

ene
(8.1)

is the Hall velocity, ne is the electron number density and e is the (absolute value) of the electron charge.
Physically, the Hall term decouples ion and electron motion on ion inertial length scales: L � c/ωpi
where ω2

pi = 4πnie
2/mi [Hub05, TMG08].

The induction and total energy equations in the MHD system now take the form

∂B

∂t
+∇× [− (v + vH)×B] = 0

∂Et
∂t

+∇ · [(Et + pt)v −B (v ·B)− (vH ×B)×B] = 0

(8.2)

The factor ene can be defined by editing a local copy of PLUTO/Src/MHD/Hall MHD/hall ne.c which in-
cludes the function HallMHD ne():

Syntax:

double HallMHD_ne(double *v)

Arguments:

• v: a pointer to a vector of primitive variables;

The function return the desired value of ene, function of primitive variables.

Note: Units. The value of ene should be specified in dimensionless form as

ene = (ene)cgs
L0

c
√

4πρ0
(8.3)

where (ene)cgs is the c.g.s value, L0 and ρ0 are the unit length and the unit density, respectively. By
choosing L0 = c/ωpi (ion skin depth) where ωpi =

√
4πe2ni/mi is the ion plasma frequency, Eq.

(8.3) takes the simpler form

ene =
1

4π

(ne)cgs

n0
(8.4)

where n0 = ρ0/mi is the reference number density.

Test problems can be found in the PLUTO/Test Problems/MHD/Hall MHD/ directory.

At present, the Hall MHD module works only with the hllRiemann solver, DIVERGENCE CLEANING
. Time-integration is explicit and carried out in fully unsplit form by including all fluxes (convective +
Hall) simultaneously. However, due to its dispersive nature the time-step is restricted by the condition

∆t . Ca
∆x2

B/ne

with Ca . 0.25 for an explicit scheme. Future versions of the code will address these issues.
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8.2 Resistivity

The resistive module (for classical MHD) is enabled by setting RESISTIVITY to either EXPLICIT (for
time-explicit computations) or to SUPER TIME STEPPING (to accelerate explicit computations) from the
Python menu.

From Eq. (6.6), electric resistivity is modeled by introducing the resistivity tensor η so that the electric
field becomes cE = −v × B + η · J/c, where J ≡ c∇ × B is the current density. The induction and
energy equations are modified as:

∂B

∂t
+∇× (−v ×B) = −∇×

(
η · J

c

)
∂Et
∂t

+∇ · [(Et + pt)v −B (v ·B)] = −∇ · [(η · J)×B] .

(8.5)

Similarly, the internal energy equation modifies to

∂p

∂t
+ v · ∇p+ ρc2s∇ · v =

1

c2
(Γ− 1) (η · J) · J . (8.6)

The resistive tensor η is assumed to be diagonal with components

η ≡ diag (ηx1, ηx2, ηx3) . (8.7)

The module is implemented in the Src/MHD/Resistivity directory and the functional form of η can be
specified by editing your local copy of PLUTO/Src/MHD/Resistivity/res eta.c which includes the function
Resistive eta():

Syntax:

void Resistive_eta(double *v, double x1, double x2, double x3,
double *J, double *eta)

Arguments:

• v: a pointer to a vector of primitive variables;

• x1,x2,x3: local spatial coordinates;

• J: a pointer to the electric current vector;

• eta: a pointer to an array containing the three components of the resistive diagonal tensor.

The resistive module works in 1, 2 and 3 dimensions in all systems of coordinates on both uniform
and non-uniform grid, although higher accuracy can be achieved on uniform grid spacing. Both cell-
centered and staggered MHD are supported using either EXPLICIT, or SUPER TIME STEPPING inte-
gration. RK LEGENDRE methods work, at present, only with cell-centered formulation (see §8.5).

The current (∇×B computed in the function GetCurrent()) is located at cell edges and stored in the
array d->J. For cell-centered MHD, the three components of the current are later calculated at the zone
interfaces by averaging edge values (ResistiveFlux()) normal to the sweep integration direction.
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8.3 Thermal Conduction

Thermal conduction can be included for the hydro (HD) or MHD equations by introducing an additional
divergence term in the energy equation:

∂Et
∂t

+∇ · [(Et + pt)v −B (v ·B)] = ∇ · F c , (8.8)

where F c is a flux-limited expression that smoothly varies between the classical and saturated thermal
conduction regimes F class and Fsat, respectively:

F c =
Fsat

Fsat + |F class|
F class , (8.9)

see [Spi62, OBR+08].
In the MHD case, thermal conductivity is highly anisotropic being largely suppressed in the direction

transverse to the magnetic field. Denoting with b̂ = B/|B| the unit vector in the direction of magnetic
field, the classical thermal conduction flux may be written as [Bal86]:

F class = κ‖b̂
(
b̂ · ∇T

)
+ κ⊥

[
∇T − b̂

(
b̂ · ∇T

)]
, (8.10)

where the subscripts ‖ and ⊥ denote, respectively, the parallel and normal components to the magnetic
field, T is the temperature, κ‖ and κ⊥ are the thermal conduction coefficients along and across the field.
In the purely hydrodynamical limit (no magnetic field), Eq. (8.10) reduces to F c = κ‖∇T .

Saturated effects are accounted for by making the flux independent of ∇T for very large tempera-
ture gradients [Spi62, CM77]. In this limit, the flux magnitude approaches Fsat = 5φρc3iso where is the
isothermal speed of sound and φ < 1 is a free parameter. Note, however, that it is possible to suppress
saturation effects by turning the macro TC SATURATED FLUX to NO, see also Appendix C.3: in this case
F c = F class.

The coefficients appearing in Eq. (8.10), (8.9) and in the definition of the saturated flux may be spec-
ified using the function TC kappa() in (your local copy of) PLUTO/Src/Thermal Conduction/tc kappa.c
and by noting the equivalence κ‖ → ∗kpar, κ⊥ → ∗knor and φ → ∗phi. The variable ∗knor can be
ignored in the HD case, where κ = κ‖. Proper setting of units and dimensions is briefly discussed in
§8.3.1.

The thermal conduction module is implemented inside Src/Thermal Conduction and works in 1, 2
and 3 dimensions in all systems of coordinates. Derivative terms are discretized at cell interfaces using
second-order accurate finite differences and assuming a uniform grid spacing. Integration may proceed
via standard explicit time stepping or Super-Time-Stepping, see §8.5.

Note: Thermal conduction behave like a purely parabolic (diffusion) operator in the classical limit
(φ → ∞) and like a hyperbolic operator in the saturated limit (|∇T | → ∞). Thus in the general
case a mixed treatment is required, where the parabolic term is discretized using standard central
differences and the saturated term follows an upwind rule, [BTH08, MZT+12].
In this case and when Super-Time-Stepping integration is used to evolve the equations, sev-
eral numerical tests have shown that problem involving strong discontinuities may require
a reduction of the parabolic Courant number Cp (see §8.5) and a more tight coupling be-
tween the hydrodynamical and thermal conduction scale. The latter condition may be accom-
plished by lowering the rmax par parameter (§4.3) which controls the ratio between the cur-
rent time step and the diffusion time scale, see also §8.5. An example problem can be found in
Test Problems/MHD/Thermal conduction/Blast.

8.3.1 Dimensions

Equations (8.8)-(8.10) are solved in dimensionless form by expressing energy and time in units of ρ0v
2
0

and L0/v0 (respectively) and by writing temperature as T = (p/ρ)Kµ, where p and ρ are in code units
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and µ is the mean molecular weight. Here ρ0, v0, L0 are the unit density, velocity, length while K is
the KELVIN macro, see §5.1.2. The thermal conduction coefficients must be properly defined by re-
absorbing the correct normalization constants in the TC kappa() function as follows

κ→ κcgs
µmu

ρ0v0L0kB
(8.11)

where, for instance, one may use κcgs,‖ = 5.6 · 10−7T 5/2 and κcgs,⊥ = 3.3 · 10−16n2
H/(
√
TB2

cgs), both
in units of erg s−1 K−1 cm−1, while B2

cgs = 4πρ0v
2
0B

2. An example of such dimensionalization can be
found in Test Problems/MHD/Thermal Conduction/Blast.

8.4 Viscosity

The viscous stresses enter the HD and MHD equations with two parabolic diffusion terms in the mo-
mentum and energy equations. Adding the viscous stress tensor to the original conservation law, Eq.
(1.1), we obtain a mixed hyperbolic/parabolic system which, in compact form, may be expressed by the
following:

∂m

∂t
+∇ · Th = ∇ · Π

∂Et
∂t

+∇ · FE = ∇ · (v · Π)

(8.12)

where Π represents the viscous stress tensor:

Π = ν1

[
∇v + (∇v)ᵀ

]
+

(
ν2 −

2

3
ν1

)
(∇ · v)I (8.13)

Coefficients ν1 and ν2 are the first (shear) and second (bulk) parameter of viscosity respectively. The
expression above holds for an isotropic viscous stress and the resulting tensor is symmetric, with Πij =
Πji.

The diffusion fluxes on the right hand side are added (parabolic update.c) after the computation of
the hyperbolic right hand side (if EXPLICIT is chosen). In curvilinear geometries, additional geometri-
cal source terms coming from the tensor’s divergence are added to the right hand side of the equations.
On the other hand, if VISCOSITY is set to STS or RKL, advection and diffusion terms are treated sep-
arately using operator splitting, still retaining conservation form. The implementation of the previous
expressions together with the equation module can be found under the directory Src/Viscosity. Deriva-
tive terms are discretized at cell interfaces using second-order accurate finite differences and assuming
a uniform grid spacing.

With the FARGO scheme (§10.2) the viscous stress tensor is computed using the total velocity and can
be used normally, using either explicit or accelerated time stepping. The right hand side of the energy
equation is changed into

∂E

∂t
+ (...)hyp = ∇ · (vt · Π)−w · (∇ · Π) (8.14)

where vt is the total velocity and the additional term comes after subtracting the ∂t(ρw·v′) term from the
total energy (here v′ is the residual velocity). Similar arguments apply when computations are carried
out in a rotating frame of reference, §2.2.7. However, we encourage the user to perform some additional
benchmarks for these particular configurations (FARGO and/or ROTATING FRAME with viscosity), spe-
cially in cylindrical or spherical coordinates, as they have not been sufficiently tested up to now.

The viscous transport coefficients ν1 (shear) and ν2 (bulk) are defined in the function Visc nu() in
the source file PLUTO/Src/Viscosity/visc nu.c. This file should be copied from its original folder to the
actual working directory before doing any modification. The Visc nu() function has the following
syntax:

Syntax:

void Visc_nu(double *v, double x1, double x2, double x3,
double *nu1, double *nu2)
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Arguments:

• v: a pointer to a vector of primitive variables;

• x1,x2,x3: local spatial coordinates;

• *nu1: a pointer to the 1st viscous coefficient (shear);

• *nu2: a pointer to the 2nd viscous coefficient (bulk);

Even though the behaviour of these coefficients is arbitrary, according to the user’s needs, for mono-
atomic gases Molecular Theory gives ν2 = 0. The coefficient of shear viscosity ν1, on the other hand,
is usually specified with a power law behaviour with respect to the temperature (e.g. the Sutherland
formula). For more information on the analytical and numerical treatment of viscosity see [LL87] and
[Tor97]. It should be noted, nonetheless, that both transport coefficients must have dimensions of ρ ×
length2/time, for the correct control of the timestep, according to the stability condition discussed at the
beginning of this chapter.

8.5 Numerical Integration of Diffusion Terms

8.5.1 Explicit Time Stepping

With the explicit time integration, parabolic contributions are added to the upwind hyperbolic fluxes at
the same time in an unsplit fashion:

F → F hyp + F par (8.15)

where ”hyp” and ”par” are, respectively, the hyperbolic and parabolic fluxes (see also §3.1 of [MZT+12]).
Such methods are, however, subject to a rather restrictive stability condition since, in the diffusion-

dominated limit, ∆t ∼ ∆l2/η where η is the maximum diffusion coefficient, see Table 2.2 for the exact
limiting factor.

Clearly, high resolution and large diffusion coefficients may lead to drastic reduction of the time step
thus making the computation almost impracticable.

8.5.2 Super-Time-Stepping (STS)

STS, [AAG96], is a technique that considerably accelerates the standard explicit treatment of parabolic
terms. In this case parabolic terms are treated in a separate step using operator splitting and the solution
vector is evolved over a super time step, equal to the advective one. The superstep consists of N sub-
steps, properly chosen for optimization and stability, depending on the diffusion coefficient, the grid
size and the free parameter ν < 1 (STS NU):

∆tn = ∆tpar
N

2
√
ν

(1 +
√
ν)2N − (1−

√
ν)2N

(1 +
√
ν)2N + (1−

√
ν)2N

, with ∆tpar =
Cp

2

Ndim
max
ijk

(∑
d

Dd
∆l2d

) . (8.16)

Here ∆tpar is the explicit parabolic time step computed in terms of the diffusion coefficient D and phys-
ical grid size ∆l. The previous equation is solved to find N for given values of ∆tn, ∆tpar and ν. For
ν → 0, STS is asymptotically N times faster that the standard explicit scheme. However, very low val-
ues of ν may result in an unstable integration whereas values close to 1 can decrease STS’s efficiency. By
default ν = 0.01, a value which in many cases retains stability whereas giving substantial gain, see Fig
8.1. To change the default value of ν = STS NU, redefine it in the user-defined symbolic constant section
of definitions.h, see §2.3.

Stability analysis for the constant coefficient diffusion equation, [Bec92], indicates that the value of
Cp (parabolic Courant number) should be ≤ 1/Ndim (Ndim is the number of spatial dimensions) and it
may be used to adjust the size of the spectral radius for strongly nonlinear problems. A reduction of Cp
will results in increased stability at the cost of more substeps N . The default value is Cp = 0.8/Ndim but
it may be changed in your pluto.ini through CFL par, see §4.3.
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Figure 8.1: Length of a super-step (in units of the ex-
plicit one, ∆T/∆tpar) as function of the number of sub-
steps N using different values of ν = 10−3 (green, plus
sign), ν = 10−2 (red, asterisk - default), ν = 10−1 (pur-
ple, square). The upper dotted lines gives the ν → 0
limit (∆T ∝ N2), whereas the lower one represents the
explicit limit (∆T ∝ N ). If ∆T/∆tpar = 100, for ex-
ample, explicit integration would require 100 steps while
super time stepping only ≈ 21 (for ν = 10−2) or 11 (for
ν = 10−3) steps.

Since STS treats parabolic equations in an operator-split formalism, it may be advisable (for highly
nonlinear problems involving strong discontinuities) to limit the scale disparity between advection and
diffusion time scales by restricting the time step ∆tn to be at most rmax∆tpar, with ∆tpar defined by Eq.
(8.16) and rmax a free parameter, see §4.3. In this cases, rmax may be lowered by lowering rmax par in
pluto.ini from its default value (100) to 40 or even less.

Note that although this method is in many cases considerably more efficient than the explicit one,
it is found to be slightly less accurate due to operator splitting. The method is by definition first order
accurate in time, although different values of the ν parameter are found to affect the accuracy. On
the other hand, STS bypasses the severe time constraint posed by second derivative operators in high
resolution simulations.

During the STS step, momentum, magnetic field or total energy are evolved in time even if the
ENTROPY SWITCH has been enabled.

8.5.3 Runge-Kutta Legendre (RKL)

RKL is yet another explicit multistage time-stepping scheme that has extended stability properties and
improves over the standard first-order STS method in terms of both accuracy and robustness. RKL is
based on the Legendre polynomial and has been introduced by [MBA12] and a method paper for the
PLUTO code has been presented by [VPM+17] in the context of thermal conduction.

If ∆th (∝ ∆x) and ∆tp (∝ ∆x2) are, respectively, the hyperbolic and parabolic time steps, the number
of sub-stages s is given by

∆th = ∆tp
s2 + s

2
for RKL1

∆th = ∆tp
s2 + s− 2

4
for RKL2

(8.17)

Here RKL1 and RKL2 denotes the first and second-order accurate RKL method. By default, the second
order method is employed (RKL ORDER = 2, see Appendix C.3).

Several numerical benchmarks indicate that RKL yields more accurate, oscillation-free and, in some
cases, larger time steps can be taken when compared to standard STS. In addition, RKL methods do not
depend on any tunable parameter (such as ν). Using Eq. [17] and [18] of [VPM+17], we plot in Fig. 8.2
the effective parabolic CFL number Cp = ∆th/2∆tp as a function of the number of stages s. Note that
STS does not offer substantial gain with respect to an explicit scheme (Cp ∝ s) when s & 1/2

√
ν.

On the CPU side, the actual implementation of RKL methods is a factor of 20 − 40% more intensive
than STS, depending on the temporal accuracy. We refer the reader to the paper by [VPM+17] for a
thorough comparison between RKL and STS.
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Figure 8.2: Effective parabolic CFL as function of the
number of sub-steps s for STS (using ν = 10−3, red line)
RKL1 (green) and RKL2 (blue).



9. Optically Thin Cooling

PLUTO can include time-dependent optically thin radiative losses in a fractional step formalism in
which the hydrodynamical evolution and the source step are solved separately using operator splitting.
This preserves 2nd order accuracy in time if both the advection and source steps are at least 2nd order
accurate. During the cooling source step, specifically, PLUTO solves the internal energy and chemical
reaction network equations 

∂(ρe)

∂t
= −Λ(n, T,X)

∂X

∂t
= S(X, T )

(9.1)

where Λ is a cooling (or heating) term,X is an array of fractional abundances (typically ion or molecule
number fractions) andS is a reaction source term. The right-hand side of Equations (9.1) is implemented
in the function Src/Cooling/<COOLING>/radiat.c of each corresponding cooling module, except for the
POWER LAW cooling where integration is performed analytically. The user can select one among several
different cooling module by setting the COOLING flag during the python script:

• POWER LAW : power-law cooling, see §9.1;

• TABULATED: only the equation for the internal energy with a tabulated cooling function Λ(T ) is
provided. No chemical network, see §9.2;

• SNEq : cooling function for atomic hydrogen, X = {XHI}, including ionization, recombination
and collisionally excited emission lines, §9.3;

• H2 COOL: cooling function for atomic and molecular and atomic hydrogen,X = {XH2, XHI , XHII},
including ionization, recombination and collisionally excited emission lines, §9.4;

• MINEq : cooling function for atomic and molecular and atomic hydrogen treating the time-dependent
ionization state of the plasma,X = {XH , XHe, XC , XN , XNe,XO, XS}, see §9.5.

Cooling modules are implemented inside the Src/Cooling directory and require three dimensional
constants to be correctly initialized. Dimensional constants are essential to scale data values to cgs
physical units as explained in §5.1.1.

Other variables are introduced to control crucial parameters such as the maximum allowed cooling
rate in each time step, or the cutoff temperature:

• g maxCoolingRate: limit the time step so that the maximum fractional thermal losses cannot
exceed g maxCoolingRate. In general 0 <g maxCoolingRate< 1; the default is 0.1.

• g minCoolingTemp: sets the cut-off temperature below which cooling is artificially set to 0.

80



CHAPTER 9. OPTICALLY THIN COOLING 81

9.1 Power-Law Cooling

Power-law cooling is the most simple form of cooling, where the loss term in the internal energy equa-
tion becomes:

Λ = arρ
2Tα (9.2)

There are no new species when this form of cooling is selected. When an ideal equation of state is used,
the source step becomes

dp

dt
= −(Γ− 1)arρ

2−αpα
(
Kµ
)α

and since density is not affected during this step, integration is done analytically:

pn+1 =


[
(pn)

1−α −∆tC(1− α)
] 1

1−α
for α 6= 1

pn exp (−C∆t) for α = 1

(9.3)

where C = (Γ− 1)arρ
2−α(Kµ)α is a constant.

The default power law accounts for bremsstrahlung cooling by solving

dpcgs

dtcgs
= −(Γ− 1)

abr

µ2m2
H

ρ2
cgs

√
T (K) =⇒ dp

dt
= −Cρ2

√
p

ρ
(9.4)

with p, t and ρ given in code units and

C = abr
Γ− 1

(kBµmH)3/2

ρ0L0

v2
0

where ρ0, v0 and L0 are the reference density, velocity and length defined in §5.1.1 and abr = 2 · 10−27

in expressed in c.g.s. units. The implementation of this cooling step, with α = 1/2, can be found under
Src/Cooling/Power Law/cooling.c.
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9.2 Tabulated Cooling

The tabulated cooling module provides a way to solve the internal energy equation

Λ = n2Λ̃(T ) , with n =
ρ

µmu
(9.5)

when the cooling/heating function Λ̃(T ) is not known analytically but rather is available as a table
sampled at discrete (not necessarily equidistant) points, i.e., Λ̃j ≡ Λ̃(Tj). In order to use this module,
the user must provide a two-column ascii files in the working directory named cooltable.dat of the form� �

. .

. .

. .
T(j) Lambda(j)
. .
. .
. .
� �
with the temperature expressed in Kelvin and the cooling/heating function Λ̃ in ergs·cm3/s. An

example of such file1 can be found in Src/Cooling/Tab/cooltable.dat. As usual, the dimensionalization is
done automatically by the cooling module, once UNIT DENSITY, UNIT LENGTH and UNIT VELOCITY
have been defined in Init().

Alternatively, the TABULATED cooling module can be used to provide a user-defined cooling func-
tion,

Λ = Λ(V ) , (9.6)

where V is a vector primitive variables. The explicit dependence of Λ can be given by i) copying Src/-
Cooling/Tab/radiat.c into your local working directory and ii) make the appropriate changes.

1Generated with Cloudy 90.01 for an optically thin plasma and solar abundances, thanks to T. Plewa.
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9.3 Simplified Non-Equilibrium Cooling: SNEq

This module is implemented in the Src/Cooling/SNEq directory and introduces a new variable, with
index X HI used to label the fraction of neutrals xHI :

xHI =
nHI
nH

. (9.7)

You can assign the fraction of neutrals by setting, in the usual fashion� �
v[X_HI] = 0.2; /* for example */
� �

in your Init() function. The fraction of neutrals is treated as a passive scalar during the hydro step
while it is governed by the following ODE during the cooling step:

∂xHI
∂t

= S = ne

[
− (cr + ci)xHI + cr

]
(9.8)

together with the energy equation

∂(ρe)

∂t
= −Λ = −nenH

(
k=16∑
k=1

jk + wi/r

)
(9.9)

where ne = nH(1 − xHI + xZ) is the electron number density while xZ (= 10−3 by default) is the
fractional number density of metals. In Eq. (9.9) the summation over k accounts for 16 different line
emissions coming from some of the most common elements, k = Ly α, H α, HeI (584+623), CI (9850 +
9823), CII (156µ), CII (2325Å), NI (5200 Å), NII (6584 + 6548 Å), OI (63µ), OI (6300 + 6363 Å), OII (3727),
MgII (2800), SiII (35µ), SII (6717 + 6727), FeII (25µ), FeII (1.6µ).

The coefficient jk in (9.9) has dimensions of erg/sec cm3 and is computed from

jk =
~2
√

2π√
kBmeme

fkq12
hνk

1 + ne(q21/A21)

where k is the index of a particular transition, fk = nk/nH is the abundance for that particular species.
Here

q12 =
8.6 · 10−6

√
T

Ω12

g1
exp

(
− hνk
kBT

)
, q21 =

8.6 · 10−6

√
T

Ω21

g2

where Ω12 = Ω21 is the collision strength and is tabulated.
In Eq. (9.9) wi/r represents the thermal energy lost by ionization and recombination:

wi/r = ci × 13.6× 1.6 · 10−12xHI + cr × 0.67× 1.6 · 10−12(1− xHI)
T

11590

where cr and ci are the hydrogen ionization and recombination rate coefficients:

cr =
2.6 · 10−11

√
T

; ci =
1.08 · 10−8

√
T

(13.6)2
exp

(
−157890.0√

T

)
.
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Table 9.1: Summary of the chemistry reaction set. T is the temperature in Kelvin, TeV is the temperature
in electron-volts and T2 = T/100

No. Reaction Rate Coefficient (cm3s−1) Reference a

1. H + e−→ H+ + 2e− k1 = 5.84× 10−11T 0.5 exp(−157, 809.0/T ) 1

2. H+ + e−→ H + hν k2 = 2.6× 10−11T−0.5 1

3. H2 + e− → 2H + e− k3 = 4.4× 10−10T 0.35 exp(−102, 000.0/T ) 2

4. H2 + H→ 3H k4 = 1.067× 10−10T 2.012
eV

exp[(−4.463/TeV)(1 + 0.2472TeV)3.512] 3

5. H2 + H2→ H2 + 2H k5 = 1.0× 10−8exp(−84, 100/T) 4

6. H + H dust−→ H2 k6 = 3.0× 10−17
√
T2(1.0 + 0.4

√
T2 + 0.2T2 + 0.08T 2

2 ) 5

aREFERENCES – (1) [RBMF97] [Eq. 1e] (2) [GP98] [Eq. H17]; (3) [AAZN97] [Tab. 3 Eq. 13]; (4) [WAMM07] [UMIST Database]
(5) [HM79] [Eq. 3.8]

9.4 Molecular Hydrogen Non-Equilibrium Cooling: H2 COOL

This module is implemented in the Src/Cooling/H2 COOL directory and introduces three new variables,
with index X HI, X H2 and X HII used to label the fraction of atomic hydrogen, molecular hydrogen
and ionized hydrogen respectively as follows:

xH2 =
nH2

nH
, xHI =

nHI
nH

, xHII =
nHII
nH

,

where, the total hydrogen number density nH = nHI + nHII + 2nH2
.

You can assign these hydrogen fractions, in a similar manner like the SNEq module,� �
/* for example */
v[X_HI] = 0.2;
v[X_H2] = 0.4;
v[X_HII] = 1.0 - v[X_HI] - 2.0*v[X_H2];
� �

in your Init() function. Note, the value of v[X H2] should be between 0.0 and 0.5, while the remain-
ing two hydrogen fractions can have values ranging from 0.0 to 1.0, such that their sum is conserved.

The chemical evolution of molecular, atomic and ionized hydrogen is governed by equations listed
in Table 9.1. The number density of various hydrogen forms are determined by solving the chemical
rate equations, which have a general form as,

dni
dt

=
∑
j,k

kj,knjnk − ni
∑
j

ki,jnj , (9.10)

where, n is the number density, kj,k is the rate of formation of ith specie from all j and k species and ki,j is
the rate of destruction of ith specie due to all j species.

The code integrates the three hydrogen fractions defined above using the advection equation of the
form:

∂Xi

∂t
= −v · ∇Xi + Si , (9.11)

where the first term on the rhs is treated during the hydro step while only the second is integrated during
the cooling step. The source terms Si is essentially the difference between formation and destruction rate
of a particular specie (see eq.9.10). Additionally, the internal energy losses take into accounts various
hydrogen cooling processes,

Λ = ΛCI + ΛRR + Λrotvib + ΛH2diss + Λgrain, (9.12)

where, ΛCI and ΛRR are losses due to collisional ionization and radiative recombination respectively.
The remaining terms, Λrotvib, ΛH2diss and Λgrain are associated with molecular hydrogen and represent
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Figure 9.1: Variation of the radia-
tive cooling functions Λi with tem-
perature due to various processes
that can affect the total energy of a
gas comprising of atomic, molecu-
lar and ionized hydrogen. Here the
total number density n is set to be
105cm−3, while the fractions of dif-
ferent hydrogen species are : X HI
= 0.835, X H2 = 0.0823 and X HII =
0.0004

losses due to rotational-vibrational cooling, dissociation and gas-grain processes. Their variation with
temperature for a particular set ofm hydrogen fractions is shown in fig.9.1. Depending on the require-
ment, the user can add more components to the cooling function, for e.g., cooling due to fixed fractions
of standard molecules like CO, OH, H2O etc or contributions from collisional excitation of lines as indi-
cated in the SNEq module.
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9.5 Multi-Ion Non-Equilibrium Cooling: MINEq

This module computes the dynamical evolution and ionization state of the plasma using the multi-ion
model of [TMM08] including with 28 ion species namely HI, HeI HeII and the first five ionization stages
of C,N,O,Ne and S. For each ion, PLUTO introduces an additional variable – the fractional abundance
of the ion with respect to the element it belongs:

Xion =
nion

nelem
.

The names of the additional variables for the corresponding species are: X HI, HeI, HeII, X CI, X CII,
X CIII, X CIV, X CV, X NI, X NII, X NIII, X NIV, X NV, X OI, X OII, X OIII, X OIV, X OV, X NeI,
X NeII, X NeIII, X NeIV, X NeV, X SI, X SII, X SIII, X SIV, X SV. Ionized hydrogen is simply 1 −
v[X HI]. You can assign the fraction of any ion specie by setting, in the usual fashion

v[X_HeII] = 0.2; /* for example */

in your Init() function.
The fractions of all ion species can also be automatically set for equilibrium conditions using the

CompEquil() function in Src/Cooling/MINEq/comp equil.c:

double CompEquil (double N, double T, double *v)

where N and T are the plasma number density and temperature respectively and *v is a vector of
primitive variables. The function will return the electron density as output, and *v will contain the
computed ionization fractions (the other variables are not affected). The routine solves the system of
equations for abundances in equilibrium.

Note: The number of ions for C, N, O, Ne and S may be reduced from 5 to a lower number (>
1) by editing Src/Cooling/MINEq/cooling.h. This may reduce computational time if the expected
temperatures are not large enough to produce high ionization stages (e.g. IV or V if T < 105K).
The current default value is 3.

The elements abundances are set in radiat.c from the Src/Cooling/MINEq/ folder. When using the
MINEq module, the cooling coefficients tables are generated at the beginning of the simulation by the
routines in Src/Cooling/MINEq/make tables.c. Update or customization of the atomic data can be done by
editing this file.

The ion fractions are integrated through advection equations of the form:

∂Xi

∂t
+ v · ∇Xi = Si , (9.13)

where the source term Si is computed taking into account collisional ionization, radiative and dielec-
tronic recombination, as well as charge-transfer with H and He processes, see [TMM08]. Similarly, the
energy loss term is

Λ =
[
natnelΛ1 (T,X) + LFF + LI−R

]
, Λ1(T,X) =

∑
k

XkLk(nel, T )Bk , (9.14)

where Bk is the fractional abundance of the element, and

Lk =
∑
i

Ni
∑
j<i

Aijhνij , (9.15)

is the total cooling for one ion specie, that is computed and saved to external files by the tables generation
program, then loaded at runtime.

In Eq. (9.14), LFF and LI−R represent the energy losses in bremsstrahlung and ionization/recombi-
nation processes respectively, nat and nel are the total atom and electron number densities respectively.

MINEq uses a dynamically switching integration algorithm for the ion species and energy designed
to maximize the accuracy while keeping the computational cost as low as possible.



10. Additional Modules

10.1 The ShearingBox Module
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Figure 10.1: Schematic representation of the shearing
boundary condition. The computational domain (central
box) is assumed to be surrounded by identical boxes slid-
ing with constant velocity w = |qΩ0Lx| with respect to
one another.

The shearingbox provides a local model of a differentially rotating system obtained by expanding
the tidal forces in a reference frame co-rotating with the disk at some fiducial radius R0. The validity
of the approximation (and of the module itself) is restricted to a Cartesian box (considered small with
respect to the global flow) with a steady flow consisting of a linear shear velocity,

vy = −qΩ0x , with q = −d log Ω(R)

d logR

∣∣∣∣
R=R0

(10.1)

where Ω0 is the local constant angular velocity and q is a local measure of the differential rotation (q =
3/2 for a Keplerian profile). The module solves the HD or MHD equations in a non-inertial frame so
that the momentum and energy equations become

∂(ρv)

∂t
+∇ · (ρvv −BB) +∇pt = ρgs − 2Ω0ẑ × ρv

∂E

∂t
+∇ · [(E + pt)v − (v ·B)B] = ρv · gs ,

(10.2)

where gs = Ω2
0(2qxx̂ − zẑ) is the tidal expansion of the effective gravity while the second term in Eq.

(10.2) represents the Coriolis force. The continuity and induction equations retain the same form as the
original system.

While the computational box should be periodic in the azimuthal (y) direction, radial (x) boundary
conditions are determined by ”image” boxes sliding with relative velocity w = |qΩ0Lx| relative to the
computational domain, Fig 10.1. In other words, the boundary conditions at the left/right x-boundaries
are {

q(x, y, z, t) = q (x± Lx, y ∓ wt, z, t)

vy(x, y, z, t) = vy (x± Lx, y ∓ wt, z, t)± w ,
(10.3)

where q is any other flow quantities except vy .
The ShearingBox module is implemented inside Src/MHD/ShearingBox and works, at present, with

the HD equations or with CONSTRAINED TRANSPORT MHD. Parallelization can be performed in all
three spatial dimensions.
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10.1.1 Using the module

The shearingbox module is enabled by invoking the Python setup script with the --with-sb option. It
is compatible with the ISOTHERMAL or IDEAL equations of state.

Initial conditions are specified, as usual, in the Init() function where the orbital speed must be set
to vy = −qΩ0x. A simple example corresponding to ρ = 1, p = c2sρ and plasma β = 103 is given below:� �
cs = 1.0; /* Isothermal sound speed */
v[RHO] = 1.0;
v[VX1] = 0.0;
v[VX2] = -SB_Q*SB_OMEGA*x1; /* Orbital velocity */
v[VX3] = 0.0;

#if EOS == IDEAL
v[PRS] = v[RHO]*cs*cs;

#elif EOS == ISOTHERMAL
g_isoSoundSpeed = cs;

#endif
#if PHYSICS == MHD
beta = 1.e3;
v[BX1] = 0.0;
v[BX2] = 0.0;
v[BX3] = cs*sqrt(2.0/beta); /* Vertical field (net flux) */

#endif
� �
The numerical values of q and Ω0 are prescribed using the macros SB Q and SB OMEGA which, if not
specified, take the default value of 3/2 and 1, respectively. Values different from the default ones can be
specified in “user-defined constants” section of your definitions.h as explained in §2.3.

Only gravitational forces must be given through the BodyForceVector() function since Coriolis
term are separately included by PLUTO . An example containing several configurations can be found
in the Test Problems/MHD/Shearing Box/ directory.

Boundary conditions must be prescribed as shearingbox at the X1 BEG and X1 END boundaries,
periodic in the azimuthal (y) direction but can be freely assigned in the vertical direction z.

Compatibility with the FARGO module. The shearingbox module is fully compatible with the FARGO
algorithm and a significant gain may be obtained for boxes with large aspect ratio (Lx � Lz). To enable
both modules, you must invoke the python script with the --with-sb and the --with-fargo options.
If you’re using FARGO, background and residual velocities must be separately described in your Init()
function, see §10.2.

Note also that with FARGO the source terms in the momentum and energy Shearing-Box equations
are slightly different [MFS+12, SG10]:

Sm =
[
2Ω0ρv

′
y

]
î+

[
(q − 2)Ω0ρvx

]
ĵ +

[
− ρΩ2

0z
]
k̂

SE = (ρv′yvx −ByBx)qΩ0 + ρvz(−Ω2
0z)

The radial gravity disappears and only the vertical component of gravity must be included in the
BodyForceVector() or BodyForcePotential() functions. The additional term in the energy equa-
tion represents the work done by Reynolds and magnetic stresses because of the radial shear [SG10].
This term is accounted separately for during the FARGO transport step.
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10.2 The FARGO Module

The FARGO module permits larger time steps to be taken in those computations where a (grid-aligned)
supersonic or super-fast dominant background orbital motion exists, see [MFS+12].

The algorithm decomposes the total velocity into an average azimuthal contribution and a residual
term,

v = w + v′ (10.4)

where w is a background velocity field that must be solenoidal and not depend on the coordinate cor-
responding to the transport direction and v′ is called the residual velocity. The MHD or HD equations
are solved in two steps: i) a linear transport operator corresponding to the velocityw in the direction of
orbital motion and ii) a standard nonlinear solver applied to the original equations written in terms of
the residual velocity v′.

The Courant condition is then computed only from the residual velocity, leading to substantially
larger time steps. In [MFS+12] it has been shown that if the characteristic velocity of fluctuations are
comparable in magnitude than the expected gain in polar coordinates is, roughly,

∆tF
∆ts

≈
max
ijk

[
1

∆R
+
M + 1

R∆φ
+

1

∆z

]
max
ijk

[
1

∆R
+

1

R∆φ
+

1

∆z

] , (10.5)

where ∆tF and ∆ts are the FARGO time step and the standard time step, respectively, whereas M =
|w|/λ′ and λ′ = |v′d|+ cf,d is the characteristic speed in the êd direction.

The discretization is fully conservative in both angular momentum and total energy. The MHD
module works only with the Constrained Transport (CT) method to control divergence-free condition.

10.2.1 Using the Module

The FARGO module is implemented in the directory Src/Fargo/ and can be enabled by invoking the
python script with the --with-fargo option. It works in Cartesian, polar and spherical coordinates
with all time stepping scheme.

Starting with PLUTO 4.4, the background velocity and the residual are initially assigned in Init()
function, e.g.� �

#ifdef FARGO
v[FARGO_W] = -SB_Q*SB_OMEGA*x; /* Background velocity */
v[VX2] = dvy; /* Residual */
#else
v[VX2] = -SB_Q*SB_OMEGA*x + dvy; /* Standard assigment */
#endif
� �

Throughout the computation, PLUTO will always use the residual velocity and any user-defined bound-
ary condition must also prescribe v′ (that is, the residual). During the evolution, v′ andwmay be recom-
puted every fixed number of time steps set by the macro FARGO NSTEP AVERAGE (default is 10). This
operation is done by first averaging the total azimuthal velocity vy or vφ along the corresponding orbital
direction and then updating the residual. However, if FARGO NSTEP AVERAGE is set to −1, PLUTO
will never recompute the background speed which will then preserve its initial value (this is the default
when FARGO is used together with the shearing box module §10.1).

The linear transport step is implemented by the function FARGO ShiftSolution() and the order
of reconstruction used during this step is set by the constant FARGO ORDERwhich, by default, is 3 (third-
order PPM).

Output files are written using the total velocity (FARGO OUTPUT VTOT set to YES) or the residual
(FARGO OUTPUT VTOT set to NO, default)1. In addition, to ensure that restart operations are done cor-
rectly (only with double precision binary files and when FARGO NSTEP AVERAGE is set to a positive

1Saving the total velocity may result in slightly different results when restarting, due to arithmetic roundoff in the subtraction
step following restart.
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value), the orbital speed is also written to disk (both with active and ghost zones) with the same fre-
quency used by .dbl datafiles. Datafiles are named as wFargo.nnnn.dbl where nnnn is a four-digit padded
integere following the same rules used by standard binary output.

The default value of the various switches can be changed by adding the corresponding pre-processor
#define directive to your definitions.h, see Appendix §C.3.

The FARGO module is typically used to model supersonic accretion disks and test problems can
be found in the directory Test Problems/HD/Disk Planet/ (configurations #2, #4 and #6) as well as in
Test Problems/MHD/FARGO/Spherical Disk/. For more information see the test problem documentation
at Doc/test problems.html).

10.2.2 A Note on Parallelization

The FARGO-MHD algorithm is fully parallelized in all coordinate directions with the requirement that
the number of zones per processor in the orbital direction must be larger than the expected transport
shift denoted with m.

With a large number of processors (& 2048), the resulting auto-decomposition mode may result in
sub-domains that violate this condition and an error message is issued. To avoid this problem you can
specify the parallel decomposition manually using the -dec n1 [n2] [n3] command line argument
(§1.4.2) and ensure that not too many processors are used along the φ direction. As an example, suppose
you wish to use 4096 processors but only 8 along the orbital direction (x2). You may specify the domain
decomposition by giving, say, 32, 8 and 16 in the three directions with

mpirun -np 4096 ./pluto -dec 32 8 16
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10.3 The Radiation RMHD (RadRMHD) Module

The RadRMHD module couples the conservation laws of RHD or RMHD fields to a system of frequency-
averaged radiation transport equations, following a two-moment approach described in [MM19]. Four
evolution equations are added to those of RHD/RMHD, computing the evolution of the radiation en-
ergy density, Er, and the three components of the radiation flux, F r, in the following way:

∂

∂t



D

m

Et

B
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F r


+∇ ·



Dv

wtγ
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m

vB −Bv
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0

G0

G

0

−G0

−G


(10.6)

(see Eq. (6.13)). The components of the radiation pressure Pr are defined as a function of (Er,F r) by
means of the M1 closure by [Lev84], as

P ij = Er

(
1− ξ

2
δij +

3ξ − 1

2
ninj

)
, ξ =

3 + 4f2

5 + 2
√

4− 3f2
, (10.7)

where n = F r/|F r|, f = |F r|/Er, and δij is the Kronecker delta. The radiation-matter interaction terms
(G0,G) are defined in terms of the primitive fields by boosting into the Eulerian frame their comoving
values, given by

(G0,G)comov = ρ
[
κ(Er − aRT 4), (κ+ σ)F r

]
comov

, (10.8)

where all fields are measured in the fluid’s comoving frame. In this equation, κ and σ are respectively
the frequency-averaged absorption and scattering coefficients, aR is the radiation density constant, and
T is the fluid’s temperature. All fields and constants must be defined by the user in non-dimensional
way according to the scales that are introduced when including the source terms. Using the notation of
§5.1.1, cgs and non-dimensional code quantities can be related in the following way:

Er =
Er,cgs
ρ0v2

0

, F r =
F r,cgs
ρ0v3

0

, κ = κcgsρ0L0 , aR =
aR,cgs
ρ0v2

0/T
4
0

, (10.9)

where T0 is the reference temperature and v0 = c.
The gas energy is computed by applying the IDEAL or TAUB EOS. If magnetic fields are included,

the divergence-free condition can be enforced by applying either Hyperbolic Divergence Cleaning or
Constrained Transport (see §6.2.2.2 and §6.2.2.3).

10.3.1 Using the module

The RadRMHD module can be turned on by setting the RADIATION switch to YES in the RHD or RMHD
sub-menus. The module can be used in both the static and AMR versions of PLUTO .

The radiation fields are initialized in Init() or InitDomain() using the indices ENR, FR1, FR2,
and FR3 (see Table 10.1). Although these indices can be used in any coordinate system, an alternative
set can be used in curvilinear coordinates to avoid confusion (see columns 2-4 in Table 10.1). Boundary
conditions for (Er,F r) can be defined either in pluto.ini in the same way as those assigned to (ρ,v) or in
UserDefBoundary() if the boundary is set as userdef.

Three possible Riemann solvers can be selected for the explicit integration of radiation fluxes. The
solver for the radiation subsystem is defined independently from the RHD/RMHD solver by setting
the RadSolver tag in the [Solver] block of pluto.ini, as described in §4.4. All reconstruction methods
available in PLUTO can be used. Additional integration options can be found in Table C.1.
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Index Cylindrical Polar Spherical Quantity

ENR - - - radiation energy density

FR1 iFRR iFRR iFRR x1-radiation flux

FR2 iFRZ iFRPHI iFRTH x2-radiation flux

FR3 iFRPHI iFRZ iFRPHI x3-radiation flux

Table 10.1: Additional array indices used for labeling primitive variables in the RadRMHD module.

10.3.1.1 Opacities and source terms

The opacity coefficients κ and σ in Eq. (10.8) can be defined either as constants or as user-defined
functions of the primitive fields. In the first case, the values of κ and σ must be specified in Init() or
InitDomain() using respectively the global variables g absorptionCoeff and g scatteringCoeff.
The second case is selected by defining the switch RADIATION VAR OPACITIES as YES in definitions.h,
and defining in init.c a function UserDefOpacities() of the form

void UserDefOpacities(double *v, double *abs, double *scat) ,

where *v is a pointer to a vector of primitive variables, while *abs and *scat are pointers used to
store the resulting absorption and scattering coefficients. As an example, the Kramers’ opacity law
κ ∝ ρ T−7/2 with σ = 0 can be defined in the following way:� �
#if RADIATION_VAR_OPACITIES
void UserDefOpacities (double *v, double *abs, double *scat)
{
double T ;

T = GetTemperature (v[RHO],v[PRS]) ;

*scat = 0.0 ;

*abs = v[RHO] * pow(T,-3.5) ;
}
#endif
� �
In this example, the gas temperature is computed as T = cI p/ρ by means of the built-in function
GetTemperature():

void GetTemperature(double rho, double prs) ,

where the proportionality constant cI must be defined in Init() or InitDomain() in the global vari-
able g idealGasConst in such a way that

cI =
cI,cgs
T0/v2

0

. (10.10)

If T0 = K, this can achieved for instance through the macro KELVIN (see §5.1.2) by specifying the molec-
ular weight µ, as cI = Kµ. Another useful function is Blackbody():

void Blackbody(double temperature) ,

which returns the value of aR T 4 taking as input the value of T . The value of aR is defined in Init()
or InitDomain() in the global variable g radiationConst. Note that both g idealGasConst and
g radiationConstmust be always defined in init.c regardless of the value of RADIATION VAR OPACITIES,
otherwise being initialized as 1.
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10.4 High-order Finite Difference Schemes

An alternative to the Finite Volume (FV) methodology presented in the previous chapters and to the
reconstruction algorithms described in Chapter 2 is the employment of conservative, high-order Finite
Difference (FD) schemes. 3rd and 5th order accurate in space interpolation can be used in PLUTO ,
invoking setup.py with the following extension:

˜/MyWorkDir > python $PLUTO_DIR/setup.py --with-fd

The available options in RECONSTRUCTION will now be

• LIMO3 FD: third-order reconstruction of [ČT09];

• WENO3 FD: an improved version of the classical third-order WENO scheme of [JS96] based on new
weight functions designed to improve accuracy near critical points [YC09];

• WENOZ FD: improved WENO5 scheme proposed by [BCCD08];

• MP5 FD : the monotonicity preserving scheme of [SH97] based on a fifth-order interface value;

The use of high-order FD schemes is subject to some restrictions:

• The allowed modules are HD and MHD (special relativistic counterparts are not yet implemented).

• In the case of the MHD module, only cell centered magnetic fields are supported, i.e. DIV CLEANING.

• Temporal integration can be performed only with RK3.

• Only Cartesian coordinates are supported (in any number of dimensions).

FD schemes are based on a global Lax-Friedrichs flux splitting and the reconstruction step is per-
formed (for robustness issues) on the local characteristic fields computed by suitable projection of the
positive and negative part of the flux onto the left conservative eigenvectors. For this reason, these
schemes are more CPU intensive than traditional FV schemes (approximately a factor 2 to 3.5) although
can achieve the same accuracy with much fewer points.

Unlike the FV schemes currently present in PLUTO (possessing an overall 2nd order accuracy),
schemes provided by the conservative FD module are genuinely third- or fifth- order accurate. The
latter, in particular, have shown [MTB10] to outperform traditional second-order TVD schemes in terms
of reduced numerical dissipation and faster convergence rates for problem involving smooth flows.
Figure 10.2 shows, as a qualitative example, a comparison between traditional FV methods (such as
Muscl-Hancock or PPM) and some FD methods on a problem involving circularly polarized Alfven
waves (see Test Problems/MHD/CP Alfven). Although FD schemes can correctly describe discontinuities,
the advantages offered by their employment are more evident in presence of smooth flows.

10.4.1 WENO schemes

The WENO schemes are based on the essentially non-oscillatory (ENO) schemes, originally developed
by [HEOC87] using a finite volume formulation and later improved by [SO89] into a finite difference
form. Unlike TVD schemes that degenerate to first order at smooth extrema, ENO schemes main-
tain their accuracy successfully suppressing spurious oscillations. This is accomplished utilizing the
smoothest stencil among a number of candidates to compute fluxes at the cell faces.

WENO schemes are the natural evolution of ENO schemes, where a weighted average is taken
from all the stencil candidates. Weights are adjusted by local smoothness indicators. Originally de-
veloped by [LOC94] for 1-D finite volume formulation, WENO schemes were then implemented in
multi-dimensional FD by [JS96], optimizing the original weighing for accuracy.

Currently, the available WENO schemes in PLUTO are the 5th order WENOZ of [BCCD08] which
improves over the original one [JS96] in that it is less dissipative and provide better resolution at critical
points at a very modest additional computational cost. A third order WENO scheme is also provided,
namely WENO+3 of [YC09]. More details can be found in the paper by Mignone, Tzeferacos & Bodo
[MTB10].
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Figure 10.2: Long term (numerical) de-
cay of a circularly polarized Alfven wave
on a 2D periodic domain with [120 × 20]
zones. The different curves plot the max-
imum value of Bz as a function of time
and thus give a measure of the intrinsic nu-
merical dissipation. Selected finite volume
schemes employing constrained transport
(CT) are: MUSCL-HANCOCK (MH+CT),
Runge Kutta 2 (RK2+CT) and PPM+CT. Fi-
nite difference schemes employ the GLM
formultation and are, respectively, given by
WENO3, WENOZ and MP5.

10.4.2 LimO3 & MP5

As an alternative to the previously described WENO schemes, LimO3 and MP5 interpolations are also
available. The former is a new and efficient third order limiter function, proposed by [ČT09]. Utilizing
a three-point stencil to achieve piecewise-parabolic reconstruction for smooth data, LimO3 preserves
its accuracy at local extrema, avoiding the well known clipping of classical second-order TVD limiters.
Note that this reconstruction is also available in the finite-volume version of the code.

PLUTO ’s MP5 originates from the monotonicity preserving (MP) schemes of [SH97], which achieve
high-order interface reconstruction by first providing an accurate polynomial interpolation and then
by limiting the resulting value in order to preserve monotonicity near discontinuities and accuracy in
smooth regions. The MP algorithm is better sought on stencils with five or more points in order to
distinguish between local extrema and a genuine O(1) discontinuities.

For an inter-scheme comparison and more information on their implementation with the MHD-GLM
formulation, consult [MTB10].



11. Particles

The static version of PLUTO comes with a fully parallel module supporting different kinds of particles,
enabling gas-particle hybrid numerical schemes. A specific particle type is selected directly from the
Python script (§2.1.9) by setting PARTICLES to either

• PARTICLES CR: cosmic ray particles [MBVM18]. This implementation is appropriate to capture
the dynamical evolution of a plasma consisting of a thermal fluid and a non-thermal component
represented by relativistic charged particles, §11.2;

• PARTICLES DUST: The dust module [MFV19] describes the physics of dust grains coupled to the
gas via drag forces and it is mainly intended for the numerical modeling of protoplanetary disks
in which solid and gas interact via aerodynamic drag, §11.3.

• PARTICLES LP: Introduces Lagrangian, tracer-like particles embedding sub-grid electron physics
[VMB+18]. Specifcally designed to address the problem of non-thermal emission from highly
energetic particles (typically electrons) embedded in a large-scale classical or relativistic MHD
flow, §11.4.

Particles are described by the Particle structure and stored into memory using a doubly linked
list, consisting of sequentially linked node structures as in Fig. 11.1. Each node contains the particle
itself and pointers to the previous and to the next node in the sequence. In a linked list, elements can
be inserted or removed in a straightforward way and shuffling operations can be easily performed by
changing pointers.

Figure 11.1: Doubly linked list structure. Here p rep-
resents a Particle structure.

As an example, in order to count the number of particles in the list, we use the following piece of
code:� �
particleNode* CurNode = d->PHead;

int cnt = 0;
while(CurNode != NULL){

cnt++;
CurNode = CurNode->next;

}
� �
where d->PHead contains the starting node.

A particle structure may contain several fields, depending on the selected particle type. While differ-
ent particle types have different structure members, some of these are common to all types. Table 11.1
described the most important fields. The [Particles] block in pluto.ini (see §4.8) controls both the number
of particles to be initialized and the output frequency.

95
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Field Particle Description

p->coord[] All A 3 element array (in double precision) giving the particle coordinates. Supplied by the
user.

p->speed[] All
A 3 element array (in double precision) giving the particle velocity vector. For the CR
module, p->speed[] represents the particle four-velocity. Supplied by the user (except
when PARTICLES == PARTICLES LP).

p->tinj All The creation (or injection) time. Set by the code.

p->color All
A free scalar typically used to label particles (e.g. depending on the region they were cre-
ated). Supplied by the user.

p->cell All An array of three integers giving the index of the zone hosting the particles. Set by
Particles GetWeights().

p->id All
An integer to uniquely identify the particle once it is created. Identities increase sequen-
tially as particles are created. Set by the code.

p->mass CR, Dust The particle mass (not density).

p->tau s Dust The particle stopping time.

p->nmicro LP+S Total number of micro-particles per unit volume (double).

p->cmp ratio LP+S The compression ratio at shocks (double).

p->shk gradp LP+S Gradient of pressure while the particle is crossing a shock (double).

p->cr LP+S A parameter that controls losses to synchrotron/IC process (double).

p->shkflag LP+S A flag that determines if the particle is inside the shock or not (int).

p->chi[] LP+S

An array that represents the number of micro-particles (leptons) per unit volume dis-
tributed (normalized to the fluid density) in the energy bins (double). The number of
elements if set by the constant PARTICLES LP NEBINS (100 by default). For example, for
a power-law spectra its an array ofN (E) ∝ E−s, where E is the spectral energy.

p->eng[] LP+S

An double-precision array containing values of spectral energies in code units. The number
of array elements is set by the constant PARTICLES LP NEBINS sets the total number of
bins (= 100 by default). To obtain the values of energies in physical units each energy bin
has to be multiplied with PARTICLES LP SPEC ENERGY specified in ergs. Its default value
is 0.01 ergs.

Table 11.1: Particle structure members. Here p is intended as a pointer to a particle structure while “All”, “CR”, “Dust” and
“LP+S” refers to fields that are available, respectively, for all particles, cosmic rays, dust and Lagrangian with spectra.

11.1 Initial, Boundary and Injection conditions

Particles initial and boundary conditions as well as injection criteria can be specified using the functions
available in PLUTO/Src/Particles/particls init.c (a local copy of the file is strongly recommended).

11.1.1 Initial Condition

The function Particles Init() allows the user to specify the particles’ initial coordinates and veloc-
ities inside the computational domain. Note that LAGRANGIAN particles do not require velocity to be
set.

There are two possible initialization methods: global or cell-by-cell, which can be enabled from your
pluto.ini initialization file (§4.8).

1. Global Initialization. In a global initialization Nglob is the global number of particles to be dis-
tributed in the computational domain. The following example provides a simple uniform initial-
ization using the global method:
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� �
void Particles_Init(Data *d, Grid *grid)
{

int i,j,k, np;
int np_glob = RuntimeGet()->Nparticles_glob;
static int first_call = 1;
Particle p;

if (first_call) RandomSeed(time(NULL),0); /* Seed random number */
first_call = 0;

if (np_glob > 0){

for (np = 0; np < np_glob; np++){

/* -- Spatial distribution -- */
Particles_LoadUniform(np, np_glob, grid->xbeg_glob, grid->xend_glob, p.coord);

#if PARTICLES == PARTICLES_CR
p.speed[IDIR] = RandomNumber(-1,1);
p.speed[JDIR] = RandomNumber(-1,1);
p.speed[KDIR] = RandomNumber(-1,1);
#endif
...
Particles_Insert (&p, d, PARTICLES_CREATE, grid);

}
}
Particles_SetID(d->PHead);

}
� �
The function Particles LoadUniform() attempts to place uniformly np glob particles inside
the computational domain. This variable is read from the initialization file pluto.ini and it is recalled
using the function RuntimeGet(). The function RandomNumber() generates uniform deviates
in the range specified by the arguments and it is used, in the above example, to initialize the
velocity of CR particles1. When all of the attributes have been set, the particle is finally inserted
into the linked list using Particles Insert(). The last function call to Particles SetID()
is optional and serves to set a unique id to newly created particles.

Spatial and/or velocity distributions may also be initialized to follow an assigned probability
distribution function. This is achieved using the Particles LoadRandom() function which is
based on a simple acceptance-rejection method.
As an example, consider placing N particles following a 2D Gaussian distribution on a Cartesian
grid. You may then call Particles LoadRandom() by passing, as an argument, a reference to
the function Particles SpaceDistrib()which implements the desired Gaussian distribution:� �
void Particles_Init(...)
{

...

for (np = 0; np < np_glob; np++){
...
Particles_LoadRandom (xbeg, xend, Particles_SpaceDistrib, p.coord);
...

}
...

}

double Particles_SpaceDistrib(double x, double y, double z)
{

/* -- Gaussian distribution -- */

double mu_x = 2.5;
double mu_y = 1.0;
double sigma_x = 0.5;
double sigma_y = 0.25;
double exp_fact = 0.5*(x-mu_x)*(x-mu_x)/(sigma_x*sigma_x)

+ 0.5*(y-mu_y)*(y-mu_y)/(sigma_y*sigma_y);
return 1.0*exp(-exp_fact);

}
� �
This example is taken from Test Problems/Particles/LP/Planar Shock.

1 The prng sequence is seeded through the call to RandomSeed(). PLUTO provides some pseudo random-number function-
ality in Src/Math Tools/math random.c, plase consult the documentation in Doc/math tools.html.
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2. Cell-by-Cell Initialization Conversely, in a cell-by-cell initialization, Ncell particles are assigned
to each cell, resulting in a total of Ncell × Nx × Ny × Nz particles. An example suitable for CR
particles:� �
void Particles_Init(Data *d, Grid *grid)
{

int i,j,k, np, dir;
int np_cell = RuntimeGet()->Nparticles_cell;
static int first_call = 1;
double xbeg[3], xend[3];
Particle p;

if (first_call) RandomSeed(time(NULL),0);
first_call = 0;

if (np_cell > 0){
DOM_LOOP(k,j,i){

/* -- Get cell size -- */

xbeg[IDIR] = grid->xl[IDIR][i]; xend[IDIR] = grid->xr[IDIR][i];
xbeg[JDIR] = grid->xl[JDIR][j]; xend[JDIR] = grid->xr[JDIR][j];
xbeg[KDIR] = grid->xl[KDIR][k]; xend[KDIR] = grid->xr[KDIR][k];

/* -- Loop on particles -- */

for (np = 0; np < np_cell; np++){

Particles_LoadUniform(np, np_cell, xbeg, xend, p.coord);

double T0 = ...; /* Plasma temperature in code units (p/rho) */
p.speed[0] = GaussianRandomNumber(0.0, sqrt(T0));
p.speed[1] = GaussianRandomNumber(0.0, sqrt(T0));
p.speed[2] = GaussianRandomNumber(0.0, sqrt(T0));
p.mass = (1.e-3/np_cell)*grid->dV[k][j][i];
p.color = (p.coord[0] > 0.0 ? 1.0:-1.0);
Particles_Insert (&p, d, PARTICLES_CREATE, grid);

}
}

}
Particles_SetID(d->PHead);

}
� �
Again, the function Particles LoadUniform() is used to place np cell particles uniformly
inside the cell (rather than the whole computational domain).

The function GaussianRandomNumber() generates random deviates from a Gaussian distribu-
tion with mean µ and standard deviation σ (first and second argument, respectively), see the doc-
umentation in Src/Math Tools/math random.c. The final result is a Maxwell-Boltzmann distribution
seen as the product of three independent normally distributed variables vx, vy and vz with vari-
ance kBT/mp, where mp is the CR particle mass. If mf is the mass of the particles composing the
fluid, a convenient normalization from c.g.s to code units can be easily recovered as

f(vx)dvx =

√
mp

2πkBT
exp

(
−mpv

2
x

2kBT

)
dvx =

√
1

2πσ2
exp

(
− (vx/v0)2

2σ2

)
d

(
vx
v0

)
(11.1)

where σ2 = mfT0/mp is the variance, T0 is some average plasma temperature computed as p/ρ (p
and ρ are in code units) and vx/v0 is the fluid velocity in code units (v0 ≡UNIT VELOCITY).

A similar, although slower, initialization could have been done using Particles LoadRandom():� �
void Particles_Init(Data *d, Grid *grid)
{

...
if (np_cell > 0){
DOM_LOOP(k,j,i){

Particles_LoadUniform(np, np_cell, xbeg, xend, p.coord);
Particles_LoadRandom(vbeg, vend, Particles_VelocityDistrib, p.speed);
p.mass = (1.e-3/np_cell)*grid->dV[k][j][i];
...

}
}

}
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double Particles_VelocityDistrib(double vx, double vy, double vz)
{

double s2 = T0 = ...;
double fvx, fvy, fvz;
double fact = 1.0/sqrt(2.0*CONST_PI*s2);

fvx = fact*exp(- (vx*vx)/(2.0*s2));
fvy = fact*exp(- (vy*vy)/(2.0*s2));
fvz = fact*exp(- (vz*vz)/(2.0*s2));

return fvx*fvy*fvz;
}
� �
The acceptance-rejection method is usually slower than using directly GaussianRandomNumber()
to generate Gaussian distributed deviates, but it is more general and may be useful for different
distributions.

11.1.2 Boundary Conditions

At present, boundary conditions used for the fluid also apply to particles. If a userdef value is given in
the standard boundary block (§4.5), particles may be created or destroyed at the specified boundary and
the user must code his/her boundary condition using the function Particles UserDefBoundary()
located in the file particles init.c. By default, this function is called by PLUTO in the case of an outflow
boundary which requires particles to be deleted once they cross an outflow boundary.

11.1.3 Injection

The function Particles Inject() is used to create (inject) new particles inside a particular area of
the computational domain at specific times during your simulation. Injection requires the user to specify
the field members used during the initialization process.

In the example below, injection takes place every ∆tinj (which is assigned through a user-defined pa-
rameter g inputParam[INJECT FREQ]) but only in a specified region of the domain, selected through
a user supplied function InjectZone()which returns either 1 or 0. Particle velocity is initialized using
a Gaussian ditribution:� �
void Particles_Inject(Data *data, Grid *grid)
{
int i,j,k, status, np;
int n0, n1;
int np_cell = RuntimeGet()->Nparticles_cell;
double t0, t1, t_freq;
double *x1 = grid->xgc[IDIR]; /* -- array pointer to x1 coordinate -- */
double *x2 = grid->xgc[JDIR]; /* -- array pointer to x2 coordinate -- */
double *x3 = grid->xgc[KDIR]; /* -- array pointer to x3 coordinate -- */
Particle p;

t0 = g_time;
t1 = g_time + g_dt;
t_freq = g_inputParam[INJECT_FREQ];
n0 = (int)(t0/t_freq);
n1 = (int)(t1/t_freq);

if (n0 != n1 || g_stepNumber == 0){
print (">> Injection\n");
DOM_LOOP(k,j,i){

if ( InjectZone(x1[i],x2[j],x3[k],grid) ){

for (np = 0; np < np_cell; np++){ /* Loop on particles/cell */

double sigma = sqrt(1.0/g_gamma);
p.coord[0] = x1[i];
p.coord[1] = x2[j];
p.coord[2] = x3[k];

p.speed[IDIR] = GaussianRandomNumber(0.0, sigma);
p.speed[JDIR] = GaussianRandomNumber(0.0, sigma);
p.speed[KDIR] = GaussianRandomNumber(0.0, sigma);

p.mass = (1.e-3/np_cell)*grid->dV[k][j][i];
p.color = prank;
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status = Particles_Insert(&p, data, PARTICLES_CREATE, grid);

if (status != TRUE){
print ("! Particles_Inject(): error\n");
QUIT_PLUTO(1);

}
} /* End for (np...) */

} /* end if (InjectionZones() */
} /* end DOM_LOOP */
Particles_SetID(data->PHead);

} /* end if (injection time) */}
� �
Beware that PLUTO calls this function at every time step and care must be taken in order to avoid
overpopulating the domain with unwanted particles.

11.2 Cosmic Ray Particles

Cosmic rays (CR) are enabled by setting PARTICLES to PARTICLES CR from the Python menu, §2.1.9.
The Cosmic Rays particle module may be used to describe the the dynamical interaction between a

thermal plasma and a non-thermal population of collisionless cosmic rays (CR henceforth). This is the
MHD-PIC model first presented by [BCSS15] and the PLUTO code implementation can be found in the
method paper [MBVM18]. While the fluid equations are treated using the methods already available
for shock capturing MHD, CR particles are evolved with conventional PIC techniques. This formalism
aims at capturing the kinetic effects of CR particles without the need to resolve the plasma skin depth,
as it is typically required by PIC codes. In the MHD-PIC formalism, instead, only the Larmor (gyration)
scale must be adequately resolved,

CR particles obey the equation of motion

dxp
dt

= up/γp

dup
dt

=
( e

mc

)
p

(
cE +

up
γp
×B

) (11.2)

where γ =
√

1 + u2
p/C2 is the particle Lorentz factor, up is the particle four-velocity (=p->speed[])

while p is an index labeling the particle. Since the actual speed of light does not explicitly appears in the
MHD equation, here C (=PARTICLES CR C) is used to specify an artificial value for the speed of light
and, for consistency reasons, it must be greater than any characteristic signal velocity. The ratio (e/mc)p
(=PARTICLES CR E MC) specifies the charge to mass ratio for CR particles.

When feedback is included, CR particles extert a feedback on the thermal plasma introducing modi-
fications in the MHD equations:

∂ρ

∂t
+∇ · (ρvg) = 0

∂(ρvg)

∂t
+∇ · [ρvgvg −BB + Ipt] = −F CR

∂B

∂t
+∇× (cE) = 0

∂Et
∂t

+∇ ·
[(

1

2
ρv2

g +
5

2
pg

)
vg + cE ×B

]
= −vg · F CR

(11.3)

where vg is the usual gas velocity. The previous system of conservation laws is known as the MHD-PIC
equations.

In the previous equations, F CR is the force density felt by the CR particles and the minus sign is a
simple manifestation of Newton 3rd law, stating that the opposite force is felt by a fluid element:

F CR = (1−R)
(
qCRE0 +

1

c
JCR ×B

)
(11.4)
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where R = qCR/(qi + qCR) while cE0 = −vg ×B. The CR force is computed by depositing charges and
currents from particles to grid, in the Particles CR Force() function:(qCR

c

)
i

=
∑
p

W (xi − xp)
e

mcp
%p

(
J CR

c

)
i

=
∑
p

W (xi − xp)
e

mcp
%pvp (11.5)

where %p (=p->mass/∆V) and vp = up/
√

1 + u2
p (here up=p->speed[]) are the density and velocity

of a single particle while W () are weight functions. The charge density of the fluid follows from qi/c =
(e/mc)gρ where (e/mc)g (=PARTICLES CR E MC GAS) is the charge to mass ratio for the fluid. The total
electric field is then computed as

cE = −vg ×B −R(vCR − vg)×B = cE0 −
cF CR

qi
(11.6)

where the second term is the CR-Hall term. The second expression is used in the code.
The MHD-PIC module works under the restrictions listed in Table 11.2 (only Cartesian geometry).

No gravity is supported at present. Also, units are most conveniently normalized by taking the ion skin
depth c/ωpi as the reference length see Section 4 in [MBVM18].

PHYSICS Feedback GEOMETRY TIME STEPPING

MHD YES/NO CARTESIAN HNCK/ChTr/RK2
RMHD NO CARTESIAN HNCK/RK2

Table 11.2: Algorithm compatibility for the MHD-PIC module. Here Feedback is a short-hand notation for
PARTICLES CR FEEDBACK.

11.3 Dust Grains

Note: This module is not part of the public code release, see “Terms & Conditions of Use” at the
beginning of this guide

The dust particles module can be enabled by setting PARTICLES to PARTICLES DUST from the
Python menu, §2.1.9. This module describes the physics of dust grains coupled to the gas via drag
forces and it is mainly intended for the numerical modeling of protoplanetary disks in which solid and
gas interact via aerodynamic drag, [MFV19]

In the Epstein regime, the drag force is proportional to the relative velocity between the two species,

ap = ãp −
vp − vg
τs,p

, (11.7)

where ãp accounts for external forces (e.g., gravity, Coriolis and so forth) while the second term is the
actual viscous drag. The particle stopping time is denoted by τs,p.

The particle feedback on the gas is described by the additional term in the momentum equation:

fp = −
〈
%D
vg − vD

τs

〉
, (11.8)

representing the average cumulative drag force accounting for feedback from dust particles to the gas
and it is obtained by first computing the drag acceleration at the particle position and then distributing it
back on the grid (see §3.1 in [MFV19]). Magnetic fields are neglected on the gas (dust grains are neutral)
and an isothermal equation of state is used so that the energy equation is not necessary.

Besides the usual structure members (see Table 11.1), the particle structure also contains the grain
stopping time (tau s) which is unique to each particle and should be set in your Particles Init()
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function. In alternative (e.g. if you wish to prescribe the Stokes number instead of τs,p), one may also
supply a user-defined stopping time through the function Particles Dust StoppingTime(). To en-
able this option, you must set the macro PARTICLES DUST STOPPING TIME to USERDEF in your defi-
nitions.h (see C.1). In the next example, for instance, the stopping time is defined as τ(R) = 1.0/(ρ(R)cs):� �
#if PARTICLES_DUST_STOPPING_TIME == USERDEF
/* ********************************************************************* */
double Particles_Dust_StoppingTime(double *vgas, Particle *p)
/*!

*********************************************************************** */
{
double tau = 1.0/(vgas[RHO]*g_isoSoundSpeed);

return tau;
}
#endif
� �

Dust particle may be advanced in time using either the semi-implicit integrator [BS10](valid only
in Cartesian coordinates) or the exponential midpoint rule of [MFV19]. Both schemes are 2nd-order
accurate position-Verlet pushers, consisting of drift-kick-drift steps. However the exponential midpoint
rule is more accurate and valid for arbitrary small stopping times and general geometries. This is set by
the macro PARTICLES DUST TIME STEPPING, see Table C.1.

Gravity is supported only by setting BODY FORCE to VECTOR.
For shearing-box simulations, it is possible to introduce the quantity ηvK (=PARTICLES SB ETA VK)

which measures the effect of a global pressure gradients. This quantity enters is added to the gas,
producing a constant acceleration term pointing outward.

11.4 Lagrangian Particles

Note: This module is not part of the public code release, see “Terms & Conditions of Use” at the
beginning of this guide

The Lagrangian particle (LP) module is enabled directly from the Python menu by setting PARTICLES
to PARTICLES LP. LPs follow the fluid streamlines such that its position coordinates xp are evolved in
time using the following equation -

dxp
dt

= vp ≡ vfluid(xp) (11.9)

where, the particle velocity vp is obtained by interpolating the fluid velocity defined at the center of each
cell to the particle’s position. LP can be used as simple tracer particles or to model sub-grid physical
processes although excluding back-reaction on the fluid.

The main motivation behind developing a Lagrangian tracer particle module is to incorporate sub-
grid physics that depends on the local dynamical property of the fluid. In particular, we have utilised
the LP module to develop a novel framework incorporating sub-grid physics of particle acceleration
and physical processes responsible for non-thermal emission from AGN jets and clusters. The brief
description of using the module is given below and technical and numerical details in [VMB+18] and
its application in continuum SED modelling for kilo-parsec AGN jets is demonstrated in [BAV+20].

11.4.1 Radiative Losses - LP Model

The main objective of the hybrid framework developed involving macro-particles is to model non-
thermal emission from astrophysical flows. Each LP in this framework is regarded as macro-particle
with a spectral distribution χ(E) = N(E)/n0, where N(E) is the number density of real particles (lep-
tons or hadrons) as a function of energy E and n0 is the number density of the fluid interpolated at the
grid position of the particle.

To enable the radiative losses module, the user has to modify the definitions.h in the user-defined
constant section (§ 2.3) as
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� �
/* [Beg] user-defined constants (do not change this line) */

#define PARTICLES_LP_SPECTRA YES

/* [End] user-defined constants (do not change this line) */
� �
If the previous flag is enabled, other structure members (which we list in Table 11.1) are included in

the definition.
The non-dimensional spectral distribution defined for each macro-particle is updated in time by solv-

ing the relativistic cosmic ray transport equation based on local fluid conditions. The evolution takes
into account radiative losses from adiabatic expansion, synchrotron cooling and losses due to Inverse
Compton processes via CMB photons for a given redshift that is specified by PARTICLES LP ICCMBZ,
whose value is 0.0 by default. Its value can be modified depending upon the problem by re-defining its
value in definitions.h under the user-defined constants (see below).

In addition, the spectral distribution of macro-particles experiencing shocks is updated by consid-
ering the process of diffusive shock acceleration (DSA) for both quasi-parallel and quasi-perpendicular
shocks, see [VMB+18]. There are two modes of spectral updates after the maco-particle crosses the shock
viz.,

• Non-Convoluted : A brute-force approach whereby the particle’s spectra is reset to a power-law
with the spectral power determined based on the shock compression ratio and the angle between
the shock normal and the magnetic field direction. The lower and upper energy bounds of the
power-law spectra or obtained as described in [VMB+18].

• Convoluted : In this approach, the spectral update of the macro-particle considers history of the
particle spectra and uses the update as prescribed by [MZM+99] and Mukherjee et. al. (in prep)
accounting for multiple particles within a grid-cell to normalise the spectra.

The user can choose the spectra update post shock by setting the variable PARTICLES LP CONV SPECTRA,
which by default is set to YES for adopting the convoluted approach.

11.4.2 Spectral Distribution Initialisation

The function Particles LP InitSpectra() should be used to prescribe the initial spectral profile
for each macro-particle. For example, to prescribe an initial power-law spectra, the user needs to specify
four input parameters as demonstrated in the code snippet below. These input parameters are the upper
and lower bounds of the energy array, the power of the spectra, and the variable pl->nmicro that rep-
resents total integrated number density of initial non-thermal particles. This is a non-dimensional num-
ber, its physical value in cm−3 can be obtained using pl->nmicro*(UNIT DENSITY/CONST amu).

The energy of these particles E is an array of equally spaced bins in logarithmic scale from Emin, to
Emax. The energy bounds are to be specified in units of PARTICLES LP SPEC ENERGY, whose value
by default is set to be CONST me* CONST c*CONST c. The user can modify this value by re-defining
it in definitions.h. Additionally, the user also has a control in choosing the number of bins to resolve the
energy array. This is specified by the variable PARTICLES LP NEBINS whose value by default is set to
100.

The following piece of code, for instance, can be used to initialise all macro-particle distribution to a
power-law spectra with s = 9.0, Emin = 100, Emax = 108 and pl->nmicro = 10−12cm−3:� �
/* ********************************************************************** */
void Particles_LP_InitSpectra(Particle* pl)
/*!

* Initialise spectra for each particle (only for LAGRANGIAN).

* Specify here the initial distribution of N(E) with E for each particle

*
* \param [in] pl Pointer to the Particle structure.

*
********************************************************************** */

{
int i;
double Emin, Emax, N_0, s;
double lnEmin, lnEmax, dlnE, scrh;
Emin = 1.0e2; /* In code units : For physical value multiply by PARTICLES_LP_SPEC_ENERGY */
Emax = 1.0e8; /* In code units : For physical value multiply by PARTICLES_LP_SPEC_ENERGY */
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lnEmin = log10(Emin);
lnEmax = log10(Emax);
dlnE = (lnEmax - lnEmin)/((double)PARTICLES_LP_NEBINS-1);

/* Value of N_tot in non-dimensional units : (nmicro_cmˆ-3)*(CONST_amu)/UNIT_DENSITY */
pl->nmicro = 1.0e-12*(CONST_amu/UNIT_DENSITY);

/* --------------------------------------------------------
0. Initialize structure members
-------------------------------------------------------- */

pl->cmp_ratio = 1.0;
pl->shkflag = 0;
pl->Vshk_upst[RHO] = -1.0;
pl->Vshk_dnst[RHO] = -1.0;
pl->cr = 0.0;
pl->shk_gradp = -1.0;

/* ----------------------------------------------------------------------
1. Initialize spectral distribution to power law.

Chi in each bin is assigned as an average over the energy interval.
chi_i = \intˆEh_El Eˆ(-p) dE /(Eh - El)

---------------------------------------------------------------------- */

alpha1 = 9.0;
scrhchi = (pl->nmicro)/(pow(Emax,1.0-alpha1)-pow(Emin,1.0-alpha1));

pl->eng[0] = Emin;
for (i = 0; i < PARTICLES_LP_NEBINS; i++){

scrhln = lnEmin + (i+1)*dlnE;
pl->eng[i+1] = pow(10.0, scrhln);
pl->chi[i] = scrhchi*( pow(pl->eng[i+1],1.0-alpha1)

-pow(pl->eng[i],1.0-alpha1));
pl->chi[i] /= pl->eng[i+1] - pl->eng[i];

}
}
� �

Few parameters are defined to provide finer control on the evolution of macro-particles and the
associated non-thermal emission from them. These user defined constants are listed below in Appendix
C.3.

As the spectral is evolved at every advection time for each macro-particle, we can use this infor-
mation to compute the Inverse Compton and synchrotron emissivity along with polarisation (Stokes
Parameters) from a single macro-particle at every instant. It is possible to output these emissivities
using the userdef output.c. For example, to output the synchrotron emissivity along with Stoke Q and
Stoke U polarisation parameters for an observed frequency of 5 GHz and a given line of sight of 20◦

with respect to the z-axis along the x − z plane (by default the y axis in the fluid frame and observer’s
frame are parallel) , we have -� �
#if PARTICLES
void Emiss_Deposit(Particle *p, double *qd);
#endif

/* *************************************************************** */
void ComputeUserVar (const Data *d, Grid *grid)
/*
*
* PURPOSE

*
* Define user-defined output variables

*
*
*
***************************************************************** */

{
#if PARTICLES

#if PARTICLES_LP_SPECTRUM == YES
double ***Dq[3];
Dq[0] = GetUserVar("J5GHz");
Dq[1] = GetUserVar("Q5GHz");
Dq[2] = GetUserVar("U5GHz");
Particles_Deposit(d->PHead, Emiss_Deposit, Dq, 3, grid);

#endif
#endif

}

#if PARTICLES_LP_SPECTRA == YES
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/******************************************************************/
void Emiss_Deposit(Particle *p, double *pr)
/*
* The helper function for Particles_Deposit to deposit

* emissivity density.

*
* * ****************************************************************/

{
#if PHYSICS == MHD || PHYSICS == RMHD
int i;
double thetaobs = 20.0; /* Angle of incidence in degree i.e., line of sight angle. */
double JnVals, StQVals, StUVals;
double frq = 5.0; /* in GHz */
Particles_LP_Sync_Emissivity(p, frq, thetaobs, &JnVals, &StQVals, &StUVals);
pr[0] = JnVals;
pr[1] = StQVals;
pr[2] = StUVals;

#endif
}
#endif
� �
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11.5 Particles Output and Visualization

Similarly to the fluid section (§12.1), particles output datafiles are named as particles.nnnn.ext where
nnnn is a four-digit zero-padded integer counting the output number and ext is the corresponding file
extension. At present, particles datafiles can be written using single, double-precision format (.flt or
.dbl) and VTK format. Particles output is controlled by the [Particles] block in pluto.ini, see §4.8.
The above name convention that is set as default is followed for particle entities PARTICLES DUST
and PARTICLES CR. The particle entities PARTICLES LP have been formulated to follow a different
name convention so that the maximum file size of data can be controlled. For particles data with
PARTICLES LP, the data files are named as particles.nnnn chxx.ext where nnnn is the four digit zero-
padded interger counting the output number, xx is the two digit chunk number by default its value is
00 and ext is the corresponding file extension. In cases with large number of macro-particles, the filesize
of particle datafiles can be huge and sometimes difficult to analyse and process. Thus, we have set a file
size limit of 2GB and using this threshold we sub-divide the particle datafiles into several chunks and
are denoted by chxx.

Float and double precision datafiles begin with an ASCII header file followed by raw binary data.
The header file consists of lines beginning with a # character providing important information which can
be used to read the file (for visualization purposes or for restart). For instance, the number of particles
is specified by nparticles while the number and names of the particle structure fields that is written
to disk is specified by nfields and field names, respectively. Raw binary data follows immediately
after the header section and contains a sequence of nparticles blocks each containing the selected
structure fields. In the example below, we show the header file of a .flt file where only particle positions
and velocities are being written:

# PLUTO 4.4 binary particle data file
# dimensions 2
# nflux 9
# dt_particles 1.000000e-05
# endianity little
# nparticles 18432
# idCounter 0
# particletype 3
# precision single
# time 0.000000e+00
# stepNumber 0
# nfields 6
# field_names x1 x2 x3 vx1 vx2 vx3
<x1, x2, x3, vx1, vx2, vx3}_1
<x1, x2, x3, vx1, vx2, vx3}_2
<x1, x2, x3, vx1, vx2, vx3}_3
...
<x1, x2, x3, vx1, vx2, vx3}_nparticles

For Lagrangian Particle (LP) module, the particles are divided in more than one file, if the file size
exceeds 1.9 GB. The particle files are named as: particles.0001 ch00.flt, particles.0001 ch01.flt and so on.
Each such file is referred to as chunks. The total number of chunks for a given output step, the number
of particles in a given chunk and the total number of particles distributed over all chunks for the given
output step can be found from header entries:
# nparticles 1234933
# Totparticles 2000000
# nchunks 2

The above indicates that the chunk 0 file (particles.0001 ch00.flt) has nparticles=1234933. The rest of
the particles are in chunk 1, with a total of Totparticles=2 million particles. There are a total 2 chunks
(nchunks=2) for the given output step.

Note: The max size of a chunk file is set to 1.9 GB by default. This can be changed by editing
the PARTICLES LP MAX FILE SIZE parameter in particles.h. It should be noted that in the rare
occasion when a single processor has many particles such that the total memory of the particles to
be written exceeds 2 GB, an error will occur. This is not generally expected in standard scenarios
where particles will be distributed over several processors. Hence, the user change the size limit to
more than 2GB, but at their own peril. This will be updated in future releases.
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Figure 11.2: Composite image
showing fluid density and particles
coloured by energy

Members of the particle structure may be individually selected / deselected for a particular format by
calling the function SetOutputVar() from your userdef output.c in a similar fashion to the fluid part,
see §12.2.1. This function should be called inside the ChangeOutputVar() function. The following
piece of code, for instance, disables writing of the color and id structure fields when writing single
precision (particle) datafiles and tinj when writing VTK datafiles:� �
void ChangeOutputVar ()
{
#if PARTICLES
SetOutputVar ("color", PARTICLES_FLT_OUTPUT, NO);
SetOutputVar ("id", PARTICLES_FLT_OUTPUT, NO);
SetOutputVar ("tinj", PARTICLES_VTK_OUTPUT, NO);

#endif
}
� �
A complete list of structure field names may be found in particles set output.c.

Note: Structure fields should not be modified in the case of double-precision datafiles if they’re used
for restarting purposes. Single-precision and VTK datafile, on the other hand, contain only basic
members and can be freely cutomized.

11.5.1 Visualization

Particle datafiles can be visualized in IDL, VisIt or pyPLUTO.

11.5.1.1 Visualization with IDL

The procedure PARTICLES LOAD can be used to read binary of VTK particle datafiles. The following
example can be used to display a composite image of both fluid density and particles coloured by energy
(suitable for CR particles):

IDL> ; -- Display fluid data --
IDL> DISPLAY,x1=x1,x2=x2,alog10(rho),/VBAR, xrange=xrange, yrange=yrange
IDL>
IDL> ; -- Filter particles by energy --
IDL> Ek = particles.vx1ˆ2 + particles.vx2ˆ2 + particles.vx3ˆ2
IDL> indx = WHERE(Ek GT MAX(Ek)*0.9)
IDL> particles = particles[indx]
IDL> Ek = Ek[indx]

IDL> ; -- Filter particles spatially --
IDL> indx = WHERE(particles.x1 GT xrange[0] AND particles.x1 LT xrange[1])
IDL> particles = particles[indx]
IDL> Ek = Ek[indx]

IDL> ; -- Sort particles --
IDL> particles = particles[SORT(Ek)]
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Figure 11.3: A composite image of both 2D fluid density (in color) and particles colored by identity from
a binary vtk file using the Visit visualization tool. Left Initial state and final state (textitright) of the run.
Note that LPs do not cross the contact discontinuity.

IDL> Ek = Ek[SORT(Ek)]

IDL> ; -- Overlay the most 200 energetic particles --
IDL> LOADCT,/SIL,3
IDL> nparts = 200
IDL> PARTICLES_OPLOT, particles[0:nparts],symsize=1, color=Ek[0:nparts]

11.5.1.2 Visualization with VisIt

VisIt can be used to visualize particles datafile. If you’re overlaying 2D images fluid with particles,
the project operator should be applied. The figure 11.3 shows the evolution of fluid density for the 2D
Reimann problem in background and particles over-layed that are colored with its identity which is a
monotonically increasing set of integers.

11.5.1.3 Visualization with pyPLUTO

The module ploadparticles can be used to read binary and VTK particle datafiles. The following example
can be used to display a composite image of both 2D fluid density and particles colored by velocity
magnitude from a binary vtk file:

from pylab import *
import pyPLUTO.pload as pp # importing the pyPLUTO pload module.
import pyPLUTO.ploadparticles as pr # importing the pyPLUTO ploadparticles module.

f1 = plt.figure(figsize=[8,8])
ax = f1.add_subplot(111)
ns = 11

P = pr.ploadparticles(ns, datatype=’flt’,ptype=’LP’) # Loading particle data : particles.00ns_ch00.flt
PVmag = np.sqrt(P.vx1**2 + P.vx2**2 + P.vx3**2) # estimating the velocity magnitude
im1 = ax.scatter(P.x1, P.x2, s=10, c=PVmag, cmap=plt.get_cmap(’hot’)) # scatter plot
cax1 = f1.add_axes([0.91,0.12,0.03,0.75])
plt.colorbar(im1,cax=cax1) # vertical colorbar for particle data.

D = pp.pload(ns, datatype=’vtk’) # Load fluid data.
im2 = ax.imshow(D.rho.T, origin=’image’,extent=[D.x1.min(), D.x1.max(), D.x2.min(), D.x2.max()]) # plotting fluid data.
cax2 = f1.add_axes([0.125,0.92,0.75,0.03])
plt.colorbar(im2,cax=cax2,orientation=’horizontal’) # vertical colorbar for fluid data.

ax.set_xlabel(r’X-axis’,fontsize=18)
ax.set_ylabel(r’Y-axis’,fontsize=18)
ax.minorticks_on()
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Figure 11.4: A composite image of both 2D fluid density (in color) and particles colored by velocity
magnitude from a binary vtk file from Sedov-Taylor test problem

plt.axis([0.0,1.0,0.0,1.0])
plt.show()

The image obtained after running the above code the problem of Sedov Taylor expansion is shown in
figure 11.4



12. Output and Visualization

In this Chapter we describe the data formats supported by the static grid version of PLUTO and how
they can be read and visualized with some popular visualization packages.

12.1 Output Data Formats

With the static version of PLUTO , data can be dumped to disk in a variety of different formats. The
majority of them is supported on serial as well as parallel systems. The available formats are classified
based on their file extensions:

*.dbl: double-precision (8 byte) binary data (serial/parallel);

*.flt: single-precision (4 byte) binary data (serial/parallel);

*.dbl.h5: double-precision (8 byte) HDF5 data (serial/parallel);

*.flt.h5: single-precision (4 byte) HDF5 data (serial/parallel);

*.vtk: VTK (legacy) file format using structured or rectilinear grids (serial/parallel);

*.tab: tabulated multi-column ascii format (serial only);

*.ppm: portable pixmap color images of 2D data slices (serial/parallel);

*.png: portable network graphics1 color images of 2D data slices (serial/parallel).

Output files are named as base.nnnn.ext, where base is either ”data” (when all variables are written
to a single file) or the name of the corresponding variable (when each variable is written to a different
file, see Table 12.1), nnnn is a four-digit zero-padded integer counting the output number and ext is the
corresponding file extension listed above. By default, data files are written in the local working directory
unless a different location has been specified using output dir in your pluto.ini, see §4.6. There’s no
distinction between serial or parallel mode.

For each format, it is possible to dump all or just some of the variables. Additional user-defined
variables may be written as well, §12.2.0.1. The default setting is described separately for each output in
the next subsections and may be changed if necessary, see §12.2.1.

Each format has an independent output frequency and an associated log file (i.e. dbl.out, flt.out, vtk.out
and so forth) keeping track of the dump history. Two additional files, grid.out and sysconf.out, contain
grid and system-related information, respectively.
Important: some visualization packages need the information stored in *.out files. We thus strongly
recommend to backup these files together with the actual datafiles.

Note: Restart is possible only using the .dbl or .dbl.h5 data formats.

1Bitmap image format that employs lossless data compression

110
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Base name Variable Single record size

rho Density N1 ×N2 ×N3

prs Pressure N1 ×N2 ×N3

vx1 x1 velocity N1 ×N2 ×N3

vx2 x2 velocity N1 ×N2 ×N3

vx3 x3 velocity N1 ×N2 ×N3

bx1 x1 mag. field N1 ×N2 ×N3

bx2 x2 mag. field N1 ×N2 ×N3

bx3 x3 mag. field N1 ×N2 ×N3

bx1s x1 stag. mag. field (N1 + 1)×N2 ×N3

bx2s x2 stag. mag. field N1 × (N2 + 1)×N3

bx3s x3 stag. mag. field N1 ×N2 × (N3 + 1)

enr Rad. energy density N1 ×N2 ×N3

fr1 x1 rad. flux N1 ×N2 ×N3

fr2 x2 rad. flux N1 ×N2 ×N3

fr3 x3 rad. flux N1 ×N2 ×N3

tr1 first tracer N1 ×N2 ×N3

Table 12.1: Base prefix for multiple data set. The size is in units of 4 (for the flt format) or 8 (for the dbl format) bytes.

12.1.1 Binary Output: dbl or flt data formats

Binary data can be dumped to disk at a given time step as i) one single file containing all variables (by
selecting single file in pluto.ini) or ii) as a set of separate files for each variable (multiple files).
We recommend the second option for large data sets. The base name is set to data for a single data file
containing all of the fields, or takes the name of the corresponding variable if multiple sets are preferred,
see Table 12.1.

Restart can be performed from double precision binary data files by invoking PLUTO with the
-restart n command line option, where n is the output file number from which to restart. In this
case an additional file (restart.out) will be dumped to disk.

The corresponding log file (dbl.out or flt.out) is a multi-column ascii files of the form:
. . . . . . . . ...
. . . . . . . . ...
. . . . . . . . ...

nout t dt nstep single_file little var1 var2 ...
. . . . . . . . ...
. . . . . . . . ...

where nout, t, dt and nstep are, respectively, the file number, time, time step and integration step at
the time of writing. The next column (single file/multiple files) tells whether a single-file or
multiple-files are expected. The following one (little/big) gives the endianity of the architecture,
whereas the remaining columns list the variable names and their order in this particular format.
Default: The default is to write ALL fields in dbl format, whereas to exclude staggered magnetic field
components (if any) from the flt format.

12.1.2 HDF5 Output: dbl.h5 or flt.h5 data formats

HDF5 output format can be used in the static grid version if PLUTO has been succesfully compiled
with the serial or parallel version of the HDF5 library, see §3.2. The file extension is .h5 (and not .hdf5 as
used by PLUTO-Chombo data files, §13.4) and output files are written in Pixie format, a single-block,
rectilinear mesh file using HDF5, may be related to the Polar Ionospheric X-Ray Imaging Experiment.

The conventions used in writing .dbl.h5 or .flt.h5 files are the same ones adopted for the .dbl and .flt
data formats. However, with HDF5, all variables are written to a single file.

Pixie files can be opened and visualized directly by different softwares, like VisIt and Paraview. Since
we have found compatibility issues with some versions of these visualization softwares, each file comes
along with a supplementary .xmf text file in XDMF format that describes the content of the correspond-
ing HDF5 file and can be opened correctly by VisIt and Paraview, see §12.3.5.
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Restart can be performed from double precision HDF5 data files by invoking PLUTO with the
-h5restart n command line option (§1.4.2), where n is the output file number from which to restart.
In this case an additional file (restart.out) will be dumped to disk.
Default: The default is to write ALL fields in .dbl.h5 format, whereas to exclude staggered magnetic
field components (if any) from the .flt.h5 format.

12.1.3 VTK Output: vtk data format

VTK (from the Visualization ToolKit format) output follows essentially the same conventions used for
the .dbl or .flt outputs. Single or multiple VTK files can be written by specifying either single file or
multiple files in your pluto.ini and data values are always written using single precision with byte
order set to big endian.

The mesh topology uses a rectilinear grid format for CARTESIAN or CYLINDRICAL geometry while
a structured grid format is employed for POLAR or SPHERICAL geometries. Data is written with the
CELL DATA attribute and grid nodes (or vertices) are used to store the mesh.

The following symbolic constants (§2.3) can be used to control some options of the output .vtk files:

• VTK TIME INFO: when set to YES, time information will be added to the header section of the
.vtk file. Beware that standard VTK files do not have a specific construct for adding time informa-
tion and, by doing so, this information will be available only to the VisIt visualisation software
(see §12.3.5) which implements a convention where CYCLE and TIME values can be specified as
FieldData in the file. If you’re using Paraview or other visualisation software different from VisIt,
enabling this option will most likely result in a software crash.

• VTK VECTOR DUMP: by default, all flow quantities (e.g. density, or the x1 component of velocity)
are written with “scalar” attribute as they are. However, by setting VTK VECTOR DUMP to YES,
vector fields (such as velocity and magnetic field) can be saved with the “vector” attribute and
their components are automatically transformed to Cartesian.

See also Table C.1.
If a VTK file is written to disk, the log file vtk.out is updated in the same manner as dbl.out or flt.out.

Default: By default, all variables except staggered magnetic field components (if any) are written.

12.1.4 ASCII Output: tab Data format
The tab format may be used for one dimensional data or relatively small two dimensional arrays in
serial mode only. We warn that this output is not supported in parallel mode. The output consists in
multi-column ascii files named data.nnnn.tab of the form:

. . . . . .

. . . . . .

. . . . . .
x(i) y(j) var1(i,j) var2(i,j) var3(i,j) ...
. . . . . .
. . . . . .
. . . . . .

where the index j changes faster and a blank records separates blocks with different i index.
Default: By default, all variables except staggered magnetic field components (if any) are written.

12.1.5 Graphic Output: ppm and png data formats

PLUTO allows to take two-dimensional slices in the x1x2, x1x3 or x2x3 planes and save the results
as color ppm or png images. The Portable Pixmap (ppm) format is quite inefficient and redundant al-
though easy to write on any platform since it does not require additional libraries. The Portable Network
Graphics (png) is a bitmap image format that employs lossless data compression. It requires libpng to be
installed on your system.

Different images are associated with different variables and can have different sets of attributes de-
fined by the Image structure. An image structure has the following customizable elements:
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• slice plane: a label (X12 PLANE, X13 PLANE, X23 PLANE) setting the slicing 2D plane.

• slice coord: a real number specifying the coordinate orthogonal to slice plane.

• max,min: the maximum and minimum values to which the image is scaled to. If max=min au-
toscaling is used;

• logscale: an integer (0 or 1) specifying a linear or logarithmic scale;

• colormap: the colormap. Available options are “red” (red map) “br” (blue-red), “bw” (black and
white), “blue” (blue), “green” (green).

In 2D the default is always slice plane = X12 PLANE and slice coord = 0. Image attributes can
be set independently for each variable in the function ChangeOutputVar() in Src/userdef output.c, see
§12.2.1.
Default: By default, only density is written.

12.1.6 The grid.out output file
The grid.out file contains information about the computational grid used during the simulation. It is an
ASCII file starting with a comment-header containing the creation date, dimension and geometry of the
grid:

# ******************************************************
# PLUTO 4.3 Grid File
# Generated on <date>
#
# DIMENSIONS: <DIMENSIONS>
# GEOMETRY: <GEOMETRY>
# X1: [ <x1_beg>, <x1_end>], <nx1> point(s), <ngh> ghosts
# X2: [ <x2_beg>, <x2_end>], <nx2> point(s), <ngh> ghosts
# X3: [ <x3_beg>, <x3_end>], <nx3> point(s), <ngh> ghosts
# ******************************************************

The rest of the file is made up of 3 sections, one for each dimension, giving the (interior) number of
point followed by a tabulated multi-column list containing (from left to right) the point number, left and
right cell interfaces:

nx1
. . .
. . .
. . .

<point number> <cell left edge> <cell right edge>
. . .
. . .
. . .

and similarly for the x2 and x3 directions.

12.2 Customizing your output

Output can be customized by editing two functions in the source file Src/userdef output.c in the PLUTO
distribution. We recommend to copy this file into your working directory and modify the default set-
tings, if necessary. Changes can be made by i) introducing new additional variables and ii) altering the
default attributes.

12.2.0.1 Writing Supplementary Variables

New variables can be written to disk in any of the available formats previously described. The number
and names of these extra variables is set in your pluto.ini initialization file under the label “uservar”. The
function ComputeUserVar() (located inside Src/userdef output.c) tells PLUTO how these variables are
computed.

As an example, suppose we want to compute and write temperature (T = p/ρ) and the z component
of vorticity (ω = ∂xvy − ∂yvx). Then one has to set
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uservar 2 T vortz

in your pluto.ini under the [Static Grid Output] block. This informs PLUTO that 2 additional
variables named T and vortz have to be saved. They are computed at each output by editing the
function ComputeUserVar():� �
void ComputeUserVar (const Data *d, Grid *grid)
{
int i,j,k;
double ***T, ***vortz;
double ***p, ***rho, ***vx, ***vy;
double *dx, *dy;

T = GetUserVar("T");
vortz = GetUserVar("vortz");

rho = d->Vc[RHO]; /* pointer shortcut to density */
p = d->Vc[PRS]; /* pointer shortcut to pressure */
vx = d->Vc[VX1]; /* pointer shortcut to x-velocity */
vy = d->Vc[VX2]; /* pointer shortcut to y-velocity */

dx = grid->dx[IDIR]; /* shortcut to dx */
dy = grid->dx[JDIR]; /* shortcut to dy */

DOM_LOOP(k,j,i){
T[k][j][i] = p[k][j][i]/rho[k][j][i];
vortz[k][j][i] = 0.5*(vy[k][j][i+1] - vy[k][j][i-1])/dx[i]

- 0.5*(vx[k][j+1][i] - vx[k][j-1][i])/dy[j];
}

}
� �
PLUTO automatically allocates static memory area for the new variables T and vortz when calling the
GetUserVar() function. The DOM LOOP macro performs a loop on the whole computational domain
(boundary excluded) in order to compute T[k][j][i] and vortz[k][j][i]. Once PLUTO runs,
these two variables will automatically be written in all selected formats (except for the ppm and png
formats), by default.

Beware that if the number of uservar is reset to zero but the previous function is still executed, a
segmentation fault error will occur since user-defined variables (such as T and vortz in the example
above) have not been allocated into memory.

In order to change the default attributes, follow the example in the next subsection.

12.2.1 Changing Attributes

Defaults attributes (which variables in which output have to be written, image attributes) can be easily
changed through the function ChangeOutputVar() located in the file Src/userdef output.c.

To include/exclude a variable from a certain output type, use SetOutputVar()(var, type,
YES/NO). Here “var” is a string containing the name of a variable listed in Table 12.1 or an addi-
tional one defined in your pluto.ini. The “type” argument can take any value among: DBL OUTPUT,
FLT OUTPUT, VTK OUTPUT, DBL H5 OUTPUT, FLT H5 OUTPUT, TAB OUTPUT, PPM OUTPUT, PNG OUTPUT.
This is a sketch of how this function may be used:� �
void ChangeOutputVar ()
{
Image *image; /* a pointer to an image structure */

SetOutputVar("bx1", FLT_OUTPUT, NO);
SetOutputVar("prs", PPM_OUTPUT, YES);
SetOutputVar("vortz", PNG_OUTPUT, YES);

image = GetImage ("rho");
image->slice_plane = X13_PLANE;
image->slice_coord = 1.1;
image->max = image->min = 0.0;
image->logscale = 1;
image->colormap = "red";

}
� �
In this example, the variable “bx1” is excluded from the flt output, “prs” and “vortz” (defined in the
previous example) are added to the ppm and png outputs, respectively. Furthermore, the default image
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attributes of “rho” (included by default) are changed to represent a cut (in log scale, red colormap) in
the xz plane at the point coordinate y = 1.1 in the y−direction.

Note that the default for .dbl of .dbl.h5 datasets should never be changed since restarting from a given
file requires ALL variables being evolved in time.
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12.3 Visualization

PLUTO data files can be read with a variety of commercial and open source packages. In what follows
we describe how PLUTO data files can be read and visualized with IDL2, VisIt3, ParaView4, pyPLUTO
(§12.3.3), Mathematica5 and Gnuplot6. Table 12.2 show some of the visualization softwares supporting
different output formats.

Table 12.2: Output data formats and supported graphic visualization packages.

File Format Gnuplot IDL Mathematica Paraview PyPluto Visit

.dbl
√ √ √ √ √ √

.flt
√ √ √ √ √ √

.vtk -
√

-
√ √ √

.dbl.h5 -
√

-
√

-
√

.flt.h5 -
√

-
√

-
√

.hdf5 -
√

-
√ √ √

.tab
√

- - - - -

We recall that reading of .dbl or .flt files must be complemented by grid information which is stored
in a separate file (grid.out). On the other hand, VTK and HDF5 files (.xmf / .h5 , .vtk or .hdf5) are “stand-
alones” in the sense that they embed grid information and can be opened alone.

12.3.1 Visualization with Gnuplot

Gnuplot can be used to visualize relatively small or moderately large 1- or 2D datasets written with
the tabulated (.tab) or binary data formats (.dbl or .flt)7. Gnuplot can be started at the command line by
simply typing

> gnuplot

In the following we give a short summary of the available options while a more detailed documen-
tation can be found in Doc/gnuplot.html.

Ascii Data Files. If you enabled the .tab output format in pluto.ini, you can plot 1D data from, e.g., the
first output file by typing

gnuplot> plot "data.0001.tab" u 1:3 title "Density"
gnuplot> replot "data.0001.tab" u 1:5 title "Pressure" # overplot

Here the first column corresponds to the x coordinate, the second column to the y coordinate and flow
data values start from the third column. Fig. 12.1 shows the density and pressure profiles for the Sod
shock tube problem (conf. #03 in Test Problems/HD/Sod) using the previous commands.

Two-dimensional ascii datafiles can also be visualized using the splot command. Fig. 12.2 shows
a simple contour drawing of the final solution of the Mach reflection test problem (remember to enable
.tab output) using

gnuplot> set contour
gnuplot> set cntrparam level incremental 0.1,0.2,20 # Uniform levels from 0.1 to 20
gnuplot> set view map
gnuplot> unset surface
gnuplot> unset key
gnuplot> splot "data.0001.tab" u 1:2:3 w lines

2http://www.exelisvis.com/
3https://wci.llnl.gov/codes/visit/home.html
4http://www.paraview.org/
5http://www.wolfram.com
6http://www.gnuplot.info
7Version 4.2 or higher is recommended.
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Figure 12.1: Density and pressure plots
for the Sod shock tube using Gnuplot.

Figure 12.2: Density and pressure plots
for the Sod shock tube using Gnuplot.

Binary Data Files. Starting with Gnuplot 4.2, raw binary files are also supported. In this case, grid in-
formation (being stored in separate files) must be supplied explicitly through appropriate keywords
making the syntax a little awkward. To ease up this task, we recommend to enable the keyword
GNUPLUTO HEADER to YES (in your definitions.h) which causes PLUTO to write a Gnuplot header file
(pluto.gp) containing some useful information.

In addition, one can take advantage of the scripts provided with the code distribution in Tools/Gnu-
plot. For this, we recommend to define the GNUPLOT LIB environment variable (in your shell) which
will be appended to the loadpath of Gnuplot:

> export GNUPLOT_LIB=$PLUTO_DIR/Tools/Gnuplot # use setenv for tcsh users

You can also define the loadpath directly from Gnuplot:

gnuplot> set loadpath ’<pluto_full_path>/Tools/Gnuplot’

A typical gnuplot session can be started as follows:

gnuplot> dtype = "dbl" # Select the data type to read
gnuplot> load "pluto.gp" # Read and store grid info, variable indices, and so forth
gnuplot> nvar = vx2 # Set the variable name

The 1st line selects the datatype (dbl in this case, which is also the default), the 2nd line invokes the
pluto.gp script (created automatically by PLUTO) that initializes variables such as number of points
(nx1, nx2, nx3), domain range (x1beg,x1end and x2beg,x2end), grid spacing (dx1, dx2), vari-
able indices (e.g. rho, vx1, vx2, ... Bx1, Bx2, etc...).

For additional documentation and examples please refer to Doc/gnuplot.html.

12.3.2 Visualization with IDL

IDL (Interactive Data Language) is a vectorized programming language commonly used in the astro-
nomical community for interactive processing of large amounts of data. The PLUTO code distribution
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comes with a number of useful routines written in the IDL programming language to read and visual-
ized data written with PLUTO . Several functions and procedures for data visualization and analysis
can be found in the Tools/IDL directory which we strongly advise adding to the IDL search path. IDL
function documentation can be found in Doc/idl tools.html.

The PLOAD Procedure The PLOAD procedure can be considered the main driver for reading data
stored in one of the following formats: .dbl, .flt, .vtk, .dbl.h5, .flt.h5 or .hdf5. PLOAD requires the infor-
mation stored in the corresponding data log file (e.g. grid.out, dbl.out, flt.out, etc...) to initialize common
block variables and grid information shared by other functions and procedures in the Tools/IDL/ subdi-
rectory. Because of this reason, it should always be called at the very beginning of an IDL session. For
example:

IDL> PLOAD,3; Read variables {rho, vx1, ...} from 3rd output .dbl file

IDL> PLOAD,5,/FLOAT, VAR="prs"; Read pressure from 5th output .flt datafile

IDL> ; Read output 9 from the directory "Large_Data/", do not store it
IDL> ; into memory but use IDL file association (preferred for large datasets):
IDL> PLOAD,dir="Large_Data/",9,/ASSOC

By default, PLOAD tries to read binary data in double precision if dbl.out is present. To select a differ-
ent format, a corresponding keyword must be supplied (e.g. /FLOAT, /H5 or /HDF5 or a combination
of them, see Doc/idl tools.html).

When PLOAD is called for the first time, it initializes the following four common blocks:

• PLUTO GRID: contains grid information such as the number of points (nx1,nx2,nx3), coordi-
nates (x1,x2,x3) and mesh spacing (dx1, dx2, dx3);

• PLUTO VAR: the number (NVAR) and the names of variables being written for the chosen format.
Variable names follow the same convention adopted in PLUTO , e.g., rho, vx1, vx2, ...,
bx1, bx2, prs, .. and so on;

• PLUTO RUN: time stepping information such as output time (t), time step (dt) and total number
of files (nlast).

• PLUTO USERDEF: (new in PLUTO 4.3) an optional common block which can be used to collect
user-defined variables. User-defined variables written to disk can be loaded by introducing the
the MATCH USERDEF VARNAME procedure and manually adding the desired variable names. A
typical example is the file userdef.pro (in your local working directory):

COMMON PLUTO_USERDEF, flag, vort; Define the common block

PRO MATCH_USERDEF_VARNAME, vpt, name, silent=silent
COMMON PLUTO_GRID
COMMON PLUTO_VAR
COMMON PLUTO_RUN
COMMON PLUTO_USERDEF

CASE name OF
"flag": BEGIN flag = vpt & PRINT,"> Reading ",name & END
"vort": BEGIN vort = vpt & PRINT,"> Reading ",name & END

ELSE:
ENDCASE

vpt = 0; Free memory
END

The previous example will add the variables flag and vort and allow PLOAD to read and
store the content in the corresponding variable names. During an IDL session, both PLOAD and
userdef.pro must be compiled first (e.g. IDL> .r pload followed by IDL> .r userdef).

PLOAD can be used inside a normal IDL script, after it has been invoked at least once (or compiled with
.r pload).
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The DISPLAY Procedure DISPLAY is a general-purpose visualization routine and the source code can
be found in Tools/IDL/display.pro The DISPLAY procedure can be used to display the intensity map of a
2D variable to a graphic window, e.g.,

IDL> PLOAD,3 ; load the third data set in double precision
IDL> DISPLAY,x1=x1,x2=x2,alog10(rho), title=’Density’,/vbar
IDL> DISPLAY,x1=x1,x2=x2,vx1,title=’X-Velocity’,nwin=1

The second line displays the density logarithm and the third line displays the x1 component of velocity
in a new window.

Another example, shown in Fig. 12.3, shows how to visualize magnetic pressure and density in two
different windows and overplot the velocity field. For more details, consult Doc/idl tools.html.

Figure 12.3:
An exam-
ple of
visualiza-
tion in IDL
using the
display.pro
routine.

12.3.3 Visualization with pyPLUTO

Binary data files (.dbl, .flt) and VTK files (.vtk) can be visualized using the pyPLUTO code. This tool is
included in the current code distribution in the directory Tools/pyPLUTO/ and provides python modules
(Python version > 2.7 is recommended) to load, visualize and analyse data. Additionally, for the pur-
pose of a quick check, Graphic User Interface (GUI) is provided (requires Python Tkinter). Details of the
Installation and Getting Started can be found in the Doc/pyPLUTO.html.

On successful installation, the user can load data in the following manner:

> ipython --pylab
In [1]: import pyPLUTO as pp
# for loading data.0010.dbl
In [2]: D = pp.pload(10,w_dir=<path to data dir>)
# for loading data.0010.flt
In [3]: D = pp.pload(10,w_dir=<path to data dir>, datatype=’float’)

Here, D is a pload object that has all the information regarding the variable names and their values
which are stored as arrays. It also has the respective grid and time information. For example, D.x1 is the
numpy x-array, D.rho - is the numpy density array, D.vx1 - is the numpy vx1 array and so on. These
numpy arrays can be easily visualized using matplotlib, python’s plotting library. The pyPLUTO’s also
provides two classes - Image and Tools. They have some frequently used functions for analysis and data
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Figure 12.4: An example of visualization with the pyPLUTO tool.

Table 12.3: List of sample .py files provided in the Tools/pyPLUTO/examples folder

samplefile.py Test Problem

sod.py HD/Sod

Rayleigh taylor.py HD/Rayleigh Taylor

stellar wind.py HD/Stellar Wind

jet.py MHD/Jet

orszag tang.py MHD/Orszag Tang

Sph disk.py MHD/FARGO/Spherical Disk

flow past cyc.py HD/Viscosity/Flow Past Cylinder

plotting. Details about these classes along with their usage can be found in HTML document referred
above.

In order to use the GUI version for visualizing the data, append $PATH variable to the bin folder
where the executable GUI pyPLUTO.py exists after the installation of source code (see installation notes
in Doc/pyPLUTO.html) and then apply the following commands in the data directory -

> GUI_pyPLUTO.py # default is for .dbl files
> GUI_pyPLUTO.py --float # for .flt files
> GUI_pyPLUTO.py --vtk # for .vtk files

Along with the code, an example folder with some sample .py files are provided for certain test prob-
lems. The source codes from these files along with their outputs are listed in the HTML documentation.

It is required to first run the respective test problem and generate the data files, after which the user
can run the sample .py files as follows from the Tools/pyPLUTO/examples folder:

> python samplefile.py

where the samplefile.py are listed in 12.3,
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Figure 12.5: An example of visualization
of a binary datafile with mathematica.

12.3.4 Visualization with Mathematica

PLUTO data files can be displayed with Mathematica8 using a notebook interface to create an interactive
document. A simple reader interface is provided by Tools/Mathematica/pload.m and it can be launched to
load and display binary datafiles written in single or double precision (.flt and .dbl). Data is stored into
lists and can be handled using a variety of built-in functions in Mathematica. Grid and time information
are also read from the .out log files and stored into the variables nx and ny (number of points), t (current
time level), nvar (number of variables), dt (current time step).

A typical interactive session once you open an empty book is

AppendTo[$Path, ToFileName[{"/home/mignone/PLUTO/Tools/Mathematica"}]]
SetDirectory["/home/mignone/PLUTO/Test_Problems/MHD/Shock_Cloud"]
<< pload.m

Please remember to type Shift + Enter after each line to make the Wolfram Language process your
input. The first line simply adds the Tools/Mathematica directory to the path, the second line changes
directory to the working location and the third invokes the reader. Once executed, pload.m reader
prompts for the output number, single or double precision and then the variable to display. The out-
put of this session is shown in Fig. 12.5 for the MHD Shock-Cloud interaction test (conf. #01 in
Test Problems/MHD/Shock Cloud).

The function ArrayPlot[] is used to display 2D datasets and is directly included in the interface
reader. For instance, to change colormap and visualize pressure in log scale, use

ArrayPlot[Log[data[[8]]], DataReversed -> True, ColorFunction -> "RoseColors",
DataRange -> {{xmin, xmax}, {ymin, ymax}}]

For different colormaps, consult http://reference.wolfram.com/language/guide/ColorSchemes.html.
A 1D cut of pressure, for instance, through the x direction at constant y be plotted using

ListPlot[data[[8,ny/2]]]

The current directory can be displayed by typing Directory[]while the home directory can shown
by typing $HomeDirectory

8http://www.wolfram.com
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12.3.5 Visualization with VisIt or ParaView

PLUTO data written using VTK or HDF5 (both .h5 and .hdf5 files) formats can be easily visualized using
either VisIt or ParaView available at https://wci.llnl.gov/codes/visit/home.html and http://www.paraview.org/,
respectively. VisIt is an open source interactive parallel visualization and graphical analysis tool for
viewing scientific data. ParaView is an open source mutiple-platform application for interactive, scien-
tific visualization.

An example is shown in Fig. 12.6 for both software packages.

Figure 12.6: An example of visualization of an .xmf (.h5) data file using VisIt (left) or ParaView (right).

Visualization of HDF5 files. Both VisiIt and Paraview interpret the cell-centered grid and data con-
tained in the Pixie files as node-centered: as a consequence, the first and the last half cells in every
direction are clipped from the images (e.g. a small sector around φ = 0 is chopped from a periodic polar
plot covering the 2π angle).

Therefore, for every .h5 file, PLUTO writes also a .xmf text file in XDMF format that describes the
content of the corresponding HDF5 file. The .xmf files can be directly opened by VisIt and ParaView, so
as to provide the correct data centering and avoid the image clipping. Besides, we noticed that the Pixie
reader crashes (e.g. using ParaView 3.14 - 3.98) or incorrectly reads the .h5 files (e.g. using VisIt versions
after 2.6), while all versions of both VisIt and Paraview properly open the .xmf files. All the variables are
read as scalar quantities.

Visualization of VTK files. PLUTO writes .vtk files using a cell-centered attribute rather than point-
centered (as in previous versions). Although this has not been found to be a problem for VisIt, many
filters in ParaView (such as streamlines) may require to apply a Cell Data to Point Data filter.



13. Adaptive Mesh Refinement (AMR)

PLUTO provides adaptive mesh refinement (AMR) functionality in 1, 2 and 3 dimesions through the
Chombo library1. Chombo provides a distributed infrastructure for parallel calculations over block-
structured, adaptively refined grids. PLUTO-Chombo is compatible with any of the available physics
modules (i.e. HD, MHD, RHD, RMHD) and grid refinement is supported in all coordinate systems. Moreover,
grid zones are no longer constrained to be equilateral but sides can have different lengths. Magnetic
fields are evolved using cell-centered schemes i.e., either Powell’s EIGHT WAVES or DIV CLEANING.
Constrained transport is not yet available. I/O is provided by the Hierarchical Data Format (HDF5)
library2, designed to store and organize large amounts of numerical data. A detailed presentation of the
implementation method together with an extensive numerical test suite may be found in [MZT+12].
For compatibility reasons, not all the algorithms available with the static grid version of PLUTO have
been extended to the AMR version. The AMR implementation of PLUTO is not compatible, at present,
with:

• constrained-transport MHD;

• finite difference schemes;

• the ShearingBox module (§10.1)

• the FARGO module;

• Super-Time-Stepping integration for diffusion terms.

Some of the C functions normally used in the static grid version of PLUTO have been replaced by
C++ codes, in order to interface the structure of PLUTO with the Chombo library. For instance, the main
function main.c has been replaced by amrPluto.cpp.

13.1 Installation

In order to properly install PLUTO-Chombo , you will need (check also Table 1.1):

• C, C++ and Fortran compilers;

• the MPI library (for parallel runs).

• GNU make

• the Chombo library1 (version 3.2 is recommended);

• the HDF5 library2 (version < 1.8.14 is recommended);

• the chombo-3.2-patch.tar.gz provided with the PLUTO distribution, which replaces some of the
library source files.

The following sections give a quick headstart on how these libraries can be built for being used by
PLUTO . Please consult the libraries’ respective documentation for additional information.

1https://commons.lbl.gov/display/chombo/
2http://www.hdfgroup.org/HDF5/
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Note: The chombo-3.2-patch.tar.gz patch archive provided with PLUTO 4.2 stopped being com-
patible with Chombo 3.2 starting from revision 23085 of the library, corresponding to patch 5 of
the 3.2 release. A comprehensive list of the patches and revisions of Chombo 3.2 can be found
at https://anag-repo.lbl.gov/chombo-3.2/patches.html, where it is possible to find the instructions to
download older revisions. The patch archive distributed with PLUTO 4.3 should be now com-
patible with all the revisions of Chombo 3.2 and it has been tested using the currently distributed
patch 5 up to revision 23352. To use PLUTO 4.3 with AMR we therefore advise you to download
the latest Chombo 3.2 revision. If in the future you will find any problems compiling or running
the Chombo 3.2 library after having applied the PLUTO 4.3 patch, we advise you to revert to an
older and tested revision of Chombo 3.2, for example:
> svn --username username co -r23352 https://anag-repo.lbl.gov/svn/Chombo/release/3.2 Chombo-3.2

13.1.1 Installing HDF5

The HDF5 library can be downloaded from http://www.hdfgroup.org/HDF5/ and it can be used for the
static grid version (§12.1.2) while it is mandatory for the AMR version and it must be installed before
compiling Chombo.

Note: Both PLUTO (static) and PLUTO-Chombo (AMR) have been succesffuly tested for serial
and parallel computation using with HDF5 v. < 1.8.14 while parallel I/O problems were found on
Ubuntu systems using newer versions.

Different builds are necessary for serial or parallel execution and, since in both cases library names
are the same (by default), it is advisable to store them in separate locations. On a single-processor
machine, serial libraries can be built, for example, using

> ./configure --prefix=/usr/local/lib/HDF5-serial
> make
> make check # optional
> make install

This will install the libraries under /usr/local/lib/HDF5-serial/lib. If you do not have root
privileges, choose a different location in your home directory (e.g. $PLUTO DIR/Lib/HDF5-serial).

Note: The I/O of Chombo 3.2 has been updated to use the HDF5 1.8 API. Howerer, if HDF5
1.6.x is installed on your system, the support for the 1.6 API is still provided by adding the
-DH5 USE 16 API flag to the HDFINCFLAGS variable inside your Make.defs.local, see §13.1.2. Nev-
ertheless, it is not guaranteed that the HDF5 1.6 API will be supported in future Chombo releases.

On multiple-processor architectures, parallel libraries can be built by specifying the name of the
mpicc compiler in the CC variable and invoking configure with the --enable parallel switch,
e.g.,

> CC=mpicc ./configure --prefix=/usr/local/lib/HDF5-parallel --enable-parallel # bash user
> make
> make check # optional
> make install

This will install both shared (dynamic, *.so) and static (*.a) libraries. If you build shared libraries, the
environment variable LD LIBRARY PATH should contain the full path name to your HDF5 library (e.g.
/usr/local/lib/HDF5-serial/lib in the example above). Please make sure to add, for example,

> setenv LD_LIBRARY_PATH /usr/local/lib/HDF5-serial/lib:$LD_LIBRARY_PATH

to your .tcshrc if you’re using the tcsh shell or

> export LD_LIBRARY_PATH="/usr/local/lib/HDF5-serial/lib":$LD_LIBRARY_PATH
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if you’re using bash. If you do not want shared libraries, then add --disable-shared to the configure
command.

13.1.2 Installing and Configuring Chombo
Chombo 3.2 can be downloaded by direct access to the SVN server repository after free registration.
The Chombo source code distribution should be unpacked under PLUTO/Lib/ and some of the library
source files must be replaced using the chombo-3.2-patch.tar.gz patch-archive provided with the PLUTO
distribution. A typical session is
> # get the 3.2 release of Chombo
> svn --username username co https://anag-repo.lbl.gov/svn/Chombo/release/3.2 Chombo-3.2
> tar xzvf chombo-3.2-patch.tar.gz -C Chombo-3.2/ # apply PLUTO-Patch

In order to use Chombo, you may have to build different libraries depending on the chosen compiler,
serial/parallel build, number of dimensions, optimizations, etc... If you intend to run PLUTO-Chombo
for serial or parallel computations in one, two or three dimensions, we suggest to compile all possible
configurations (that is 1, 2 and 3D serial or 1, 2 and 3D parallel). Libraries are automatically named by
Chombo after the chosen configuration.

The default configuration can be set by editing manually Chombo-3.2/lib/mk/Make.defs.local where,
depending on your local system and configuration, you need to set make variables. To this end:

> cd Chombo-3.2/lib
> make setup # create Make.defs.local from template
> cd mk/

The command ’make setup’ will create this file from a template that contains instructions for set-
ting make variables that Chombo uses. These variables specify the default configuration to build, what
compiler to use (together with its flags), where the HDF library can be found and so on.

At this point you should edit Make.defs.local. The normal procedure is to define a default configura-
tion, e.g., 2D serial:� �
## Configuration variables
DIM = 2
DEBUG = FALSE
OPT = TRUE
PRECISION = DOUBLE
PROFILE = FALSE
CXX = g++
FC = gfortran
MPI = FALSE
## Note: don’t set the MPICXX variable if you don’t have MPI installed
MPICXX = mpic++
#OBJMODEL =
#XTRACONFIG =
## Optional features
#USE_64 =
#USE_COMPLEX =
#USE_EB =
#USE_CCSE =
USE_HDF = TRUE
HDFINCFLAGS = -I/usr/local/lib/HDF5-serial/include
HDFLIBFLAGS = -L/usr/local/lib/HDF5-serial/lib -lhdf5 -lz
## Note: don’t set the HDFMPI* variables if you don’t have parallel HDF installed
HDFMPIINCFLAGS= -I/usr/local/lib/HDF5-parallel/include
HDFMPILIBFLAGS= -L/usr/local/lib/HDF5-parallel/lib -lhdf5 -lz
� �
Defaults are used for the remaining field beginning with a ’#’.

Libraries can now be built under Chombo-3.2/lib, with

> make lib

Do not try make all since it won’t work after the Chombo patch file has been unpacked.
Alternative configurations can be made from the default one by specifying the configuration vari-

ables explicitly on the make command line. For example:

> make DIM=3 MPI=TRUE lib

will build the parallel version of the 3D library. Additional information may be found in the Chom-
bo/README file and by consulting the library documentation.
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13.2 Configuring and running PLUTO-Chombo

In order to configure PLUTO with Chombo, you must start the Python script with the --with-chombo
option (Python assumes that Chombo libraries have been built under PLUTO/Lib/Chombo-3.2):

˜/work> python $PLUTO_DIR/setup.py --with-chombo

This will use the default library configuration (2D serial in the example above).
To use a configuration different from the default one, enter the make configuration variables em-

ployed when building the library, e.g.:

˜/work> python $PLUTO_DIR/setup.py --with-chombo: MPI=TRUE

(do not use spaces in MPI=TRUE). Note that the number of dimensions (DIM) is specified during the
Python script and should NOT be given as a command line argument.

The setup proceeds normally as in the static grid case by choosing Setup problem from the Python
script to change/configure your test problem. The makefile is then automatically created by the Python
script by dumping Chombo makefile variables into the file make.vars, part of your local working direc-
tory. Although system dependencies have already been created during the Chombo compilation stage,
the Change makefile option from the Python menu is still used to specify the name and flags of the C
compiler used to compile PLUTO source files. This step is achieved as usual, by selecting a suitable .defs
file from the Config/ directory, see Chapter 3. Beware that, during this step, additional variables such
as PARALLEL, USE HDF5, etc...(normally used in the static grid version) have no effect since Chombo
has its own independent parallelization strategy and I/O. Fortran and C++ compilers are the same ones
used to build the library.

Initial and boundary conditions are coded in the usual way but definitions.h and pluto.ini may contain
some AMR-specific directives.

13.2.1 Running PLUTO-Chombo
Once PLUTO-Chombo has been compiled and the executable pluto has been created, PLUTO runs in
the same way, i.e.

˜/MyWorkDir> ./pluto [flags]

where the supported command line options are given in Table 1.3 in §1.4. Note that -restart must be
followed by the restart (checkpoint) file number. An error will occur otherwise.

Parallel runs proceeds in the usual way, e.g.,

˜/MyWorkDir> mpirun -np 8 ./pluto [flags]

Note that when running in parallel, each processor redirects the output on a separate file pout.n (instead
of pluto.n.log) where n=0...Np-1 and Np is the total number of processors. However, pout.0 also contains
additional information regarding the chosen configuration.

Pre-configured examples can be found in the Test Problems/ folder, e.g.,

• Configuration #04 of Test Problems/HD/Mach Reflection;

• Configuration #04 of Test Problems/HD/Stellar Wind;

• Configuration #03 of Test Problems/RHD/Blast;

• Configuration #08 of Test Problems/MHD/Rayleigh Taylor;

• Configuration #07,#08,#11 of Test Problems/MHD/Rotor;

• Configuration #08 of Test Problems/MHD/Shock Cloud.

• Configuration #03 of Test Problems/RMHD/KH.

• Configuration #01, #02 of Test Problems/RMHD/Shock Cloud.
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13.3 Controlling Refinement

Refinement is controlled by a series of runtime parameters defined in the [Chombo Refinement] block
(§4.2) of your pluto.ini. Zones are tagged for refinement whenever a prescribed function χ(U) of the
conserved variables and of its derivatives exceeds the threshold value χr assigned to Refine thresh
in your pluto.ini. Generally speaking, the refinement criterion may be problem-dependent thus requiring
the user to provide an appropriate definition of χ(U).

The default criterion is based on the second derivative error norm [Loh87] and it is implemented
in the function computeRefGradient() in the source file Src/Chombo/TagCells.cpp. The test function
adopted for this purpose is

χ(U) =

√√√√√
∑
d |∆d,+ 1

2
U −∆d,− 1

2
U |2∑

d

(
|∆d,+ 1

2
U |+ |∆d,− 1

2
U |+ εUd,ref

)2 (13.1)

where U ∈ U is a conserved variable, ∆d,± 1
2
U are the undivided forward and backward differences in

the direction d, e.g., ∆x,± 1
2
U = ±(Ui±1−Ui) (see also section 4.1 in [MZT+12]). The last term appearing

in the denominator, Ud,ref , prevents regions of small ripples from being refined and it is defined by

Ux,ref = |Ui+1|+ 2|Ui|+ |Ui−1| (13.2)

with ε = 0.01 (similar expressions hold when d = x2 or d = x3).
By default U is the total energy density if the EOS is not isothermal, or the mass density other-

wise, see CHOMBO REF VAR in Appendix C.3. A different variable q = q(U) (e.g. q = m2
x/2ρ) can be

used to replace U in Eq. (13.1) by copying the source file Src/Chombo/TagCells.cpp in your local work-
ing area, setting CHOMBO REF VAR to −1 and defining the appropriate expression through the function
computeRefVar(). Beware, however, that χ(U) may become ill-defined if Ux,ref changes sign. This
occurs, for example, when U is a vector component (e.g. momentum or magnetic field) and a better
solution would be to replace Ud,ref with a constant reference value.

13.4 Output and Visualization

PLUTO-Chombo output employs the HDF5 format and the frequency of output is controlled at runtime
by specifying the relevant parameters described in §4.7. HDF5 is a data model, library, and file format
for storing and managing large amounts of data. It supports an unlimited variety of datatypes and is
designed for flexible and efficient I/O.

HDF5 data can be visualized by a number of commercial or open source packages and, at present,
Chombo data files have been successfully opened and visualized with IDL3, VisIt4, ParaView5 and
pyPLUTO. Examples are provided in the following. A comprehensive list of application software
using HDF5 may be found at http://www.hdfgroup.org/tools5app.html. A set of utilities for manipulat-
ing, visualizing and converting HDF5 data files is provided by H5utils, a set of utilities available at
http://www.hdfgroup.org/products/hdf5 tools/. H5utils offers a simple tool for batch visualization as PNG
images and also includes programs to convert HDF5 datasets into the formats required by other free
visualization software (e.g. plain text, Vis5d and VTK).

In what follows we describe some of the routines provided with PLUTO-Chombo for viewing and
analyzing HDF5 data in the IDL programming language.

13.4.1 Visualization with IDL

PLUTO-Chombo comes with a set of visualization routines for the IDL programming language. For
more information consult idl tools.html.

3http://www.exelisvis.com/
4https://wci.llnl.gov/codes/visit/home.html
5http://www.paraview.org/
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The procedure HDF5LOAD (located in /Tools/IDL/hdf5load.pro) can read a HDF5 data file and store its
content on the usual set of variables used during a typical IDL session. HDF5LOAD is directly called
from PLOAD (§12.3.2) when the latter is invoked with the /HDF5 keyword. For instance, in order to read
data.0001.hdf5 at the equivalent resolution provided by the 4th refinement level, you need

IDL> pload, /hdf5,2,level=4 # will load data.0002.hdf5, ref level = 4

Note that IDL re-interpolates the required dataset to a uniform mesh with resolution given by the spec-
ified refinement level.

As an example, we show how to visualize the density map for the relativistic Kelvin-Helmholtz test
problem as in Fig. 13.1 corresponding to the output of configuration # 03 of Test Problems/RMHD/KH.

Figure 13.1: Density maps of the relativistic Kelvin-Helmholtz test problem, at t = 5. Refinement levels are displayed, using
the oplotbox routine.

The figure has been produced with the following IDL commands:

IDL> PLOAD, /HDF5, dir="DATA_03",5,lev=4, x2range=[0.5,1.5]
IDL> LOADCT,6
IDL> DISPLAY,x1=x1,x2=x2,/vbar,rho,imax=1.1,imin=0.65,title="Density map"
IDL> OPLOTBOX,ctab=3

The last command (OPLOTBOX) overplots the levels of refinement, utilizing the color table 3. If you are
plotting a 2D map in curvilinear coordinates (polar or spherical) using the DISPLAY procedure setting
the /POLAR keyword, you can use the same /POLAR keyword for the OPLOTBOX procedure to correctly
overplot the levels of refinement.

Reading Large Datasets. It may occur that the dataset one wishes to load exceeds the available mem-
ory. In that case, it is useful to load only a portion of it. This can be accomplished by specifying sub-
domain through the keywords x1range, x2range and x3range. For instance:

IDL> PLOAD, /hdf5, 5,lev=6, x1range=[0.25,0.75], x2range=[0.75,1.25]
# will load data.0005.2d.hdf5, ref level = 6
# but only inside the region x in [0.25,0.75], y in [0.75,1.25]

IDL> DISPLAY, x1=x1,x2=x2, rho, nwin=1, imax=1.1,imin=0.65
IDL> OPLOTBOX, ctab=3
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13.4.2 Visualization with VisIt

VisIt can read Chombo HDF5 datafiles. Individual .hdf5 files or databases can be opened and visualized
from the GUI in exactly the same way as .vtk of .h5 files and level plots can be over-imposed from Add
→ Subset→ levels.

If you are using curvilinear coordinates or cartesian coordinates with an origin offset (i.e. the do-
main’s lower corner 6= [0, 0, 0]) and/or different grid spacings along different directions, the correct
coordinate transformation can be done by applying the Displacement operator. Example:

• Select a valid data.*.hdf5 database by clicking on Open

• Add→ Pseudocolor→ rho

• Operators→ Transform→ Displace

• Click on the Displace operator to set the attributes: Displacement variable → Default →
Vectors→ Displacement.

As an example we show, in Fig. 13.2, a close-up of the final solution obtained with configuration #08
of the Test Problems/HD/Disk Planet/ problem.

Figure 13.2: Density distribution with overplotted AMR levels for the disk-planet interaction.



13.4.3 Visualization with pyPLUTO

The simulation data obtained from PLUTO-Chombo is written as a HDF5 file, which can now be visu-
alised and analysed using pyPLUTO (§12.3.3). The reader for HDF5 files with AMR data in pyPLUTO
has been developed by Dr. Antoine Strugarek (Departement of Physics, University of Montreal) and
has same capablities as that of IDL’s HDF5LOAD. In order to use this reader it is required to install, h5py
package, the Pythonic interface to HDF5 data.

The syntax you need is similar to that used for static grids. For example, in order to read data.0001.hdf5
at the equivalent resolution provided by the 4th refinement level,

> ipython --pylab
In [1]: import pyPLUTO as pp
In [2]: D = pp.pload(1,datatype=’hdf5’,level=4)

Now, the pyPLUTO pload object, D has all information regarding the data. To visualize (say) the
density ρ, one can use the pyPLUTO.Image class as follows.

In [3]: I = pp.Image()
In [4]: I.pldisplay(D, D.rho, x1 = D.x1, x2 = D.x2, cbar=(True,

’vertical’))
# To plot 2D R-Phi data obtained from a POLAR AMR Grid.
In [5]: I.pldisplay(D, D.rho, x1 = D.x1, x2 = D.x2, cbar=(True,

’vertical’), polar=[True, True])
# To plot 2D R-Theta Slice from 3D POLAR AMR Data.
In [6]: I.pldisplay(D, D.rho[:,:,D.n3/2], x1 = D.x1, x2 = D.x2, cbar=(True,

’vertical’), polar=[True, False])

Further, AMR levels in form of boxes can be overplotted using the oplotbox routine. Here, we plot
the boxes for all 4 refine levels in addition to the base coarse grid.

In [7]: I.oplotbox(D.AMRLevel, lrange=[0,4],cval=[’r’,’g’,’k’,’c’,’m’],geom=D.geometry)

The figure 13.3 shows the total magnetic pressure obtained for the MHD Rotor problem in 2D at
the equivalent resolution provided by the 4th refinement level, also, overplotted are the AMR levels in
different colored lines for all of these 4 levels.

Figure 13.3: AMR Data visualisation using pyPLUTO.

Note: : The HDF5 reader is not yet integrated into the pyPLUTO’s graphical user interface

130



A. Runtime Problems & Fixes

Occasionally, the code may encounter problems owing to:

1. Negative pressure: this situation is encountered in strongly supersonic and/or magnetized flows
since the pressure is recovered by subtracting kinetic and magnetic contributions from the total
energy density, e.g.,

p = E − Ekin − Emag .

Discretization errors can then become large enough to produce negative values during this sub-
traction operation.

• Fix: by default, PLUTO resets the pressure to g smallPressure (a global variable which
can be set in your Init() function) and redefines the total energy afterwards. This breaks
down energy conservation.

• Workarounds: choose a more diffusive scheme (more diffusive solvers such as HLL or TVDLF
turn out to be more effective in these situations) and/or resort to the entropy equation (2.2.4).
You may also enable SHOCK FLATTENING to MULTID for a scheme-adaptive strategy, see C.3.

2. Negative Energy: this is a more severe situation and it is caused by a strong evacuation.

• Fix:

• Workaround:

3. Negative Density: this is a more severe situation and it is caused by a strong evacuation.

• Fix: by default, PLUTO redefines the conserved density to g smallDensity (a global vari-
able which can be set in your Init() function). However, this is may easily lead to the
occurrence of high velocities and severe code crashes due to negative pressures afterwards.
Not very recommended.

• Workaround: A more efficient fix is to enable simultaneously i) SHOCK FLATTENING to MULTID
and ii) FAILSAFE to YES. With the FAILSAFE mechanism, PLUTO saves the solution arrays
before attemping the step and, on encountering a negative density, it retries the step again
while tagging the critical zone(s) to be updated using FLAT reconstruction and the hll Rie-
mann solver. We found this apprach to be much mor effective than the default fix. In addition,
density conservation does not break down.
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B. Equations in Different Geometries

In this section we give the explicit form of the MHD and RMHD equations written in different systems of
coordinates. Non-ideal terms such as viscosity, resistivity and thermal conduction are not included here.
The discretizations used in the Src/MHD/rhs.c and Src/RMHD/rhs.c strictly follow these form. Equations
for the non-magnetized version (HD and RHD) are obtained by setting the magnetic field vectorB = 0.

B.1 MHD Equations

B.1.1 Cartesian Coordinates

In Cartesian coordinates (x, y, z), the conservative ideal MHD Equations (6.4) are discretized using the
following divergence form

∂ρ

∂t
+∇ · (ρv) = 0
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∂t
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∂pt
∂x
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(B.1)

where v = (vx, vy, vz) and B = (Bx, By, Bz) are the velocity and magnetic field vectors, (Ex, Ey, Ez)
are the components of the electromotive force E = −v × B, g is the body force vector and Φ is the
gravitational potential.
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B.1.2 Polar Coordinates

In polar cylindrical coordinates (R,φ, z), the conservative ideal MHD Equations (6.4) are discretized
using the following divergence form
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(B.2)

Note that curvature terms are present in the radial component while the azimuthal component is dis-
cretized in angular momentum conserving form. The corresponding divergence operators are
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(B.3)

In the previous equations v = (vR, vφ, vz) and B = (BR, Bφ, Bz) are the velocity and magnetic field
vectors, (ER, Eφ, Ez) are the components of the electromotive force E = −v × B, g is the body force
vector and Φ is the gravitational potential.

The operator ∇R · () is discretized in a conservative way using the following representation:
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where the half-integer notation have been kept for the sake of exposition (i.e. ∆V ≡ ∆Vijk = Ri∆Ri∆φj∆zk).
Note that, starting with PLUTO 4.3, area and volume do not depend on one coordinate at a time but are
fully 3D arrays (example: AR

i+ 1
2

= Ri+ 1
2
∆φj∆zk).

133



B.1.3 Spherical Coordinates

In spherical coordinates (r, θ, φ) the ideal MHD equations (6.4) are discretized using the following di-
vergence form
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(B.5)
Note that curvature terms are present in the radial and meridional components while the azimuthal
component is discretized in angular momentum conserving form. The corresponding divergence oper-
ators are
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In the previous equations v = (vr, vθ, vφ) and B = (Br, Bθ, Bφ) are the velocity and magnetic field
vectors, (Er, Eθ, Eφ) are the components of the electromotive force E = −v × B, g is the body force
vector and Φ is the gravitational potential.

At the discrete level, the operator ∇r · () keeps its conservative nature by using the following repre-
sentation:

∇r · F =

(
Ar
i+ 1

2

ri+ 1
2
F r
i+ 1

2

−Ar
i− 1

2

ri+ 1
2
F r
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2

∆Vi
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(
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2
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2

∆Vi

)
+ Sr + Sθ (B.7)

where ∆V = (r3
i+ 1

2

− r3
i− 1

2

)∆(1− cos θj)∆φk. Written in this form, the inclusion of the source term does
not violate conservation and it is carried out in the file rhs source.c.
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B.2 (Special) Relativistic MHD Equations

B.2.1 Cartesian Coordinates

In Cartesian coordinates (x, y, z), the relativistic MHD equations (6.13) take the form

∂D

∂t
+∇ · (Dv) = 0
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+∇ ·

[
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]
+
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]
+
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= 0

(B.8)

where D = γρ is the lab density, m = (w + b2)v − γ(v · B)b is the momentum density, w is the gas
enthalpy, b2 = B2/γ2 + (v ·B)2, v = (vx, vy, vz) is the velocity, B = (Bx, By, Bz) is the magnetic field
in the lab frame, b = B/γ + γ(v · B)v is the covariant field, (Ex, Ey, Ez) are the components of the
electromotive force E = −v ×B and fg is the relativistic force vector (Eq. 6.12).

B.2.2 Polar Coordinates

In polar cylindrical coordinates (R,φ, z), the RMHD Equations (6.13) are discretized using the following
form

∂D

∂t
+∇ · (Dv) = 0

∂mR

∂t
+∇ ·

[
(w + b2)vRv − bRb

]
+
∂pt
∂R

= fg,R +
mφvφ
R
−
(
Bφ
γ2

+ (v ·B)vφ

)
Bφ
R

∂mφ

∂t
+∇R ·

[
(w + b2)vφv − bφb

]
+

1

R

∂pt
∂φ

= fg,φ

∂mz

∂t
+∇ ·

[
(w + b2)vzv − bzb

]
+
∂pt
∂z

= fg,z

∂Et
∂t

+∇ · (m−Dv) = v · fg

∂BR
∂t

+
1

R

∂Ez
∂φ
− ∂Eφ

∂z
= 0

∂Bφ
∂t

+
∂ER
∂z
− ∂Ez

∂R
= 0

∂Bz
∂t

+
1

R

∂(REφ)

∂R
− 1

R

∂ER
∂φ

= 0 ,

(B.9)
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Note that curvature terms are present in the radial component while the azimuthal component is dis-
cretized in angular momentum conserving form. The corresponding divergence operators are

∇ · F =
1

R
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∂R
+

1

R

∂Fφ
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+
∂Fz
∂z

,
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+

1

R

∂Fφ
∂φ

+
∂Fz
∂z

(B.10)

In the previous equations v = (vR, vφ, vz) and B = (BR, Bφ, Bz) are the velocity and magnetic field
vectors, (ER, Eφ, Ez) are the components of the electromotive force E = −v ×B, fg is the relativistic
force vector (Eq. 6.12).

B.2.3 Spherical Coordinates

In spherical coordinates (r, θ, φ) the RMHD equations (6.13) are discretized using the following diver-
gence form

∂D

∂t
+∇ · (Dv) = 0

∂mr

∂t
+∇ ·

[
(w + b2)vrv − brb

]
+
∂pt
∂r

= fg,r +
mθvθ +mφvφ

r
+

−
(
Bθ
γ2

+ (v ·B)vθ

)
Bθ
r
−
(
Bφ
γ2

+ (v ·B)vφ

)
Bφ
r

∂mθ

∂t
+∇ ·

[
(w + b2)vθv − bθb

]
+

1

r

∂pt
∂θ

= fg,θ −
mθvr − cot θmφvφ

r

+

(
Bθ
γ2

+ (v ·B)vθ

)
Br
r
− cot θ

(
Bφ
γ2

+ (v ·B)vφ

)
Bφ
r

∂mφ

∂t
+∇r ·

[
(w + b2)vφv − bφb

]
+

1

r sin θ

∂pt
∂φ

= fg,φ

∂Et
∂t

+∇ · (m−Dv) = v · fg

∂Br
∂t

+
1

r sin θ

∂(sin θEφ)

∂θ
− 1

r sin θ

∂Eθ
∂φ

= 0

∂Bθ
∂t

+
1

r sin θ

∂Er
∂φ
− 1

r

∂(rEφ)

∂r
= 0

∂Bφ
∂t

+
1

r

∂(rEθ)

∂r
− 1

r

∂Er
∂θ

= 0

(B.11)
Note that curvature terms are present in the radial and meridional components while the azimuthal
component is discretized in angular momentum conserving form. The corresponding divergence oper-
ators are
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C. Predefined Constants and Macros

C.1 Predefined Physical Constants

PLUTO has several predefined physical and astronomical constants in c.g.s. units which may be used
anywhere in the code (see pluto.h):� �
#define CONST_AH 1.008 /**< Atomic weight of Hydrogen */
#define CONST_AHe 4.004 /**< Atomic weight of Helium */
#define CONST_AZ 30.0 /**< Mean atomic weight of heavy elements */
#define CONST_amu 1.66053886e-24 /**< Atomic mass unit. */
#define CONST_au 1.49597892e13 /**< Astronomical unit. */
#define CONST_c 2.99792458e10 /**< Speed of Light. */
#define CONST_eV 1.602176463158e-12 /**< Electron Volt in erg. */
#define CONST_G 6.6726e-8 /**< Gravitational Constant. */
#define CONST_h 6.62606876e-27 /**< Planck Constant. */
#define CONST_kB 1.3806505e-16 /**< Boltzmann constant. */
#define CONST_ly 0.9461e18 /**< Light year. */
#define CONST_mp 1.67262171e-24 /**< Proton mass. */
#define CONST_mn 1.67492728e-24 /**< Neutron mass. */
#define CONST_me 9.1093826e-28 /**< Electron mass. */
#define CONST_mH 1.6733e-24 /**< Hydrogen atom mass. */
#define CONST_Msun 2.e33 /**< Solar Mass. */
#define CONST_Mearth 5.9736e27 /**< Earth Mass. */
#define CONST_NA 6.0221367e23 /**< Avogadro Contant. */
#define CONST_pc 3.0856775807e18 /**< Parsec. */
#define CONST_PI 3.14159265358979 /**< \f$ \pi \f$. */
#define CONST_Rearth 6.378136e8 /**< Earth Radius. */
#define CONST_Rsun 6.96e10 /**< Solar Radius. */
#define CONST_sigma 5.67051e-5 /**< Stephan Boltmann constant. */
#define CONST_sigmaT 6.6524e-25 /**< Thomson Cross section. */
� �
C.2 Predefined Function-Like Macros

PLUTO comes with a number of pre-defined function-like macros to implement simple arithmetic op-
erations such as maximum (MAX ), minimum (MIN ), or looping over a specific portion of the computa-
tional domain (e.g. DOM LOOP or TOT LOOP ). Please refer to the Doc/Doxygen/html/macros 8h.html page
in the API reference guide (Doc/Doxygen/html/index.html).
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C.3 Advanced Options

PLUTO allows a number of switches to be fine-tuned directly from your definitions.h in the user-defined
constant section, see §2.3. These advanced options are described in Table C.1.

Table C.1: PLUTO advanced options.

Name Value Description

ARTIFICIAL VISC (double)

The amount of artificial (Lapidus-type) viscosity ν added to the
two-shock Riemann solver flux (only):

F → F + νmax(vn,L − vn,R, 0)(UL −UR) (C.1)

where vn is the velocity normal to the interface. This term intro-
duces an extra amount of numerical dissipation [CW84] useful
to reduce small-amplitude oscillations occurring when a char-
acteristic speed associatedwith a strong shock, measured rela-
tive to the grid, vanishes. Typical values are around 0.1. By
default it is not used.
Note: this constant has no effect with other Riemann solvers.

ASSIGN VECTOR POTENTIAL (YES/NO)

When set to YES, magnetic field components are initialized
from the vector potential. In the constrained transport algo-
rithm (CT, §6.2.2.3), this guarantees that the magnetic field has
zero divergence. When set to NO, assignment proceeds in the
usual way, see §6.2.1 for more details.

CHAR LIMITING (YES/NO)

Set it to YES to perform reconstruction on characteristic vari-
ables rather than primitive. It is available for the HD, RHD and
MHD modules. Although somewhat more expensive, recon-
struction in characteristic ariables is known to produce better
quality solutions by suppressing unwanted numerical oscilla-
tion in proximity of strong discontinuities and leading to a bet-
ter entropy enforcement.

CHOMBO CONS AM (YES/NO)

In curvilinear coordinates, set this switch to YES to enforce an-
gular momentum conservation during the prolongation and re-
striction operation with PLUTO-Chombo . Default value is YES
when CHOMBO EN SWITCH is set to YES.

CHOMBO LOGR (YES/NO)

Enable this switch if you want to produce an equally-spaced
logarithmic grid in the radial direction in POLAR or SPHERICAL
coordinates when using PLUTO-Chombo . A logarithmic grid
has the advantage of preserving the cell aspect ratio both close
to and far away from the origin. The default value is NO.

CHOMBO REF VAR (<vname>)

Sets the name of the conservative variable used by Chombo
when tagging zones for refinement. Allowed values are RHO
(for density), ENG (for total energy), MX1 (for normal com-
ponent of momentum), etc... The default value is total en-
ergy density or density when there’s no energy equation.
The special value −1 can be given to supply a user-defined
variable instead (e.g. pressure or kinetic energy) using the
computeRefVar() function. See §13.3 for more detail. No-
tice that, since CHOMBO REF VAR is one of the conservative vari-
ables used to perform prolongation and restriction operations,
if CHOMBO CONS AM is set to YES (see §C.3), iMPHI stands for
the conserved angular momentum.
Important: owing to the different type of conserved variable
names, the CHOMBO REF VAR should never be used inside pre-
processor conditional statements.

Continued on next page
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Name Value Description

CHTR REF STATE (1/2/3)

Set the reference state used during the characteristic tracing
step (see Src/States/char tracing.c), as explained in section 3.3
of [MZT+12]. The allowed values are 1, 2 or 3:

1: use the cell-centered value: wref
i,± = wi,0. This choice is

slightly more diffusive but has found to work well for flows
containing strong discontinuities;

2: No reference state is introduced and the interpolated states
at the base time level are used: wref

i,± = wi,±. This is found to
be a good choice in presence of smooth flow and equlibrium
configurations.

3: reference states are constructed as in the original PPM algo-
rithm [CW84, Col90] to minimize the size of the term sus-
ceptible to characteristic limiting (see Eq. [29] and [30] of
[MZT+12]).

The default value is 3 except for PARABOLIC/WENO reconstruc-
tion in characteristic variable for which 2 is used.

CT EMF AVERAGE (string)
Control how the electromotive force (EMF) is integrated from
the face center to the edges. This is discussed in more detailed
in §6.2.2.3.

CT EN CORRECTION (YES/NO)

This option is available only in the MHD and RMHD modules.
The default is NO, implying that energy is not corrected after the
conservative update. However, for low-beta plasma one may
find useful to switch this option to YES, as described in [BS99].

EPS PSHOCK ENTROPY (double)

Sets the maximum shock strength above which fluid variables
inside a given computational zone can be safely updated us-
ing the entropy equation (see §2.2.4 and the source file Sr-
c/flag shock.c). It has effect only when ENTROPY SWITCH has
been enabled. A lower value will trigger the flattening proce-
dure in more zones. Default is 0.05.

EPS PSHOCK FLATTEN (double)

Sets the minimum shock strength above which the MULTID
shock flattening algorithm flags a zone to be inside a shock (see
Src/flag shock.c). It has effect only when SHOCK FLATTENING
is set to MULTID. A lower value will trigger the flattening pro-
cedure in more zones. Default is 5.0.

FAILSAFE (YES/NO)

Enable PLUTO failsafe mechanism to handle the occurrence of
negative densities. When set to YES, solution array is saved
before the step. When a negative density is found, the critical
zone is tagged to be evolved using flat reconstruction and the
hll Riemann solver and PLUTO retries the step again. Must be
used in conjunction with SHOCK FLATTENING set to MULTID.
(Default: NO).

FARGO NSTEP AVERAGE (int)
Sets how often the orbital velocity should be recomputed in the
FARGO transport step. Default is 10.

FARGO ORDER (int)

Sets the spatial order of the reconstruction used during the lin-
ear transport step of the FARGO algorithm. The allowed values
are 3 (third-order, PPM-like reconstruction) or 2 (second-order
MUSCL-HANCOCK scheme). Default is 3.

FARGO OUTPUT VTOT (YES/NO) Enable/disable writing of the total velocity to main output data
(default value is NO).

GFORCE OMEGA (double)

Define the ωg parameter in Eq. (4.1). Note that one must have
0 ≤ ωg < 1 where ω = 0 yields the Lax-Friedrichs Flux,
ωg = 1/2 yields the FORCE flux, while ωg = 1 gives the Lax-
Wendroff flux. The default is ωg = 1/(1 + CFL).

Continued on next page

139



Table C.1 – Continued from previous page

Name Value Description

GLM ALPHA (double) Sets the value of the constant α used monopole damping in the
GLM formalism, see §6.2.2.2. The default value is 0.1.

GLM EXTENDED (YES/NO) Enable the (E)xtented GLM form of the MHD equations, see
§6.2.2.2. Default value is NO.

GNUPLOT HEADER (YES/NO)
Enable writing of pluto.gp, a Gnuplot script file containing grid
and variable index information useful for plotting purposes
(see Doc/gnuplot.html). Default is NO.

H MASS FRAC (double)
Hydrogen mass fraction, X = munHAH/ρ. Used to compute
FRAC He and FRAC Z in the definition of the mean molecular
weight, see §5.1.2. Default value is X = 0.7110.

He MASS FRAC (double)

Helium mass fraction, Y = munHeAHe/ρ. Used to compute
FRAC He and FRAC Z in the definition of the mean molecular
weight, see §5.1.2. Note that the fraction of metals is always
computed as Z = 1−X − Y . The default value is Y = 0.2741.

ID NZ MAX (int)
An integer number specifying the size (in the 3rd dimension) of
the buffer used to read data from input data files. Default is 4.

INITIAL SMOOTHING (YES/NO)

When set to YES, initial conditions are assigned by sub-
sampling and averaging different values inside each cell. It is
useful to create smooth profiles of sharp boundaries not aligned
with the grid (e.g., a circle in Cartesian coordinates).

INTERNAL BOUNDARY (YES/NO)

When turned to YES, it allows to overwrite or change the
solution array anywhere inside the computational domain.
This is done inside the UserDefBoundary() function when
side==0, see §5.3. This option is particularly useful when flow
variables must be kept constant in time or to assign lower/up-
per threshold values to any physical quantity (e.g. density or
pressure).

LIMITER (lim)

Sets the limiter(s) to be applied when RECONSTRUCTION is set
to LINEAR. Here lim can be one of

• FLAT LIM : set slope to zero (1st order reconstruction);

• MINMOD LIM : use the minmod limiter (most diffusive);

• VANALBADA LIM : use the van Albada limiter function;

• OSPRE LIM : use the OSPRE limiter;

• VANLEER LIM : use the harmonic mean limiter of van Leer;

• UMIST LIM : use the umist limiter;

• MC LIM : use the monotonized central difference limiter (least
diffusive);

• DEFAULT: keep the default setting (defined in Src/S-
tates/set limiter.c).

where MINMOD LIM is the most diffusive and MC LIM is the
least diffusive limiter. The TVD diagram for the various lim-
iter functions is shown in Fig C.1.
All of the above limiters employ a 3-point stencil.

MULTIPLE LOG FILES (YES/NO)

In parallel mode, controls if multiple log files (one per proces-
sor) or just processor #0’s log should be dumped to disk. When
set to NO, the function print0() will work only for the root
processor, while print() enables writing for all processors. If
set to YES, print0() and print() are identical.

Continued on next page
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Name Value Description

NGHOST USR (int)
When positive, it allows the user to specify the number of ghost
zones directly, thus overriding the PLUTO’s default selection
from get nghost.c. Default is −1 (not effective).

PARTICLES CR C (double)
[Particle Module only] Specifies the speed of light C used in the
equation of motion of CR particles. Default is 104.

PARTICLES CR E MC (double)

[Particle Module only] The charge to mass ratio of CR particles
in dimensionless units. This constants enters in the definition
of the CR force Eq (11.4) and in the particle equation of motion
(11.2). When set to unity (default) is equivalent to assume the
ion skin depth c/ωpi as the unit length.

PARTICLES CR E MC GAS (double)
[Particle Module only] The charge to mass ratio of the fluid, used
to compute F CR, Eq. (11.4). Default is 1.

PARTICLES CR FEEDBACK (YES/NO)

[Particle Module only] Enable / disable CR particle feedback on
the fluid. When enabled (default), the full MHD-PIC equations
(11.3) are solved. When disabled, particles are treated as pas-
sive test-particles obeying Eq. (11.2) evolving in the fluid’ elec-
tromagnetic field B and cE = −v ×B.

PARTICLES CR LARMOR EPS (double)

[Particle Module only] A safety factor giving the fraction of Lar-
mor time captured during a single particle integration step or
sub-step. A lower value means more steps must be taken to
reproduce a particle orbit. Default is 0.3.

PARTICLES CR NCELL MAX (double)
[Particle Module only] The maximum number of zones that a
particle is allowed to cross during a single integration step or
sub-step. Default is 1.8.

PARTICLES CR NSUB (int)

[Particle Module only] When > 0, it specifies the maximum
number of sub-steps (per hydro step) used during particle sub-
cycling. The overall time step will be adjusted so that no more
than PARTICLES CR NSUB sub-steps should be necessary dur-
ing a single sub-cycle. A negative number can also be provided
to force the number of sub-steps to stay constant (to the abso-
lute value) regardless of the fluid step.

PARTICLES CR PREDICTOR (0/1/2)

[Particle Module only] Enable the particle predictor/subcycling
strategy. When set to 0, no predictor is done and sub-cycling is
automatically engaged when PARTICLES CR NSUB. When set
to 1, a predictor step is performed to compute the full electric
field at the half time level of each sub-step. When set to 2 (de-
fault), sub-cycling can be used with an even number of sub-
steps and the CR force is re-computed every other step.

PARTICLES DUST FEEDBACK (YES/NO) [Particle Module only] Enable / disable dust particle feedback
on the fluid (Default is YES).

PARTICLES DUST SB ETA VK (double)
[Particle Module only] It measures the amount by which the gas
azimuthal velocity is reduced from the Keplerian value by the
radial pressure gradient. Default is 0.0.

PARTICLES DUST STOPPING TIME (...)

[Particle Module only] Controls how the grain stopping time τs,p
is computed. When set to CONSTANT (default), τs,p is a con-
stant defined by the structure member tau s. When set to
USERDEF allows the stopping time to be defined through the
user-supplied function Particles Dust StoppingTime()
rather than from p->tau s.

PARTICLES DUST TIME STEPPING (...)

[Particle Module only] Set the integration scheme used to ad-
vanced dust particles. Possibile values are SEMI IMPLICIT or
EXP MIDPOINT (default). See [MFV19] for a detailed descrip-
tion.

Continued on next page
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Name Value Description

PARTICLES LP MICROETA (double)

[Particle Module only] A dimensionless parameter giving the ra-
tio between the Larmor frequency and the electron scattering
frequency. This parameter governs the un-resolved turbulence
and describes the degree to which the particles are magnetized.
(see [TK15]).

PARTICLES LP ICCMBZ (double)

[Particle Module only] Red-shift of the source used to scale the
temperature of the CMB photons. This is relevant for estimat-
ing the IC emission due to interaction of leptons with CMB pho-
tons. The default value is 0.0, implying the default CMB tem-
perature is 2.73 K.

PARTICLES LP SHK THRESHOLD (double)
[Particle Module only] A float value greater than 1.0 (by default
its value is set to 3.0) that controls when the particle has to be
considered inside the shock.

PARTICLES LP SHK GRADP (double)
[Particle Module only] A float value which determines the
boundary between the upstream and downstream while the
particle is inside the shock.

PARTICLES LP NONTH FRACN (double)
[Particle Module only] A fraction of non-thermal micro-particles
that are injected in the shock as the macro-particle leaves the
domain.

PARTICLES LP NONTH FRACE (double)
[Particle Module only] A fraction of fluid internal energy at
shocks that goes to energize the non-thermal particles that are
injected in the shock.

PARTICLES SHAPE (int)

[Particle Module only] Sets the particles shape function when
fluid quantities at the particle position (and viceversa). Al-
lowed int values are 1, 2 and 3, respectively used for Nearest
Neighbour Point (NGP), Cloud-In-Cell (CIC) and Triangular Shape
Cloud (TGP).
The special value −1 is also allowed, meaning that the fluid
fields are directly computed calling the Init() function
(weight functions are not used). Default is 3 (TGP).

PPM ORDER (3/4/5)

Sets the order of reconstruction when using PARABOLIC recon-
struction. Allowed values are 3 (uses three-point stencil, third-
order accurate), 4 (fourth order) and 5 (fifth order). For more
information see [Mig14]. The default value is 4 (as in the origi-
nal PPM method).

PRNG (...)

Sets the pseudo random number generator used by
the RandomNumber() function. Allowed values are
PRNG DEFAULT (employs standard C drand48() function),
PRNG ECUYER (long period L’Ecuyer, adapted from Numerical
Recipe) and PRNG MT (64-bit version of Mersenne-Twister
pseudo random number generator). Default is PRNG DEFAULT.

PV TEMPERATURE TABLE (YES/NO)

Used for the PVTE LAW EOS in ionization equilibrium, §7.3.2.
When set to YES replaces function evaluations of the thermal
EOS (p = nkBT ) and its inverse with lookup table and bilinear
interpolation. This results in a considerably faster execution.
Default is YES.

PV TEMPERATURE TABLE NX (int)
Sets the number of x-points used to construct the temperature
table for the PVTE LAW EOS. The default value is set in Sr-
c/EOS/PVTE/thermal eos.c.

PV TEMPERATURE TABLE NY (int)
Sets the number of y-points used to construct the temperature
table for the PVTE LAW EOS. The default value is set in Sr-
c/EOS/PVTE/thermal eos.c.

Continued on next page
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RADIATION DIFF LIMITING (YES/NO)
[RadRMHD Module only] Apply the limiter by [SNTZ13] to the
radiation characteristic speeds, which can prevent artificial dif-
fusion in high-opacity problems. Default is NO.

RADIATION ERROR (double)

[RadRMHD Module only] Tolerance for the convergence crite-
rion of the implicit step. Radiation-matter interaction terms
are integrated implicitly using an iterative scheme that con-
verges when the squared relative variation of the iterated fields
is lower than this number. Default is 1e-7.

RADIATION MIN ERAD (double) [RadRMHD Module only] Er is replaced by this value by
ConsToPrim() if Er < 0 . Default is 1e-16.

RADIATION FULL CONVERGENCE (YES/NO)

[RadRMHD Module only] Add the relative variation of p to the
convergence function in the implicit step if the iterated fields
are (Er,F r), and add the relative variation of Er to the conver-
gence function if the iterated fields are (p, γv). Default is YES.

RADIATION IMEX SSP2 (YES/NO)

[RadRMHD Module only] Integrate the RadRMHD equations
using the IMEX-SSP2(2,2,2) method by [PR05] instead of the
IMEX1 method [MM19]. Works only if TIME STEPPING is de-
fined as RK2. This option cannot be used together with AMR.
Default is NO.

RADIATION IMPL (string)

[RadRMHD Module only] Implicit method employed to inte-
grate the radiation-matter interaction terms. Here string can
be one of

• RADIATION FIXEDPOINT RAD: default method if
RADIATION IMPL is not defined. The values of (Er,F r) are
iterated following the fixed-point method by [TO13].

• RADIATION FIXEDPOINT GAS: standard fixed-point
method based on iterations of (p, γv).

• RADIATION NEWTON RAD: Newton method based on itera-
tions of (Er,F r).

• RADIATION NEWTON GAS: Newton method based on itera-
tions of (p, γv).

A description of these methods is given in [MM19].

RADIATION MAXITER (int)
[RadRMHD Module only] Maximum number of iterations dur-
ing the implicit step. Default is 200.

RADIATION NEQS (int)

[RadRMHD Module only] Number of equations solved during
the implicit step. By default, a 4 × 4 system of equations is
solved. The size of this system can be reduced if DIMENSIONS
< 3 provided there is no transport of matter and radiation in
one of the directions. For example, in a 1D problem where
vy = vz = F yr = F zr = 0 the radiation subsystem is reduced
to 2 equations corresponding to the evolution of Er and F xr , in
which case the implicit problem can be reduced by defining this
value as 2. Default is 4.

RADIATION VAR OPACITIES (YES/NO)
[RadRMHD Module only] Define in init.c the opacity coeffi-
cients as functions of the primitive fields through the function
UserDefOpacities(). Default is NO.

RECONSTRUCT 4VEL (YES/NO)

Use the four-velocity u = γv instead of the three velocity
when reconstructing left and right states in the RHD and RMHD
modules. Not compatible with conservative form of MUSCL-
Hancock scheme. Default is NO.

Continued on next page
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Name Value Description

RING AVERAGE (int)

When > 1, it enables the ring average technique (see [ZSL+19])
to remove the CFL restriction imposed by the clustering of cells
in the azimuthal direction near the pole/axis. For instance,
when RING AVERAGE is set to 8, zones in the 1st anular ring
around the pole are averaged in groups of 8 to yield a larger ef-
fective ∆φ. The 2nd ring will cluster zones into group of 4 and
so forth. Only powers of 2 are admissibile. This option does
not work with constrained transport MHD and has been mainly
tested for hydrodynamical configurations. Default is NO.

RING AVERAGE REC (int)

Specify the reconstruction order to be applied inside chunked-
zones when the ring average technique is enabled. Allowed
values are 1 (first order), 2 (second-order) or 5 (5th order). De-
fault is 5.

RKL ORDER (int)
Sets the order of integration of RKL algorithm. Set it to 1 or 2
for a 1st or 2nd order algorithm respectively. Default is 2.

RMHD FAST EIGENVALUES (YES/NO)

If set to YES, use approximate (and faster) expressions when
computing the fast magnetosonic speed of the RMHD equa-
tions, see Sect. 3.3 of [DZBL07]. Solutions of quartic equa-
tion is avoided and replaced with upper bounds provided by
quadratic equation. Default is NO.

RMHD REDUCED ENERGY (YES/NO)

Used in the RMHD module (§6.5.1) to evolve the total energy
minus the mass density contribution (see [MM07]). This is
more advisable in order to avoid numerical errors in the non-
relativistic limit and catastrophic cancellation problems. De-
fault is YES.

SB OMEGA (double)
[Shearing box module only, §10.1]. The value of the orbital fre-
quency parameter Ω0, see §10.1. The default value is 1.0.

SB Q (double)
[Shearing box module only, §10.1]. The value of the differential
shear parameter q, see §10.1. The default value is 1.5 proper
for a Keplerian profile.

SB SYMMETRIZE HYDRO (YES/NO)

[Shearing box module only, §10.1]. Symmetrize the hydrody-
namical fluxes at the left and right x-boundaries in order to en-
force conservation of hydrodynamic variables like density, mo-
mentum and energy (no magnetic field). Default is YES.

SB SYMMETRIZE EY (YES/NO)

[Shearing box module only, §10.1]. Symmetrize the y-
component of the electric field at the left and right x-boundaries
to enforce conservation of magnetic field (only in 3D, see Sr-
c/MHD/Shearing Box/sb fluxes.c). Default value if YES.

SB SYMMETRIZE EZ (YES/NO)
[Shearing box module only, §10.1]. Symmetrize the z-
component of electric field at the left and right x-boundaries
to enforce conservation of magnetic field. Default is YES.

SHOCK FLATTENING

NO

ONED

MULTID

Provides additional dissipation in proximity of strong shocks.
When set to ONED, spatial slopes are progressively reduced fol-
lowing following a one-dimensional shock recognition pattern,
as in [CW84]. This is done separately dimension by dimension.
When set to MULTID, a multi dimensional strategy is used by
which upon shock detection, i) reconstruction (in every direc-
tion) reverts to the MINMOD limiter and ii) fluxes are computed
using the HLL Riemann solver. The flagging strategy is set in
States/flag shoock.c. The MULTID shock flattening has proven
to be an effective adaptation strategy that can noticeably in-
crease the code robustness. It is highly suggested for complex
flow structures involving strong shocks.

Continued on next page
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SHOW TIME STEPS (YES/NO)
Print, during the integration log, the time steps (hyperbolic,
parabolic, etc...) from which the CFL condition is estimated.

STS NU (double)

Sets the value of the ν parameter used to control the effi-
ciency of Super-Time-Stepping integration for parabolic (diffu-
sion) terms, see Chapter 8 and §8.5.2. If not set, the default value
is 0.01.

TC SATURATED FLUX (YES/NO) Include saturation effects when computing the thermal conduc-
tion flux. Default value is YES.

T CUT RHOE (double)

Sets the cut-off temperature (in K) used in the PVTE LAW equa-
tion of state (§7.3). Zones with temperature below T CUT RHOE
will be reset to this value and the internal energy will be rede-
fined accordingly. Default value is 10 K.

TV ENERGY TABLE (YES/NO)

Used for the PVTE LAW EOS in ionization equilibrium, §7.3.2.
When set to YES replaces function evaluations of the caloric
EOS (internal energy) and its inverse (e(T, ρ) and T (e, ρ)) with
lookup table and bilinear interpolation. This results in a consid-
erably faster execution. Default is YES.

TV ENERGY TABLE NX (int)
Sets the number of x-points used to construct the tempera-
ture table for the PVTE LAW EOS. Default value is set in Sr-
c/EOS/PVTE/internal energy.c.

TV ENERGY TABLE NY (int)
Sets the number of y-points used to construct the tempera-
ture table for the PVTE LAW EOS. Default value is set in Sr-
c/EOS/PVTE/internal energy.c.

UNIT DENSITY (double) Sets the unit density in gr/cm3. Default value is the proton
mass per cm3.

UNIT LENGTH (double) Sets the unit length in cm. Default value is 1 astronomical unit.

UNIT VELOCITY (double) Sets the unit velocity in cm/sec. Default value is 1 Km/sec.

UPDATE VECTOR POTENTIAL (YES/NO)
Enable this option if you wish to evolve the vec-
tor potential in time and save it to disk. Note that
ASSIGN VECTOR POTENTIAL must be enabled.

VTK TIME INFO (YES/NO)

Enable writing of time information to .vtk output files. Notice
that this information is useful only when reading data files with
VisIt and may give problems with other visualisation softwares,
§12.1.3. Default value is NO.

VTK VECTOR DUMP (YES/NO)
Enable writing of vector fields (velocity and magnetic field)
during VTK output (§12.1.3). Default value is NO (all variables
are written with the scalar attribute).

WARNING MESSAGES (YES/NO)

Issue a warning message every time a numerical problem or in-
consistency is encountered; setting WARNING MESSAGES to YES
will tell PLUTO to print what, when and where a numerical
problem occurred.
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Figure C.1: Second-order TVD lim-
iter functions used by PLUTO as
functions of the left to right slope ratio
x = ∆Vi− 1

2
/∆Vi+ 1

2
. Larger values

of lim(x) indicate larger compressive
behavior. In this sense, the minmod
limiter (MM(x)) and the monotonized
central limiter (MC(x)) are the least
and most compressive, respectively.
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