
Figure 1: Herschel (red) and Hubble (blue) composite image of the Crab Nebula. (Credit:
ESA/Herschel/PACS/MESS Key Programme Supernova Remnant Team; NASA, ESA and Al-
lison Loll/Jeff Hester - Arizona State University).

1 Rayleigh-Taylor Instability

The Rayleigh-Taylor instability (RTI) develops at the interface between two fluids of
different densities, when a lighter fluid tries to support the heavier one against gravity.
In ordinary hydrodynamics, a Rayleigh-Taylor instability arises when one attempts to
support a heavy fluid on top of a light fluid: the interface becomes rippled, allowing the
heavy fluid to fall through the light fluid. In plasmas, a Rayleigh-Taylor instability can
occur when a dense plasma is supported against gravity by the pressure of a magnetic
field.

The instability can be found in many physical contexts, such as supernova explosions in
which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion
reactors and the common terrestrial example of a denser fluid such as water suspended
above a lighter fluid such as oil in the Earth’s gravitational field. Weather inversion (a
deviation from the normal change of an atmospheric property with altitude) is yet another
example.

In astrophysics, a typical situation where the RTI is expected to arise is in the ejecta
of a supernova where a shell of dense shocked material material is gradually decelerated
by lower density shocked circumstellar material. Here, in fact, the contact discontinuity
propagating between the forward and the reverse shock will decelerate as it sweeps the
shocked gas. An observer co-moving with the contact wave will be in an non-inertial frame
where, for Newton’s third law, an acceleration pointing outward is felt. This situation
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results in finger-like structures consisting of dense gas protruding into, and mixing with,
the shocked circumstellar material.

1.1 Equilibrium Condition

Our equilibrium condition consists of two constant-density fluids lying on top of each
other and separated by a horizontal interface lying in the xy plane,

ρ0(z) =

{
ρT for z > 0

ρB for z < 0
(1)

where the pedicies T and B stands for the top and bottom fluids, respectively. The
two fluids are immersed in a constant gravitational field and are initially in pressure
equilibrium. Without loss of generality, we assume the gravitational acceleration g to be
directed along the negative z direction , i.e., g = (0, 0, gz) = −gêz. Force balance is then
dictated by the momentum equation, which simply becomes

∂

∂z
p0(z) = −ρ0(z)g (2)

where ρ0(z) gives the density profile. Using Eq. (1), the previous equation can be easily
integrated to obtain

p = p0 −
∫
ρ0(z)g dz = p0 − ρ0(z)gz (3)

Note that the pressure profile obtain in this way is continuous although its derivative it’s
not.

A constant magnetic field B = (B0x, B0y, 0) (parallel to the interface separating the
two fluids) can be introduced. Notice that this does not alter our equilibrium condition
since a constant field does not exert any pressure or tension.

1.2 Linear Analysis

We start by writing the perturbed MHD equations, assuming a static equilibrium (u0 =
0):

∂ρ1
∂t

= −u1 · ∇ρ0 − ρ0∇ · u1

ρ0
∂u1

∂t
= −∇p1 +

[
(∇×B1)×B0

]
+ F 1

∂B1

∂t
= ∇×

(
u1 ×B0

)
∂p1
∂t

= −u1 · ∇p0 − γp0∇ · u1

(4)

where F 1 = ρ1g and a factor of
√

4π has been reabsorbed into the definition of B, for
convenience. The linear analysis is best carried by now introducing the displacement
vector (which describes how much the plasma is displaced from an equilibrium):

dξ

dt
=
∂ξ

∂t
+ u · ∇ξ ≡ u1 (5)
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Figure 2: Initial condition and perturbation.

However, since u0 = 0 at equilibrium and ξ is a first-order quantity, we simply have
∂tξ = u1 and therefore

∫
u1 dt = ξ. Using this result we now integrate the first, third

and fourth Eqns. in (4) with respect to t and, assuming perturbations are initially zero,
we obtain:

ρ1 = −(ξ · ∇)ρ0 − ρ0(∇ · ξ)

p1 = −(ξ · ∇)p0 − γp0(∇ · ξ)

B1 = ∇×
(
ξ ×B0

) (6)

We now assume that the plasma is incompressible so that ∇ · ξ = 0 and, substituing
the previous expressions in the second of (4), it is found

ρ0
∂2ξ

∂t2
= ∇

(
ξ · ∇p0

)
+
{
∇×

[
∇× (ξ ×B0)

]}
×B0 − g(ξ · ∇)ρ0 (7)

We now consider, for simplicity:

• perturbations propagating along the x direction only (k = kêx) so that, for any
perturbed quantity q1, we set q1 = f(z)ei(kx−ωt), as usual; The nabla operator has
therefore the representation ∇ = (ik, 0, ∂z).

• a reference frame in which ξ = (ξx, 0, ξz).

Notice that picking just one of the two assumptions does not restrict the validity of our
treatment. However, if both assumptions hold, propagation in the y-y is not accounted
for by our analysis.

The second term in Eq. (7) can be evaluated term by term as

ξ ×B =

∣∣∣∣∣∣∣∣
êx êy êz

ξx 0 ξz

B0x B0y 0

∣∣∣∣∣∣∣∣ = (−ξzB0y)êx + (ξzB0x)êy + (ξxB0y)êz
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∇×(ξ×B) =

∣∣∣∣∣∣∣∣
êx êy êz

ik 0 ∂z

−ξzB0y ξzB0x ξxB0y

∣∣∣∣∣∣∣∣ = (−ξ′zB0x)êx+(−ξ′zB0y−ikξxB0y)êy+(ikξzB0x)êz

Note that the y component of the previous expression vanishes since, using the incompri-
bility condition, ∇ · ξ = 0, gives

ikξx + ξ′z = 0 (8)

Taking the outermost curl,

∇× [∇× (ξ ×B0)] =

∣∣∣∣∣∣∣∣
êx êy êz

ik 0 ∂z

−ξ′zB0x 0 ikξzB0x

∣∣∣∣∣∣∣∣ = (−ξ′′z + k2ξz)B0xêy

Finally,

∇× [∇× (ξ ×B0)]×B0 =

∣∣∣∣∣∣∣∣
êx êy êz

0 −ξ′′z + k2ξz 0

B0x B0y 0

∣∣∣∣∣∣∣∣ = B2
0x(ξ′′z − k2ξz)êz

Using the previous result, Eq. (7) can be written as

−ω2ρ0ξ = ∇(ξzp
′
0)− ξzρ′0g +B2

0x(ξ′′z − k2ξz)êz (9)

Only the x and z component of the previous equation are non-zero:

−ω2ρ0ξx = ikξzp
′
0

−ω2ρ0ξz = (ξzp
′
0)
′ + ξzρ

′
0g +B2

0x(ξ′′z − k2ξz)
(10)

The first term on the right hand size of the z component can be rewritten using the
x-component and the incompressibility condition (Eq. 8 so that (ρ0ξx)′ = −(ξ′zρ0)

′/ik):

(ξzp
′
0)
′ = −ω

2

ik
(ρ0ξx)′ = −ω

2

ik

(
−(ξ′zρ0)

′

ik

)
= −ω

2

k2
(ξ′zρ0)

′

so that the second equation in (10), after multiplication by k2, is written as

ω2
[
(ξ′zρ0)

′ − k2ρ0ξz
]

= k2ξzρ
′
0g + k2B2

0x(ξ′′z − k2ξz) (11)

Eq. (11) is our final eigenvalue equation.

1.3 Non-magnetized Rayleigh-Taylor Instability

We first consider the un-magnetized case B0 = 0. Upon multiplying Eq. (11) times ξz
and integrating in z ∈ [−∞, ∞] we obtain:

ω2

[∫ +∞

−∞
(ρ0ξ

′
z)
′ξz dz − k2

∫ +∞

−∞
(ρ0ξ

2
z ) dz

]
= k2g

∫ +∞

−∞
ρ′0ξ

2
z dz (12)
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The first integral in square brackets can be integrated by parts assuming that ξz → ξ′z → 0
at infinity. Eq. (12) gives therefore the desired dispersion relation,

ω2 = −k2g

∫ +∞

−∞
ρ′0ξ

2
z dx∫ +∞

−∞
ρ0[(ξ

′
z)

2 + k2ξ2z ] dz

(13)

From Eq. (13) we immediately note that the condition for stability (ω2 > 0) depends
solely on the sign of ρ′0 = ∂zρ0. A monotonically decreasing profile of density will then
give a sufficient condition for stability. On the contrary, a monotonically increasing profile
will result in an unstable configuration (ω2 < 0). In our case, using Eq. (1), density can
be represented as

ρ′0 = (ρT − ρB)δ(z)

As a consequence, Eq. (11) for z 6= 0 will give an explicit expression for the displacement
ξz:

ξ′′z − k2ξz = 0 =⇒ ξz =

{
ξz(0)e−kz for z > 0

ξz(0)ekz for z < 0

With this solution, Eq. (13) will simplify to

ω2 = −k2g (ρT − ρB)ξz(0)2

ρB

∫ 0−

−∞
() + ρT

∫ ∞
0+

()

= −k2g (ρT − ρB)ξz(0)2

2(ρB + ρT )k2
∫ ∞
0+

e−2kz dz

And finally:

ω2 = −kgρT − ρB
ρT + ρB

(14)

As it can be seen clearly, an instability will occur if the fluid on top (ρT ) is heavier than
the fluid on bottom (ρB). A typical example showing the onset of a Rayleigh-Taylor
instability is shown in Fig. 3. Perturbations with small wavelenght grow faster than
larger ones.

On the contrary, if ρT < ρB the system will be stable and the oscillation frequency
will still be given by Eq. (14):

ω =
√
kg

√
ρB − ρT
ρT + ρB

(15)

which corresponds to the surface gravity waves, see Fig. 4. In this type of wave motion
the restoring force is gravity (sometimes surface tension needs to be considered as well,
and in some situations surface tension can dominate gravity) while ρB and ρT can be
identified with the density of water and air. Note that these waves are dispersive since
the phase speed

dω

dk
=

1

2

√
g

k

√
ρB − ρT
ρT + ρB

=
ω

2k
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Figure 3: The onset of a Rayleigh-Taylor instability in absence of magnetic field.

is a function of k: hence a pattern of waves of different wavelengths will disperse since each
harmonic will propagate at a different speed (large wavelengths will propagate faster). It
is important, however, to note that the relation is valid for deep water since we have
assumed ξz = 0 at large distance from the interface. For shallow water, the dispersion
relation is modified.

6



Figure 4: A typical surface gravity wave settling at an air-sea interface in the ocean.
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1.4 Magnetized Rayleigh-Taylor Instability

In presence of a magnetic field, we can repeat the previous derivation. The displacement
will be same as in the non-magnetized case and the dispersion relation will contain an
additional term related to the magnetic field. The final result is

ω2 = −kgρT − ρB
ρT + ρB

+ 2
k2B2

0x

ρT + ρB
=
−kg(ρT − ρB) + 2(k ·B0)

2

ρT + ρB
(16)

and shows that a magnetic field parallel to the interface has always a stabilizing effect.
Note that in the limit of small magnetic fields (B0 → 0) we obtain again Eq. (14).
However, by increasing the field strength we see that small wavelengths (large k) are
stabilized earlier. Complete stabilization takes place when the magnetic field is large
enough so that the second term becomes larger than the first one. This takes place when

B2
0 ≥

g

2

ρT − ρB
k cos2 θ

where θ denotes the angle between k and B0. Stabilization is best achieved when k and
B0 are parallel since the field line curvature induced by the perturbation will produce a
restoring force.

In the particular case of a uniform medium, ρT = ρB, the dispersion relation (16) gives
the dispersion relation for an Alfven wave.
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Figure 5: The onset of a Rayleigh-Taylor instability in presence of magnetic field B = χBc with χ = 0.3.
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