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Lecture 1:
Basics of quarkonium and screening

Introducing quarkonium: eeet the J/psi

Set the stage: quarkonium at T=0

Debye color screening

Melting of quarkonium 



What is quarkonium ?

bound state of a heavy quark and its antiquark

Q

u d s c b t
2.4 MeV 4.8 MeV 104 MeV 1.27 GeV 4.2 GeV 171.2 GeV

mQ >>ΛQCD=0.2GeV

Q ̄



Quarkonium states
Different quantum numbers

S(L=0) and P(L=1) states

S1

L
S2

S= S1 + S2

J=L+S
P=(-1)L+1

C=(-1)L+S

Ψ(1S) ≡ J/Ψ  
Ψ(2S) ≡Ψ’  

Ψ(1P) ≡ χc

Notation



Charmonium family



Bottomonium family



 J/Ψ discovery

BNL

SLAC

narrow width = long lifetime



Quarkonium at T=0
quark mass mQ >>ΛQCD and  quark velocity   
v << 1  allows non-relativistic treatment 

QQ ̄ properties obtained solving 
Schrödinger equation

potential V(r) describes the interaction 
between Q and Q̄
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1
m
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ψ r( ) = Eψ r( )



The potential energy of the QQ̄ system € 

Vcolor =
q
4πr

Potential at T=0

€ 

r

Q(q)
Q ̄(-q)

Color potential from    
Q as seen by Q ̄

€ 

Vconfinement =σrIt’s QCD, so confining string tension (F=kx2/2) 

€ 

V (r) = −
αeff

r
+σr

€ 

αeff =
q2

4πeffective coupling 

short distance     +     long distance



Potential at T=0
known as Cornell potential 

describes well the observed spectroscopy

r

V(r)
€ 

V (r) = −
αeff

r
+σr

           verified on the lattice



Potential at T=0
In perturbative QCD the  QQ ̄ potential can be 
related to the scattering amplitude corresponding 
to the 1-gluon exchange

€ 

V (r) = −
4
3
α s r( )
r

+σr€ 

V (r) =
d3k
2π( )3

TBorn k( )eik•r∫ = −
4
3
g2 d3k

2π( )3
eik•rD00 k( )∫

relates the color charge q and QCD coupling 
constant g

€ 

D00 k( ) =
1
k2

€ 

q2 =
4
3
g2 =

4
3
4πα s

Homework: 
Derive the heavy 

quark potential  in 
pQCD. 



Potential at T=0
can be derived from QCD

QCD

NRQCD

pNRQCD
potential model

Ebin~mv2

1/r ~ mv

m



T=0 spectroscopy
the Hamiltonian 

in semi-classical approximation:

energy of the Q-Q̄ system

bound state radius obtained by minimizing the 
energy

set of parameters mQ, αeff, σ

€ 

HQQ ψ = Eψ

€ 

dEQQ 

dr
= 0

€ 

pr =1

rJ/ψ ≈ 0.4 fm   and   rΥ≈ 0.2 fm 

€ 

EQQ (r) = 2mQ +
1

mQr2
−
αeff r( )

r
+σr€ 

HQQ = 2mQ +
p2

mQr
+ V (r)

<< 1 fm

MJ/ψ ≈ 3.1 GeV   and   MΥ≈ 9.4 GeV



Quarkonium at T≠0



Quarkonium at T≠0
These quarks effectively 
cannot “see” each other!

rearrangement of color around Q

effective charge of Q reduced (screened) 

assume potential interaction at finite T



Debye screening

Debye radius rD(T) - the distance at which the effective 
charge is reduced 1/e   and mD =1/rD

€ 

−
αeff

r

€ 

−
αeff

r
e−r / rD (T )

T=0 T>Tc

long range Coulomb short range Yukawa

pQCD: modification of gluon propagator
Debye mass mD(T) ∼ gT

€ 

D00 k( ) =
1
k2

→
1

k2 +Π00 k0 = 0,k,T( )

Homework: 
Derive the Yukawa 

potential  at finite T in 
pQCD. 



What happens to the confining term?
Matsui, Satz:  above deconfinement 

Karsch, Mehr, Satz(KMS)
€ 

σ(Tc ) = 0

€ 

σr

T-dependent string tension

€ 

σrD (T) 1− e
−r / rD (T )( )

T=0 T>Tc

€ 

σ(T) =σ
1− e−µ(T )r

µ(T)r
 

 
 

 

 
 →σ

€ 

µ =1/rD → 0



Matsui-Satz argument

€ 

V (r,T) = −
αeff

r
e−r / rD (T )€ 

V (r) = −
αeff

r
+σr

Yukawa potential can still hold bound states



Matsui-Satz argument
5 10 15 20

!0.20

!0.15

!0.10

!0.05

T-dependence of the potential is completely in rD(T)

€ 

V (r,T) = −
αeff

r
e−r / rD (T )

mD(T) increases



Matsui-Satz argument

at some rD(T)no solution exists, i.e. no bound state

€ 

x(1+ x)e−x

€ 

1
mQαeff rD (T)€ 

x(1+ x)e−x =
1

mQαeff rD (T)

back to semi-classical approximation

€ 

dEQQ (r,rD(T))
dr

= 0

€ 

x = r /rD
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Matsui-Satz argument

€ 

rBohr(J /ψ) =
1

m αeff

€ 

rDebye (pQCD) =
2

9παeff

1
T

T=0 T=200 MeV

αeff 0.52 0.2

0.41 fm 1.07 fm

∞ 0.59
From Introduction to High-Energy Heavy-Ion Collisions: C.Y. Wong 1994

quarkonium dissociates when the screening radius 
becomes smaller than the size of the state rD< rBohr

J/ψ melts at Tc



KMS potential
Screened Cornell potential

As the screening μ(T) increases 
with T the potential becomes 
less effective

Effective binding potential 
Large μ(T) no bound state      

€ 

V (r,T) = −
αeff

r
e−µ(T )r +

σ
µ(T)

1− e−µ(T )r( )
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Quarkonium properties
Radii

€ 

r2 = d3rr2∫ ψ(r) 2 Vanishing of the states has 
been looked at in terms of 
dissociation energy

€ 

Ediss(µ) = 2mQ +
σ
µ
− EQQ (µ)



Sequential dissociation
T/TC 1/〈r〉 [fm-1]

ϒ(1S)

J/ψ(1S)

χc(1P)

Ψ’(2S)

χb’(2P)

Υ’’(3S)

J/ψ(1S)

ψ’(2S)

ϒ(1S)

QGP thermometer



Observing in experiment

The presence or 
absence of a bound 
state in the spectral 
function shows up in the 
dilepton yield 

Differential dilepton rate J/psi spectral function

  

€ 

J /ψ → l+l−



shine 3 beams onto a black box

1) If ψ’ is absorbed and χ, J/ψ get through
=> strongly interacting matter < Tc, i.e. hadrons

2) If ψ’, χ are absorbed, J/ψ gets through
=> matter near Tc

3) If nothing gets through
=> QGP above Tc  

ψ’
χ
J/ψ

but we don’t have a box full of QGP or quarkonium beams
Experiments compare the number seen in A+A 

 to p+p or p+A

QGP



Summary of Lecture 1

Quarkonium is small and tightly bound, 
but at high temperatures it can dissociate 
if color screening is strong enough. 
Suggested QGP thermometer

- in the next lecture: heavy quark free 
energy and quarkonium from lattice QCD
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