BRAHMS

Recent Results from the BRAHMS Collaboration - Deuteron Coalescence and Nuclear Stopping

Casper Nygaard, Niels Bohr Institute BRAHMS Collaboration

Outline

The Brahms Experiment ...

Analysis

Coalescence Results......

Nuclear Stopping Results......

BRAHMS @ RHIC

TOF PID

• TOF PID used in the MRS and at $y \sim 2$.

• Proton PID done by fitting the m² vs. p_{T} distribution.

Deuteron PID done by a
 gaussian fit in the m²
 distribution.

RICH PID

Proton PID

- Direct: From p~15
 GeV/c, the Cherenkov
 ring radius is used
- Indirect: 12>p>17
 GeV/c
- Deuteron PID
 - Direct: From p~30
 GeV/c
- Used for PID at y~3.

Spectra

- The invariant spectra have been corrected for:
 - Acceptance
 - Tracking efficiency
 - Multiple scattering, absorption and weak decay for (anti)-protons by GEANT
 - GEANT does not handle anti-deuterons, and does not handle hadronic interactions for deuterons.
 - Deuteron correction approximated to: $Eff(p_d)_{d/dbar} = Eff(p_d)_{GEANT(d)} * (Eff(p_d/2)_{GEANT:hadronic(p/pbar)})^2$

Coalescence

- Deuteron coalescence is the creation of a deuteron, from a proton and a neutron.
- Due to the very low binding energy of the deuteron (2.22 MeV), Coalescence probes the collision at the timescale of the freeze-out.
- Coalescence parameter given by:

B₂ is inversely proportional to the collision volume according to various models. [Pearson]

Spectra (0-20% central Au-Au@200GeV)

 B_2 vs. p_T

 B_2 vs. y

B₂ comparison to PHENIX

Energy dependency

Coalescence Summary

- B_2 increases as a function of p_T at $y \sim 0$ and $y \sim 1$.
- B₂ is constant within errors in the rapidity range y~[0; 3], indicating that source sizes are comparable at these rapidities.
- The decrease of B₂ as a function of collision energy is not observed at post RHIC energies.
- These results are due to being submitted for publication early 2009

Nuclear stopping I Collision scenarios:

Landau: Full stopping. Many baryons at midrapidity.

Bjorken: Transparency. No baryons at midrapidity

Nuclear Stopping II

Quantify stopping by the rapidity loss:

$$5y = y_{beam} - \langle y \rangle = y_{beam} - \frac{2}{N_{part}} \int_{0}^{y_{beam}} y \frac{dN_{net-baryons}}{dy} dy$$

- BRAHMS measures only charged hadrons, hence a conversion to baryons must be done.
- Baryon conservation is an important constraint.

Spectra (0-10% central Au-Au@62.4 GeV)

Yields - dN/dy

Rapidity loss

Net-baryons

- Fit: Bjorken inspired double gaussian in p_z = m_Tsinh(y)
 - Baryon conversion factor:
 - $N_{net-B} \sim 2.5 N_{net-p}$ at AGS, SPS
 - $N_{net-B} \sim 2.1 N_{net-p}$ at RHIC, LHC
- Extrapolation to LHC done using simple straight line fits to μ, σ .

Nuclear Stopping Summary

- Stopping systematics might be used to predict LHC results or at least set limits.
- The linear scaling of rapidity loss is broken already at 62.4 Gev.
- This analysis is being submitted for publication before christmas 2008.

BRAHMS Collaboration

I. C. Arsene¹², I. G. Bearden⁷, D. Beavis¹, S. Bekele¹², C. Besliu¹⁰, B. Budick⁶,
H. Bøgild⁷, C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, H.H.Dalsgaard⁷, R. Debbe¹, J. J. Gaardhøje⁷, K. Hagel⁸, H. Ito¹, A. Jipa¹⁰, E.B.Johnson^{11,} J. I. Jørdre⁹,
C. E. Jørgensen⁷, R. Karabowicz⁵, N. Katrynska⁵, E. J. Kim¹¹, T. M. Larsen⁷, J. H. Lee¹,
Y. K. Lee⁴, S. Lindahl¹², G. Løvhøiden¹², Z. Majka⁵, M. J. Murray¹¹, J. Natowitz⁸, C.Nygaard⁷ B. S. Nielsen⁸, D. Ouerdane⁸, D.Pal¹², F. Rami³, C. Ristea⁸, O. Ristea¹¹, D. Röhrich⁹, B. H. Samset¹², S. J. Sanders¹¹, R. A. Scheetz¹, P. Staszel⁵, T. S. Tveter¹², F. Videbæk¹, R. Wada⁸, H. Yang⁹, Z. Yin⁹, I. S. Zgura²

Brookhaven National Laboratory, Upton, New York, USA
 Institute of Space Science, Bucharest - Magurele, Romania
 Institut Pluridisciplinaire Hubert Curien et Université Louis Pasteur, Strasbourg, France
 Johns Hopkins University, Baltimore, USA
 M. Smoluchkowski Institute of Physics, Jagiellonian University, Krakow, Poland
 New York University, New York, USA
 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
 Texas A&M University, College Station, Texas, USA
 University of Bergen, Department of Physics and Technology, Bergen, Norway
 University of Kansas, Lawrence, Kansas, USA
 University of Oslo, Department of Physics, Oslo, Norway