Heavy Quark bound states in a deconfined Quark-Gluon Plasma

Stefano Carignano

December 2008

Intro: Quark Gluon
Plasma
The deconfinement
transition
Experimental
signatures
A suppression model
Heavy mesons in the QGP
Results

Spectral functions

Intro: Quark Gluon Plasma

Intro: Quark Gluon
The deconfinement
transition
Experimental
A suppression model
A suppression model
Heavy mesons in the QGP
Results
Spectral functions
-

Critical temperature T_c

Critical temperature T_c

 \rightarrow Deconfinement

Nuclei

3/29

Net Baryon Density

Intro: Quark Gluon
Plasma
The deconfinement
transition
Experimental
อเมาสเนายอ
A suppression model
Heavy mesons in the
QGP
Results
Spectral functions
opeonal functions
-

Intro: Quark Gluon Plasma The deconfinement transition Experimental signatures A suppression model Heavy mesons in the QGP Results	• J/ψ suppression • Observed at SPS
Spectral functions	R.Arnaldi @ QM2005
-	 Why the suppression ? Color screening prevents formation of bound states (Matsui and Satz, Phys. Lett. B 178, 416) Dynamical counterpart: Scattering with hard deconfined gluons in the plasma breaks up bound states
	(Kharzeev and Satz, Phys. Lett. B 334, 155)

- Intro: Quark Gluon <u>Plasma</u> The deconfinement transition Experimental signatures A suppression model Heavy mesons in the QGP Results Spectral functions
- Around 40% of the observed J/ψ are generated by feed-down from heavier charmonia
- Same rule applies to other quarkonia

- Intro: Quark Gluon Plasma The deconfinement transition Experimental signatures A suppression model Heavy mesons in the QGP Results Spectral functions
- Around 40% of the observed J/ψ are generated by feed-down from heavier charmonia
- Same rule applies to other quarkonia

Need for a "sequential suppression" model.

- Intro: Quark Gluon Plasma The deconfinement transition Experimental signatures A suppression model Heavy mesons in the QGP Results
- Spectral functions

- Around 40% of the observed J/ψ are generated by feed-down from heavier charmonia
- Same rule applies to other quarkonia

- Need for a "sequential suppression" model.
- Study of heavy mesons:

- Intro: Quark Gluon Plasma The deconfinement transition Experimental signatures A suppression model Heavy mesons in the QGP Results
- Spectral functions

- Around 40% of the observed J/ψ are generated by feed-down from heavier charmonia
- Same rule applies to other quarkonia

- Need for a "sequential suppression" model.
- Study of heavy mesons:

 $\Box c\bar{c}$ (J/ψ , ψ ', $\chi_c \dots$)

Intro: Quark Gluon Plasma The deconfinement transition Experimental signatures A suppression model Heavy mesons in the QGP Results

```
Spectral functions
```

- Around 40% of the observed J/ψ are generated by feed-down from heavier charmonia
- Same rule applies to other quarkonia

- Need for a "sequential suppression" model.
- Study of heavy mesons:

 $(J/\psi,\psi',\chi_c\ldots)$ $\Box c\bar{c}$ $(\Upsilon, \Upsilon', \chi_b \ldots)$

 $\Box \ b\overline{b}$

Intro: Quark Gluon <u>Plasma</u> The deconfinement transition Experimental signatures A suppression model Heavy mesons in the QGP

```
Results
```

```
Spectral functions
```

- Around 40% of the observed J/ψ are generated by feed-down from heavier charmonia
- Same rule applies to other quarkonia

- Need for a "sequential suppression" model.
- Study of heavy mesons:
 - $\Box c\bar{c}$ $(J/\psi, \psi', \chi_c...)$
 - $\Box \ b\overline{b}$ (\Upsilon, \Upsilon', $\chi_b \ldots$)
 - $\Box \ bar{c}$, $car{b}$ (B_c , B_c ', χ_{B_c} . . .)

Intro:	Quark	Gluon
Plasm	าล	

Heavy mesons in the QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Heavy mesons in the QGP

Intro: Quark Gluon
FIDSIIID
Heavy mesons in the
Spectral functions from
lattice QCD
The effective potentials
Which potential?
Quark masses
Results
Spectral functions
-

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

 \blacksquare Bound states of heavy quarks \rightarrow non-relativistic formalism

Intro: Quark Gluon Plasma Heavy mesons in the

QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Bound states of heavy quarks \rightarrow non-relativistic formalism

□ Schroedinger equation:

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + V(r,T)\right)\psi(\vec{r},T) = \epsilon(T)\psi(\vec{r},T)$$

 $V(r,T) \rightarrow \text{Temperature-dependant effective potential} \\ \mu = \text{reduced mass, } \epsilon = \text{energy}$

Intro. Quark Oldon	
Plasma	
Heavy mesons in the	

Intro: Quark Gluon

QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Bound states of heavy quarks \rightarrow non-relativistic formalism

□ Schroedinger equation:

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + V(r,T)\right)\psi(\vec{r},T) = \epsilon(T)\psi(\vec{r},T)$$

 $V(r,T) \rightarrow \text{Temperature-dependant effective potential} \\ \mu = \text{reduced mass, } \epsilon = \text{energy}$

What for ?

Intro: Quark Gluon Plasma Heavy mesons in the

QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Bound states of heavy quarks \rightarrow non-relativistic formalism

□ Schroedinger equation:

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + V(r,T)\right)\psi(\vec{r},T) = \epsilon(T)\psi(\vec{r},T)$$

 $V(r,T) \rightarrow$ Temperature-dependant effective potential μ = reduced mass, ϵ = energy

What for ?

 $\hfill\square$ Binding energy of the $Q\bar{Q}$ states

Intro: Quark Gluon	
Plasma	
Listen and some in the	
Heavy mesons in the	

QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Bound states of heavy quarks \rightarrow non-relativistic formalism

□ Schroedinger equation:

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + V(r,T)\right)\psi(\vec{r},T) = \epsilon(T)\psi(\vec{r},T)$$

 $V(r,T) \rightarrow \text{Temperature-dependant effective potential} \\ \mu = \text{reduced mass, } \epsilon = \text{energy}$

What for ?

 \Box Binding energy of the $Q\bar{Q}$ states \rightarrow Dissociation temperatures

Intro: Quark Gluon	
Plasma	
Heavy mesons in the	

QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Bound states of heavy quarks \rightarrow non-relativistic formalism

□ Schroedinger equation:

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + V(r,T)\right)\psi(\vec{r},T) = \epsilon(T)\psi(\vec{r},T)$$

 $V(r,T) \rightarrow \text{Temperature-dependant effective potential} \\ \mu = \text{reduced mass, } \epsilon = \text{energy}$

What for ?

 \Box Binding energy of the $Q\bar{Q}$ states \rightarrow Dissociation temperatures

Radial wave functions

Intro: Quark Gluon	
Plasma	
Heavy mesons in the	

QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Bound states of heavy quarks \rightarrow non-relativistic formalism

□ Schroedinger equation:

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + V(r,T)\right)\psi(\vec{r},T) = \epsilon(T)\psi(\vec{r},T)$$

 $V(r,T) \rightarrow \text{Temperature-dependant effective potential} \\ \mu = \text{reduced mass, } \epsilon = \text{energy}$

What for ?

 $\Box~$ Binding energy of the $Q\bar{Q}$ states \rightarrow Dissociation temperatures

 \Box Radial wave functions \rightarrow Spectral functions.

Intro: Quark Gluon Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?
Quark masses
Results
Spectral functions
opectal functions
-

Intro: Quark Gluon Plasma	Lattice QCD \rightarrow Euclidean correlators (imaginary time)
Heavy mesons in the QGP	
The approach	
Spectral functions from lattice QCD	
The effective potentials	
Which potential?	
Quark masses	
Results	
Spectral functions	
-	
Spectral functions	

Intro: Quark Gluon Plasma Heavy mesons in the QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Lattice $QCD \rightarrow Euclidean$ correlators (imaginary time)

$$G_M(\tau,T) = \langle j_M(\tau) j_M^{\dagger}(0) \rangle_T$$

 $j_M = \bar{q} \Gamma_M q \qquad \qquad \Gamma_M = 1, \gamma_\mu, \gamma_5, \gamma_\mu \gamma_5$

Plasma Heavy mesons in the QGP

Intro: Quark Gluon

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

• Lattice $QCD \rightarrow Euclidean$ correlators (imaginary time)

$$G_M(\tau,T) = \langle j_M(\tau) j_M^{\dagger}(0) \rangle_T$$

$$j_M = \bar{q}\Gamma_M q$$
 $\Gamma_M = 1, \gamma_\mu, \gamma_5, \gamma_\mu \gamma_5$

Euclidean correlators \leftrightarrow Spectral functions $\sigma_M(\omega, T)$

$$G_M(\tau,T) = \int_0^\infty d\omega \sigma_M(\omega,T) K(\tau,\omega,T)$$

$$K(\tau, \omega, T) = \frac{\cosh[\omega(\tau - \frac{T}{2})]}{\operatorname{senh}(\frac{\omega}{2T})}$$

Plasma Heavy mesons in the QGP

Intro: Quark Gluon

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

• Lattice $QCD \rightarrow Euclidean$ correlators (imaginary time)

$$G_M(\tau, T) = \langle j_M(\tau) j_M^{\dagger}(0) \rangle_T$$

$$j_M = \bar{q}\Gamma_M q$$
 $\Gamma_M = 1, \gamma_\mu, \gamma_5, \gamma_\mu \gamma_5$

Euclidean correlators \leftrightarrow Spectral functions $\sigma_M(\omega, T)$

$$G_M(\tau,T) = \int_0^\infty d\omega \sigma_M(\omega,T) K(\tau,\omega,T)$$

$$K(\tau, \omega, T) = \frac{\cosh[\omega(\tau - \frac{T}{2})]}{\operatorname{senh}(\frac{\omega}{2T})}$$

Integral transform \rightarrow hard to extract $\sigma_M(\omega, T) \rightarrow \mathsf{MEM}$

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?
Quark masses
Posulte
Kesuits
Spectral functions
-

Intro: Quark Gluon	
Plasma	
Heavy mesons in the QGP	
The approach	
Spectral functions from lattice QCD	
The effective potentials	
Which potential?	
Quark masses	
Results	
Spectral functions	
-	

From lattice QCD:

 $\Box < L >_T \rightarrow F_1$ color singlet free energy

Intro: Quark Gluon Plasma	•
Heavy mesons in the QGP	•
The approach	•
Spectral functions from lattice QCD	•
The effective potentials	•
Which potential?	•
Quark masses	•
Results	•
Spectral functions	

From lattice QCD:

 $\Box \ < L >_T \to F_1 \quad \text{color singlet free energy}$

 \Box Fit on lattice data \rightarrow functional dependence $F_1(T)$

(W.M. Alberico et al., Phys. Rev. D, 72, 114011)

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

From lattice QCD:

 $\Box \ < L >_T \to F_1 \quad \text{color singlet free energy}$

□ Fit on lattice data \rightarrow functional dependence $F_1(T)$ (W.M. Alberico et al., Phys. Rev. D, 72, 114011)

Intro: Quark Gluon Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?
Quark masses

Results

Spectral functions

From lattice QCD:

 $\square < L >_T \rightarrow F_1$ color singlet free energy

□ Fit on lattice data \rightarrow functional dependence $F_1(T)$ (W.M. Alberico et al., Phys. Rev. D, 72, 114011)

 \Box $F_1(T) \rightarrow U_1 = -T^2 \frac{\partial}{\partial T} (\frac{F_1}{T})$ singlet internal energy
Intro: Quark Gluon
Plasma
11 1 1 1
Heavy mesons in the

QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Possibilities: F_1 , U_1 ...

Intro: Quark Gluon	
Plasma	•
Heavy mesons in the QGP	•
The approach	•
Spectral functions from lattice QCD	•
The effective potentials	•
Which potential?	•
Quark masses	• • • •
Results	•
Spectral functions	•

- Possibilities: F_1 , U_1 ...
- Hydrodinamical / Thermodynamical considerations \rightarrow isolating effective $Q\bar{Q}$ potential from the plasma contribution (C.Y.Wong, Phys. Rev. C, 72, 034906)

Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?
Quark masses

Intro: Quark Gluon

```
Results
```

Spectral functions

Possibilities: F_1 , U_1 ...

■ Hydrodinamical / Thermodynamical considerations \rightarrow isolating effective $Q\bar{Q}$ potential from the plasma contribution (C.Y.Wong, Phys. Rev. C, 72, 034906)

$$U_{Q\bar{Q}}(r,T) = f_F(T)F_1(r,T) + f_U(T)U_1(r,T)$$

$$f_F = \frac{3}{3+a(T)}$$
$$f_U = \frac{a(T)}{3+a(T)}$$
$$a(T) = \frac{3p}{\epsilon}$$

Intro: Quark Gluon
Plasma
Heavy mesons in the
QGP

The approach

Spectral functions from lattice QCD

The effective potentials

Which potential?

Quark masses

Results

Spectral functions

Possibilities: F_1 , U_1 ...

■ Hydrodinamical / Thermodynamical considerations \rightarrow isolating effective $Q\bar{Q}$ potential from the plasma contribution (C.Y.Wong, Phys. Rev. C, 72, 034906)

$$U_{Q\bar{Q}}(r,T) = f_F(T)F_1(r,T) + f_U(T)U_1(r,T)$$

Intro: Quark Gluon Plasma	•••••
Heavy mesons in the QGP	• • • •
The approach	•
Spectral functions from lattice QCD	•
The effective potentials	•
Which potential?	•
Quark masses	•
Results	•
Spectral functions	•
_	•
	•••••

- **Quark charm:** m_c = 1.4 1.6 GeV
- **Quark bottom:** m_b = 4.3 4.7 GeV

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?

Quark masses

Results

Spectral functions

- **Quark charm:** m_c = 1.4 1.6 GeV
- **Quark bottom:** m_b = 4.3 4.7 GeV

Effective mass :
$$\tilde{m}_Q(T) = m_Q + \frac{1}{2}U_{Q\bar{Q}}(r \to \infty, T)$$

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?
Quark masses
Results
Spectral functions

- **Quark charm:** m_c = 1.4 1.6 GeV
- **Quark bottom:** m_b = 4.3 4.7 GeV

• Effective mass :
$$\tilde{m}_Q(T) = m_Q + \frac{1}{2}U_{Q\bar{Q}}(r \to \infty, T)$$

□ Interpreted as 'thermal' mass

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?
Quark masses
Results

Spectral functions

- **Quark charm:** $m_c = 1.4 1.6 \text{ GeV}$
- **Quark bottom:** m_b = 4.3 4.7 GeV

Effective mass :
$$\tilde{m}_Q(T) = m_Q + \frac{1}{2}U_{Q\bar{Q}}(r \to \infty, T)$$

 $\hfill\square$ Interpreted as 'thermal' mass

 $\hfill\square$ Improves binding of the states.

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP
The approach
Spectral functions from lattice QCD
The effective potentials
Which potential?
Quark masses
Results
Spectral functions
-

- Quark charm: m_c = 1.4 1.6 GeV
- Quark bottom: m_b = 4.3 4.7 GeV

Effective mass :
$$\tilde{m}_Q(T) = m_Q + \frac{1}{2}U_{Q\bar{Q}}(r \to \infty, T)$$

- □ Interpreted as 'thermal' mass
- $\hfill\square$ Improves binding of the states.
- □ Continuum threshold:

 $s_0 = m_{Q_1} + m_{Q_2} + U_{Q\bar{Q}}(r \to \infty, T) = \tilde{m}_{Q_1}(T) + \tilde{m}_{Q_2}(T)$

Does the model strongly depend on the chosen values for the quark masses ?

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP

 \sim

Results

The analyzed states $Masses \ M(T) = s_0(T) + \epsilon(T)$

Dissociation temperatures

```
More masses: B_c
```

Even more masses: P wave states

Spectral functions

Results

Intro: Quark Gluon
Plasma
Heavy mesons in the
QGP

Results

The analyzed states

 $\begin{array}{l} \text{Masses } M(T) = \\ s_0(T) + \epsilon(T) \end{array}$

Dissociation

temperatures

More masses: B_c

Even more masses: P wave states

Spectral functions

States $c\bar{c}$, $b\bar{b}$, $b\bar{c}$ ($c\bar{b}$)

Intro: Quark Gluon Plasma Heavy mesons in the QGP

Results

The analyzed states

Dissociation

```
temperatures
```

```
More masses: B_c
```

Even more masses: P wave states

Spectral functions

States $c\bar{c}$, $b\bar{b}$, $b\bar{c}$ ($c\bar{b}$)

■ S Wave (L=0)

Intro: Quark Gluon
Plasma
Heavy mesons in the QGP

Results

```
The analyzed states
```

```
\begin{array}{l} \text{Masses } M(T) = \\ s_0(T) + \epsilon(T) \end{array}
```

```
Dissociation
```

```
temperatures
```

```
More masses: B_c
```

```
Even more masses: P wave states
```

Spectral functions

States $c\overline{c}, b\overline{b}, b\overline{c} (c\overline{b})$

■ S Wave (L=0)

- □ Fundamental bound states
- $\hfill\square$ Excited bound states
- □ Scattering states

Intro: Quark Gluon				
Plasma				
Heavy mesons in the QGP				
QGP				

Results

The a	nalyzed	states
-------	---------	--------

Dissociation

```
temperatures
```

More masses: B_c

Even more masses: P wave states

Spectral functions

States $c\overline{c}$, $b\overline{b}$, $b\overline{c}$ ($c\overline{b}$)

■ S Wave (L=0)

- □ Fundamental bound states
- $\hfill\square$ Excited bound states
- □ Scattering states

P Wave (L=1)

Intro: Quark Gluon	
Plasma	
Heavy mesons in the OGP	

```
Results
```

```
The analyzed states
```

Masses	M	('I') =
$s_0(T)$	+	$\epsilon(T)$

```
Dissociation
```

```
temperatures
```

```
More masses: B_c
```

Even more masses: P wave states

Spectral functions

States $c\bar{c}, b\bar{b}, b\bar{c} (c\bar{b})$

■ S Wave (L=0)

- □ Fundamental bound states
- □ Excited bound states
- □ Scattering states
- P Wave (L=1)
 - Fundamental bound states
 - □ Scattering states

Intro: Quark Gluon				
Plasma				
Heavy mesons in the QGP				

Results

The a	analyzed	states
-------	----------	--------

Masses	M(T) =
$s_0(T)$	$+\epsilon(T)$

Dissociation

temperatures

More masses: B_c

Even more masses: P wave states

Spectral functions

States $c\overline{c}$, $b\overline{b}$, $b\overline{c}$ ($c\overline{b}$)

S Wave (L=0)

- □ Fundamental bound states
- □ Excited bound states
- □ Scattering states
- P Wave (L=1)
 - □ Fundamental bound states
 - □ Scattering states

Lattice data for F_1 obtained using $N_f = 2$ (F. Karsch et al., Phys. Lett. B 478, 447) (2000)

Masses $M(T) = s_0(T) + \epsilon(T)$

Masses $M(\overline{T}) = s_0(T) + \epsilon(T)$

Masses $M(T) = s_0(T) + \epsilon(T)$

4 / 29

$c\overline{c}$	m_c =1.4 GeV	m_c =1.6 GeV	$b\overline{b}$	m_b =4.3 GeV	m_b =4.7 GeV
$J/\psi, \eta_c$	1.45	1.57	Υ, η_b	3.9	4.4
χ_c	0.99	1.00	χ_b	1.14	1.16
ψ^{\prime}	0.98	1.00	Υ΄	1.14	1.15

$c\overline{c}$	m_c =1.4 GeV	m_c =1.6 GeV	$b\overline{b}$	m_b =4.3 GeV	m_b =4.7 GeV
$J/\psi, \eta_c$	1.45	1.57	Υ, η_b	3.9	4.4
χ_c	0.99	1.00	χ_b	1.14	1.16
ψ'	0.98	1.00	Υ΄	1.14	1.15

Dissociation temperatures for charmonium in good agreement with lattice QCD

$c\overline{c}$	m_c =1.4 GeV	m_c =1.6 GeV	$b\overline{b}$	m_b =4.3 GeV	m_b =4.7 GeV
$J/\psi, \eta_c$	1.45	1.57	Υ, η_b	3.9	4.4
χ_c	0.99	1.00	χ_b	1.14	1.16
ψ'	0.98	1.00	Υ΄	1.14	1.15

Dissociation temperatures for charmonium in good agreement with lattice QCD

■ Mass variation → Difficult comparison with lattice QCD

$c\overline{c}$	m_c =1.4 GeV	m_c =1.6 GeV	$b\overline{b}$	m_b =4.3 GeV	m_b =4.7 GeV
$J/\psi, \eta_c$	1.45	1.57	Υ, η_b	3.9	4.4
χ_c	0.99	1.00	χ_b	1.14	1.16
ψ'	0.98	1.00	Υ΄	1.14	1.15

Dissociation temperatures for charmonium in good agreement with lattice QCD

- Mass variation \rightarrow Difficult comparison with lattice QCD
- Dissociation temperatures do not vary significantly with different quark masses.

More masses: B_c

More masses: B_c

Dissociation temperatures (T/T_c)

$c\bar{b} b\bar{c}$	m_c =1.4 GeV	m_c =1.4 GeV	m_c =1.6 GeV	m_c =1.6 GeV
	m_b =4.3 GeV	m_b =4.7 GeV	m_b =4.3 GeV	m_b =4.7 GeV
B_c	1.87	1.90	1.99	2.02
χ_{B_c}	1.05	1.05	1.06	1.06
B_c'	1.03	1.04	1.04	1.05

Even more masses: P wave states

Even more masses: P wave states

Even more masses: P wave states

17 / 29

Intro: Quark Gluon Plasma	•
Heavy mesons in the QGP	• • • •
Results	•
Spectral functions	•
Definition	•
Wave functions Spectral Functions: J/ψ	•
Spectral functions: Υ	•
Spectral functions: B_c	•
Spectral functions: P wave states	

Summing up...

Spectral functions

Intro: Quark Gluon Plasma
Heavy mesons in the
QGP
Results
Spectral functions
Definition
Wave functions
Spectral Functions: J/ψ
Spectral functions: Υ
Spectral functions: B
Spectral functions: P wave states
Summing up

Intro: Quark Gluon Plasma Heavy mesons in the QGP

Results

Spectral functions

Definition

Wave functions Spectral Functions: J/ψ

Spectral functions: Υ

Spectral functions: B_c

Spectral functions: P wave states

Summing up...

$$\sigma_M(\omega, T) = \frac{1}{\pi} Im G_M(\omega) = \sum_n |\langle 0 \mid j_M \mid n \rangle|^2 \delta(\omega - E_n) =$$

Intro: Quark Gluon		
Plasma		
Heavy mesons in the QGP		
QGP		

Results

Spectral functions

Definition

Wave functions Spectral Functions: J/ψ

Spectral functions: Υ

Spectral functions: B_c

Spectral functions: P wave states

Summing up...

$$\sigma_M(\omega, T) = \frac{1}{\pi} Im G_M(\omega) = \sum_n |\langle 0 \mid j_M \mid n \rangle|^2 \delta(\omega - E_n) =$$

$$=\sum_{n} F_{M,n}^2 \delta(\omega - E_n) + \theta(\omega - s_0) F_{M,\epsilon}^2$$

Intro: Quark Gluon Plasma Heavy mesons in the QGP

Results

Spectral functions

Definition

Wave functions Spectral Functions: J/ψ

Spectral functions: Υ

Spectral functions: B_c

Spectral functions: P wave states

Summing up...

$$\sigma_M(\omega, T) = \frac{1}{\pi} Im G_M(\omega) = \sum_n |\langle 0 \mid j_M \mid n \rangle|^2 \delta(\omega - E_n) =$$

$$=\sum_{n} F_{M,n}^2 \delta(\omega - E_n) + \theta(\omega - s_0) F_{M,\epsilon}^2$$

Non-relativistic QCD:

$$F_{M,n}^2 = |\langle 0 \mid j_M \mid n \rangle|^2 = f(|R(0)|^2, |R'(0)|^2)$$

 $R(0) \rightarrow \mbox{Value of the radial wave function } R(r)$ in the origin

Intro: Quark Gluon Plasma Heavy mesons in the QGP

Results

Spectral functions

Definition

Wave functions Spectral Functions: J/ψ

Spectral functions: Υ

Spectral functions: B_c

Spectral functions: P wave states

Summing up...

$$\sigma_M(\omega, T) = \frac{1}{\pi} Im G_M(\omega) = \sum_n |\langle 0 \mid j_M \mid n \rangle|^2 \delta(\omega - E_n) =$$

$$=\sum_{n} F_{M,n}^2 \delta(\omega - E_n) + \theta(\omega - s_0) F_{M,\epsilon}^2$$

Non-relativistic QCD: $F_{M,n}^2 = |\langle 0 \mid j_M \mid n \rangle|^2 = f(|R(0)|^2, |R'(0)|^2)$

 $R(0) \rightarrow \mbox{Value of the radial wave function } R(r)$ in the origin

For example..
Definition

Intro: Quark Gluon
Plasma
Heavy mesons in the
QGP

Results

Spectral functions

Definition

- Wave functions Spectral Functions: J/ψ
- Spectral functions: Υ

Spectral functions: B_c

Spectral functions: P wave states

Summing up...

$$\sigma_M(\omega, T) = \frac{1}{\pi} Im G_M(\omega) = \sum_n |\langle 0 \mid j_M \mid n \rangle|^2 \delta(\omega - E_n) =$$

$$=\sum_{n} F_{M,n}^2 \delta(\omega - E_n) + \theta(\omega - s_0) F_{M,\epsilon}^2$$

Non-relativistic QCD: $F_{M,n}^2 = |\langle 0 \mid j_M \mid n \rangle|^2 = f(|R(0)|^2, |R'(0)|^2)$

 $R(0) \rightarrow \mbox{Value}$ of the radial wave function R(r) in the origin

For example.. (G.T.Bodwin et al., Phys. Rev. D 51, 1125)

$$\Box$$
 Vector (S wave): $F_V^2 = \frac{3N_c}{2\pi} |R(0)|^2$;

Definition

Intro: Quark Gluon
Plasma
Heavy mesons in the
QGP

Results

Spectral functions

Definition

- Wave functions Spectral Functions: J/ψ
- Spectral functions: Υ

Spectral functions: B_c

Spectral functions: P wave states

Summing up...

$$\sigma_M(\omega, T) = \frac{1}{\pi} Im G_M(\omega) = \sum_n |\langle 0 \mid j_M \mid n \rangle|^2 \delta(\omega - E_n) =$$

$$=\sum_{n} F_{M,n}^2 \delta(\omega - E_n) + \theta(\omega - s_0) F_{M,\epsilon}^2$$

Non-relativistic QCD: $F_{M,n}^2 = |\langle 0 \mid j_M \mid n \rangle|^2 = f(|R(0)|^2, |R'(0)|^2)$

 $R(0) \rightarrow \mbox{Value}$ of the radial wave function R(r) in the origin

■ For example.. (G.T.Bodwin et al., Phys. Rev. D 51, 1125)

$$\square$$
 Vector (S wave): $F_V^2 = rac{3N_c}{2\pi} |R(0)|^2$;

$$\Box$$
 Scalar (P wave): $F_S^2=\frac{9N_c}{2\pi m^2}|R'(0)|^2$;

 \blacksquare By integrating Schroedinger's equation \rightarrow Radial wave functions

■ By integrating Schroedinger's equation → Radial wave functions

By integrating Schroedinger's equation \rightarrow Radial wave functions

From the radial wave functions $R(r) \rightarrow R(0)$, R'(0)..

By integrating Schroedinger's equation \rightarrow Radial wave functions

From the radial wave functions $P(r) \longrightarrow P(n) P'(n)$

Broadening of the bound state peaks added 'ad hoc' ($\Gamma \approx 100 MeV$)

Broadening of the bound state peaks added 'ad hoc' ($\Gamma \approx 100 MeV$)

Kinematic corrections to the scattering contribution \rightarrow reproduce correct $\propto \omega^2$ asymptotic behavour of perturbative QCD

Broadening of the bound state peaks added 'ad hoc' ($\Gamma \approx 100 MeV$)

- Kinematic corrections to the scattering contribution \rightarrow reproduce correct $\propto \omega^2$ asymptotic behavour of perturbative QCD
- A direct comparison with lattice QCD results is very hard to realize.

22 / 29

Fundamental state survives beyond T_c

Radial excitation dissociates around T_c

Fundamental state survives beyond T_c

- Radial excitation dissociates around T_c
- Fundamental state peak decreases gradually as temperature rises beyond T_c

Fundamental state survives beyond T_c

- Radial excitation dissociates around T_c
- Fundamental state peak decreases gradually as temperature rises beyond T_c
- The peaks shift as the mass changes with temperature

24 / 29

Importance of the study of heavy mesons in the QGP

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach

- Importance of the study of heavy mesons in the QGP
- \blacksquare Limits of the lattice QCD approach \rightarrow Potential models

- Importance of the study of heavy mesons in the QGP
- \blacksquare Limits of the lattice QCD approach \rightarrow Potential models
- Integration of the Schroedinger equation

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach → Potential models
- Integration of the Schroedinger equation \rightarrow
 - □ Masses, dissociation temperatures, spectral functions.

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach \rightarrow Potential models
- Integration of the Schroedinger equation \rightarrow
 - □ Masses, dissociation temperatures, spectral functions.
- Versatility of the developed model \rightarrow

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach \rightarrow Potential models
- Integration of the Schroedinger equation \rightarrow
 - □ Masses, dissociation temperatures, spectral functions.
- Versatility of the developed model \rightarrow
 - □ Straightforward extension to different bound states

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach \rightarrow Potential models
- Integration of the Schroedinger equation \rightarrow
 - □ Masses, dissociation temperatures, spectral functions.
- Versatility of the developed model \rightarrow
 - □ Straightforward extension to different bound states
 - \Box Immediate extension to lattice data for $N_f \neq 2$

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach \rightarrow Potential models
- Integration of the Schroedinger equation \rightarrow
 - □ Masses, dissociation temperatures, spectral functions.
- Versatility of the developed model \rightarrow
 - □ Straightforward extension to different bound states
 - \Box Immediate extension to lattice data for $N_f \neq 2$
- Comparison with other results:
Summing up...

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach \rightarrow Potential models
- Integration of the Schroedinger equation \rightarrow
 - □ Masses, dissociation temperatures, spectral functions.
- Versatility of the developed model \rightarrow
 - □ Straightforward extension to different bound states
 - \Box Immediate extension to lattice data for $N_f \neq 2$
- Comparison with other results:
 - \Box Dissociation temperatures \rightarrow Consistent with lattice QCD

Summing up...

- Importance of the study of heavy mesons in the QGP
- Limits of the lattice QCD approach \rightarrow Potential models
- Integration of the Schroedinger equation \rightarrow
 - □ Masses, dissociation temperatures, spectral functions.
- Versatility of the developed model \rightarrow
 - □ Straightforward extension to different bound states
 - \Box Immediate extension to lattice data for $N_f \neq 2$
- Comparison with other results:
 - \Box Dissociation temperatures \rightarrow Consistent with lattice QCD
 - $\hfill\square$ Spectral functions \longrightarrow harder confrontation with lattice QCD

Intro: Quark Gluon Plasma
Heavy mesons in the QGP
Results
Spectral functions
<u> </u>

Not enough yet?

Wong's prescription for the potential

Wong's prescription II

Not enough yet?

Intro: Quark Gluon Plasma	•
Heavy mesons in the QGP	•
Results	•
Spectral functions	•
-	•
Not enough yet?	•
Wong's prescription for the potential	•
Wong's prescription II	•

Wong's prescription for the potential

Intro: Quark Gluon Plasma Heavy mesons in the QGP

Results

Spectral functions

Not enough yet?

Wong's prescription for the potential

Wong's prescription II

$$\begin{aligned} \epsilon_{\text{QGP}}^{(1)}(\vec{x}) &\equiv \frac{dU_{\text{QGP}}^{(1)}}{dV}(\vec{x}) = T\frac{dS_1}{dV}(\vec{x}) - p^{(1)}(\vec{x}) \\ &\frac{p^{(1)}(\vec{x})}{\epsilon_g^{(1)}(\vec{x})/3} = a(T) \text{ (Local energy density)} \\ &\frac{dU_g^{(1)}}{dV}(\vec{x}) = \frac{3}{3+a(T)}\frac{TdS_1}{dV}(\vec{x}) \\ &U_g^{(1)}(\vec{r},T) = \int d\vec{x} \frac{dU_g^{(1)}}{dV}(\vec{x}) = \frac{3}{3+a(T)}TS_1(\vec{r},T) \\ &U_g^{(1)}(\vec{r},T) - U_{g0}(T) = \frac{3}{3+a(T)}\{U_1(\vec{r},T) - F_1(\vec{r},T)\} \end{aligned}$$

Wong's prescription II

Intro: Quark Gluon Plasma Heavy mesons in the QGP

Results

Spectral functions

Not enough yet? Wong's prescription for the potential

Wong's prescription II

 $U_1(\vec{r},T) = U_{Q\bar{Q}}^{(1)}(\vec{r},T) + U_g^{(1)}(\vec{r},T) - U_{g0}(T)$

From which

$$U_{Q\bar{Q}}^{(1)}(\vec{r},T) = \frac{3}{3+a(T)} [F_1(\vec{r},T) - U_1(\vec{r},T)] + U_1(\vec{r},T)$$

$$= \frac{3}{3+a(T)}F_1(\vec{r},T) + \frac{a(T)}{3+a(T)}U_1(\vec{r},T)$$

The potential then is

$$U_{Q\bar{Q}}^{(1)}(\vec{r},T) - U_{Q\bar{Q}}^{(1)}(\vec{r} \to \infty,T)$$

= $f_F(T) \left[F_1(\vec{r},T) - F_1(\vec{r} \to \infty,T) \right]$
+ $f_U(T) \left[U_1(\vec{r},T) - U_1(\vec{r} \to \infty,T) \right]$