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OUTLINE
*MC, C, GC ensembles

*Multiplicities
*Canonical suppression



“Classical” statistical ensembles

Microcanonical: energy and number of particles fixed

Q= ) 6(E— Eo)dn,n,

states

Canonical: number of particles is fixed, but energy fluctuates because the system is
in contact with a reservoir

7 = Z exp|—E/T|0N. N,

states

Grand-canonical: both number of particles and energy fluctuate

Zy= S exp|—E/T)exp|uN/T]

states



Relativistic statistical ensembles

Q=Y (hv|6*(P — Po)dg o, |hv)

hyv

These definitions are more rigorous. The previous ones are approximate expressions
which are equivalent for sufficiently large volumes, i.e. when this replacement is possible
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For sufficiently large volumes

Microcanonical ensemble: energy-momentum and charges (additive) fixed

() = Z 54(P — Po)(SQ,QO

states

Canonical: fixed charges, energy-momentum fluctuates because in contact with a
reservoir

Z=3 expl-f-Plig.g, B=1/T(7,7V)

states temperature four-vector

Grand-canonical: both charges and energy-momentum fluctuate

Zg= Y  exp[—f- Plexp[u@/T]

states

NOTE: partition functions are Lorentz invariants



Relativistic thermodynamics
S=p0-(P)+logZ
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In the rest frame (subtlety here!) we have the usual relation known from classical thermodynamics

Equilibrium condition between 2 bodies in thermal contact (system and thermometer):
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Temperature in relativity

(N
(N

Comoving thermometer: Thermometer at rest, moving system:
Thermodynamic equilibrium of both Thermodynamic equilibrium of
energy and momentum energy, but not of momentum.

Proper temperature Measured temperature is red-shifted



From microcanonical to grand-
canonical ensemble

It can be shown that partition functions of more constrained ensemble can be
approximated by those of less constrained ones better and better as extensive
parameters like energy and volume increase.

Proof: asymptotic expansion obtained through the saddle point method.

Thereby, one can show that thermodynamic ensembles are equivalent in the
thermodynamic limit, V —co , but ONLY FOR FIRST MOMENTS

(i.e. quantities which can be expressed as first derivatives of partition functions).

On the other hand, for flucutations, the inequivalence persists in the thermodynamic limit
(many recent papers by Gorenstein, Hauer, Turko etc.)



Example: from micro to canonical

Q=N 6E-E) o Z(z)= Y exp(-zE)

states states

1 100-+¢€ 1 100-+¢€
0= — dz e*"°Z(2) = —/ dz e?Fotlos Z(2)

B 279 —100+¢€ 279 —100-+¢€
Saddle point equation: \
dl / o V
E, 4 Hog (2) _
dz

Solution z_ is the inverse of temperature and:

()~ Aexp|Ey/T + log Z]



Saddle point equation can be read as the equality of initial energy with
the average energy in the canonical ensemble

dlog Z(z)
dz

Ey — — (U)

z=1/T

Also / negligible in the t.d. limit

S =logQ) ~logA+ Eo/T + log Z(V,T)

The “canonical” expression of entropy is recovered
It can be shown that this equation is related to the Legendre transformation
connecting entropy S to free energy F=-T log Z



From canonical to grand-canonical

Z =Y exp|—E/T|0N,n,

states

1 [T . 1 [T - :
7= 3 o | o expl-B/T = 5 [ do 07,0/ T = ~i0

Tr
states o

It N, is large and so is the volume, another saddle point expansion is possible.
Let  z = exp|—ig]

1 dz _ N,
1 dz

= — ¢ — exp|—Nplogz+logZ,(2)]
271 Z



Saddle-point equation

dlogZ,

—Np
OZ@Z

0

One can recognize the equality between the mean number of particles in the grand-canonical
ensemble and the initial fixed number

Furthermore, being \ — ,u/T

Z ~ Aexp|—Nou/T\|Z,

Similar arguments hold for relativistic systems



Example: ideal pion gas In the
canonical ensemble

Z= Y epl-B/Tlboa, = 3. 5 [ 6@ expl-E/T~iQo

states states

NOTE: — Qi
> E= an,ksj,k @ = an,kq]

than A°
Compton

{njr} " J:k
1 [T .
— Z o / dep e'@0? H exp|—n;j ker/T — 11 xq; @]
{rjx} " ik
1 s
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— dop e'Qo? H(l — exp[—ex/T — ig;¢]) "
. ik

1 '

77 e e | ) logl — e
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L[ 14 iQos 28, +1)—— [ d®p log(1 — e==r/T=ia4)~1
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where we have used the approximation:
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which hold only for sufficiently large volumes (see lecture 1)



Boltzmann approximation

Expand the logarithm:

2 1 :
- [Z( S0V [y g - sk/Tzqm)l] e [Z 25, + v Z L [ gopomrenr-inas
' J

J

The first term corresponds to Boltzmann statistics. Holds it m > T,
l.e. if temperature is smaller than 140 MeV.

In usual applications, this approximation is not good for pions, but it is for
other hadrons (T~160 MeV).



Boltzmann approximation

1 [" -
Z ~ o dep €"?0? exp [zg + 224 cos @] = e*°1g, (22+)
T — 7T

L 23+ V/dgpe /02 2T _ (252+ )VmQTKQ(m/T)

NOTA Z4 = zp  perT>>some MeV's
\ GQZ:I:
Asintoticamente IQO (QZj:) "R
<4

if Q, fixed. If, on the other hand, Q_ grows with V being Q /V fixed, the limit changes



Multiplicity

In an ideal neutral pion gas in the grand-canonical ensemble, one expects that multiplicities
are the same for the three pion species, as long as Am <<T.
But in the canonical ensemble at finite volume this is not the case (Canonical Suppression)

Z 15,k €XP|— an kek/T100,0,
{njk}

(1j,k)

ﬁi exp[— Z n; k€k/ 100,00
{nak} 7,k

Z exp[— an,k(cfk/T"‘ Oéj,k)](SQ,Qo
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RULE: replace, in the partition function

/T — &/T + a(p)

and take derivatives, either normal or functional

Momentum spectrum:

dnj 5
—) = ——log /|«
<d3p> Sa(p) 08 la(p)] (P
Integrated multiplicity:
(n;) = ﬁlo Z (o)
I 3043 = J a; =0




Multiplicity of charged pions in the

canonical ensemble
0

o 1 [T | | |
log — dp e'90? explzg + e+ zoe " + z1e Y]
3a+ 27 e

- Z(Qo — 1)
Z(Qo)
IQ0—1(2Z:|:)
Lo, (2'2:&)

Oé_|_:O

<+

Quantum statistics effects make this expression more complicated (a series)



What about grand-canonical ensemble ?

7 = Z exp|—E /T + u/TQ| ~ exp [zo + zpet/T 4 zie_“/T}

states

For a completely neutral gas obviously u=0 and one readily gets:

(n4) = 2+

whereas in the canonical ensemble
Il(QZi)
Io(QZi)

<n+> = ZL < 24+



Chemical factor

Canonical suppression

T=100 MeV

Grand-canonical value
(thermdynamic limit) is recovered
for volumes of the order

di 1000 fm° , strongly dependent
onT

PHYSICAL INTERPRETATION

if you have to conserve a charge

in a finite system, this very fact disfavours
charged particles with respect to neutral
because you need PAIRS.



Generalization to non-abelian groups

Generalized definition of the canonical ensemble:

If the system has some symmetry (SU(2), SU(3)c etc.), the canonical ensemble
is the set of states with fixed values of the maximal set of charges (commuting
observables) associated with the symmetry group.

More correctly, the canonical ensemble is the set of states which transform
according to some specific irreducible vector



Example: J?, J_for SU(2) group. This is the maximal set of commuting observables

How can we extend the ¢ for the charge (U(1) group) to such case?
The simple-minded way would be to write two delta's, one for J?, and the second
for J_but this is wrong because we would lose the crucial feature that all states should

transform under SU(2) according to the irreducible vector | J?, J >

To count ALL states transforming according to | J?, J >we MUST project a general

state onto this vector by using the projector

P=|J% J.){(J? J,]|

Number of states Z (state|P|state)

states



Canonical ensemble

= Y e Puae/T (state|P|state) = Y (statele /TP|state)

states states
Z = tr[e_ﬁ/TP]

General expression of the projector for compact groups (Wigner projector)

Pi = 31 [ 49 D" iU ()

irep M irreducible vector ‘,u, Z> d" - irrep dimension



General expression of the canonical partition function

/ dg D*(g~1)itx[U(g)e~ /T

THEOREM: This can be also written as

/ dg trD* (g~ )tex[U (g)e— /T

/ dg x*(g~1)te[U (g)e~ /7]



* Microcanonical ensemble 0O :Z <hv ‘54 (P _13) 5Q,Q‘hv>
h

(ang mom and parity cons’n disregarded) -

Z =% (hy|exp(~H IT)3, 4|hy )

* Canonical ensemble

Z; =Yy (hy|exp(=H / T)exp(PQ /T)| )

* Grand-canonical o

ensemble
0=(0,BSC ..) H=(HyHyHs )



(Boltzmann statistics limit)

* (Grand-canonical ensemble

—.\/p° +mJ2. /T)

V2T, +1) 3
<nj>— o exp(p@j/T)Id p exp

Z(Q) OZf exp(-pQ/T)
* Canonical ensemble

V@I +D) (2L 2,2@~q)
/'}W‘ oy JPORTAP Tl 20)

Q UZ)exp([SLP)

* Microcanonical ensemble
VQeJs+h o, QP-p;,0-q;)
<nj> = 5 d’p
(2m) Q(P,0)




Canonical suppression

Example: neutron chemical factor in a completely neutral cluster

—

Z(0, l,0,0,g)fZ(0,0,0,0,0)

o
>

0.4

L T =190 MeV
K;D MeV
: T =150 MeV
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In GC should be:
) LD e

Whilst in C
VQJ, +D) > 1 Z2(=¢q;)
<nj>— o J'd p exXp|=4/p” *+m; /T) Z0)
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Q=0 cluster, M/V=0
Mesons
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F. B., L. Ferroni,Eur. Phys. J. C 38 (2004) 225
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op-like cluster, M/V=0
Mesons
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Size (Mass, Volume)

Microcanonical ensemole. All conservaiion laws including
energy-rnorneniurn (angular rorneniurn, parity), cnarges

anforcead.

(F. Liu et al., Phys. Rev. C 68 (2003) 024905)
F. B., L. Ferroni,Eur. Phys. J. C 38 (2004) 225

Canonical ensemole. Energy and morneniurm conserved
il

on average, charges exa

U1
@
S
(%)

'cw

Termperaiure is introduced

%

(A. Keranen, F.B., Phys. Rev. C 65 (2002) 044901)

Cirand-canonical ensermole. Also cnarges are conserved

on average. Cnemical poiteniials are introduced

Difficulty of computing



