Jet quenching in high-energy heavy-ion collisions

International School QGP & HIC Torino, Dec. 8th - 13th 2008

David d'Enterria

Massachusetts Institute of Technology

Plan of lectures

0. Introduction

The many facets of QCD

QCD is a QFT with very rich dynamical content: asymptotic freedom, confinement, (approx.) χ-symmetry, non-trivial vacuum, U_A(1) anomaly...

- The only sector of the SM whose collective behaviour can be studied in the lab: phase transition(s), thermalization of fundamental fields, ...
- QCD has a very diverse many-body phenomenology at various limits:

David d'Enterria (MIT)

QCD matter with heavy-ions: physics menu

QGP School, Torino, Dec. 2008

QGP: Study of (bulk) deconfinement

- formation of color neutral clusters at small densities
- particle number/cluster rises
- critical density at maximal overlap ($n \approx 2$ fm⁻³ or

~1 GeV/fm³)

T/T_c

QGP production in high-energy nuclear colls.

- HE A-A colls. produce expanding QGP: V~ $O(10^3 \text{ fm}^3)$ for τ ~10 fm/c
- Collision dynamics: Diff. observables sensitive to diff. reaction stages

Hard particles: "tomographic" probes of QGP

- Hard-probes of QCD matter:
 - large-Q² (p_{T} ,m>2 GeV/c): jets, γ , QQ ... well controlled exp. & theoretically (pQCD)
 - early-time production: self-generated in collision at $\tau < 1/Q \sim 0.1$ fm/c
 - tomographic probes of hottest
 - & densest phases of medium .

QCD medium

QCD probe in

Hard particles: "tomographic" probes of QGP

- Hard-probes of QCD matter:
 - large-Q² (p_T ,m>2 GeV/c): jets, γ , QQ ... well controlled exp. & theoretically (pQCD)
 - early-time production: self-generated in collision at $\tau < 1/Q \sim 0.1$ fm/c
 - tomographic probes of hottest
 - & densest phases of medium .

Kinematics A-A collision (reminder)

• Nucleus = "beam" of partons with $p_T \sim 0$ and fractions ($x_{Biorken}$) of p_L

Transverse momentum: $\mathbf{p}_{T} = (p_{x}, p_{y}) |\mathbf{p}_{T}| = p \sin(\theta)$

Rapidity: $y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$ (Differences in rapidity conserved under boosts in z-direction: y' = y - y_{cm})

Pseudorapidity: $\eta = -\ln[\tan(\theta/2)]$ ($\eta \sim y$ if E \gg m, and θ not too small)

Azimuthal angle φ: Particles normally (not always!) produced ~isotropically

Jet quenching in the QGP

What is a "jet" ?

Jet = high-p_T parton (quark, gluon) produced in a hard scattering process: qq, qg, gg (also partons/jets produced in decays of heavy particles)
 Jet production processes (leading order):

Jet balanced back-to-back by another jet, a prompt γ , ... (at LO).

■ Jet: Collimated spray of hadrons in a cone $R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \sim 0.4 - 1$. with total 4-momentum of original fragmenting parton: $P_{T,parton} = \Sigma p_{T,hadrons}$

What is "jet quenching" ?

q-hat transport coefficient (estimate)

 \hat{q} transport coefficient characterizes the medium "scattering power:

 $\hat{q} \equiv m_D^2 / \lambda = m_D^2 \rho \sigma$ parton-parton x-section medium density Debye mass (~ gT): mimimum momentum of plasma particles Consider a gluon plasma at T~0.4 GeV, α_s~0.5: $\rho_g = 16/\pi^2 \zeta(3) \cdot T^3 \approx 15 \, \text{fm}^{-3}$ Debye mass : $m_D = (4\pi\alpha_s)^{1/2}T \approx 1 \text{ GeV}$ $\hat{q} \simeq m_D^2/\lambda_g \simeq 2.2 \text{ GeV}^2/\text{fm}$ $\sigma_T^{gg} \simeq 9\pi \alpha_s^2 / (2m_D^2) \approx 9 \text{ mb}$ (LO) <u>Note</u>: multiply by $\lambda_g = 1/(\rho_g \sigma_T^{gg}) \simeq (18/\pi^2 \zeta(3) \alpha_s T)^{-1} \simeq 0.45 \text{ fm}$ hbar·c= 0.2 GeV·fm $\lambda_q = 9/4\lambda_q \approx 1 \text{ fm}^2$ to get right units !

Lectures overview

QGP School, Torino, Dec. 2008

David d'Enterria (MIT)

I. High-p_T leading hadron spectra

High p_T (leading) hadrons

Above p_T~ 2 GeV/c: spectra dominated by fragmentation hadrons carrying

a large fraction of parent parton $p_T : \langle z \rangle = p_{had}/p_{parton} \sim 0.5 - 0.7$

High-p_{τ} hadro-production: pQCD factorization

Cross section = convolution of 3 terms:

1 short-distance (pQCD $\sigma_{parton-parton}$) & 2 long-distance (PDF, FF)

$$\sigma^{AB \to h} = f_A(x_1, Q^2) \otimes f_B(x_2, Q^2) \otimes \sigma(x_1, x_2, Q^2) \otimes D_{i \to h}(z, Q^2)$$

(1) Hadron = collection of partons described by PDFs(x,Q²):

(3) Parton (jet) fragmentation into hadrons described by a FF(z,Q²):

(2) High-Q² parton-parton x-sections computed perturbatively at a given $O(\alpha_s)$:

High-p_T hadron spectra: p-p @ 200 GeV

High p_{τ} hadron spectra very well described by NLO pQCD:

M. Russcher, QM06

High-p $_{T}$ hadro-production: A-A collisions

QCD factorization for nuclear collisions:

$$\sigma^{AB \to h} = f_A(x_1, Q^2) \otimes f_B(x_2, Q^2) \otimes \sigma(x_1, x_2, Q^2) \otimes D_{i \to h}(z, Q^2)$$

Nuclear PDFs:

A-B = "simple superposition of p-p collisions" nPDF = independent sum of "free" partons:

$$f_{a/A}(x,Q^2) = A f_{a/p}(x,Q^2)$$

Nuclear FFs:

Energy loss in QGP: modified DGLAP evolution $R_{AB}^{1.4}_{1.2}$ of vacuum-FFs: D(z',Q²), z'~z-& loss 1.0

Nuclear modification factor:

$$R_{AB}(p_T) = \frac{d^2 N_{AB}/dy dp_T}{\langle T_{AB}(b) \rangle \cdot d^2 \sigma_{pp}/dy dp_T}$$

Parton ∪istribution Photon, W. Zetc.

High p_T hadrons in d-Au @ 200 GeV: R_{dAu}~1

~20% "cold nuclear matter" modifications: nPDF (anti)shadowing,Cronin

Only protons (factor ~2 enhancement) deviate from "vacuum" production

High p_T hadrons in Au-Au @ 200 GeV: $R_{AA} \ll 1$

Au+Au $\rightarrow \pi^0 X$ (peripheral)

Au+Au $\rightarrow \pi^0 X$ (central)

High p_T suppression in Au-Au @ 200 GeV: $R_{AA} \sim 0.2$

Photons are unsuppressed but π⁰,η,h[±] show a common suppression pattern (magnitude, p_T, centrality, ...):

- Only hadrons produced in "surface" escape (N_{part} scaling): $R_{AA} \sim 0.2$
- Universal suppression consistent with quenching at partonic level prior to q,g fragmentation into leading hadrons according to vacuum FFs.

Parton E-loss \Rightarrow **High** p_T **suppression (let's test that ...)**

jet

(â)

dN^g/dy

gluonsstrahlung

👌 (quenched) jet

Multiple gluon radiation off the produced hard parton induced by the dense QCD medium:

Energy loss Medium properties:

$$\Delta E_{\text{GLV}} \propto \alpha_S^3 C_R \frac{1}{A_\perp} \frac{dN^g}{dy} L$$
$$\langle \Delta E_{\text{BDMPS}} \sim \alpha_S C_R \langle \hat{q} \rangle L^2$$

• \hat{q} transport coefficient:

medium "scattering power"
$$\hat{q} \equiv m_D^2/\lambda = m_D^2 \rho \sigma$$

parton-parton x-section
medium density
Debye mass ~ gT
Flavour-dependent energy loss: $\Delta E_{loss}(g) \ge \Delta E_{loss}(q) \ge \Delta E_{loss}(Q)$
(color factor) (dead-cone effect)
David d'Enterria (MIT)

High p_T suppression \Rightarrow QCD medium properties

■ Within consistent space-time evolution (3D-hydro), diff. calculations agree on q-hat ($\hat{q} \sim \rho$, dN^g/dy~ ρ , T~ $\hat{q}^{1/3}$) within a factor of ~2-3. More careful work needed ! Bass-Majumder et al., arXiv:0808.0908

High p_T suppression (I): p_T -dependence

Energy-dependence of E_{loss} (gluon bremsstrahlung):

 $\Delta E_{rad}^{LPM} \approx \alpha_s C_R \,\hat{q} L^2 \, \ln(E/(\hat{q}L))$

Naively: $R_{AA} \sim log(p_T)$

- Flat p_T-dependence (R_{AA}~const) predicted by parton energy loss models:
- Combination of diff. effects (kinematic constraints, local parton p_T slope, nuclear PDFs ...) yields constant quenching factor.

High p_⊤ suppression (II): Excitation function ✓

sqrt(s)-dependence in agreement with parton energy loss in increasingly dense medium: $\Delta E \propto \alpha_S^3 C_R \frac{1}{A_\perp} \frac{dN^g}{dv} L$ RAA High p_ π^0 in 0-10% central A+A: Pb-Pb, Au-Au (~50% less suppr. in lighter system) △ PbPb @\s_NN = 17.3 GeV (WA98) \mathbf{R}_{AA} AuAu @\s_n = 62.4 GeV (PHENIX prelim.) Vitev,√s_{NN} = 22.4 GeV, no energy loss AuAu @\s_n = 200 GeV (PHENIX) ■ $\sqrt{s_{NN}}$ = 22.4 GeV $O\sqrt{s_{NN}}$ = 62.4 GeV • $\sqrt{s_{NN}}$ = 200 GeV 2 Vitev, 22.4 GeV, 130 < dN^g/dy < 185 Vitev, 62.4 GeV, 175 < dN^g/dy < 255 Vitev, 200 GeV, 255 < dN⁹/dy < 370 1.5 Cu+Cu, 0-10% most central GLV parton energy loss: 0.5 $dN^{9}/dy = 400$ $dN^{9}/dv = 800$ **10⁻¹** $dN^{9}/dv = 1400$ 0 0 10 p₊¹⁵ (GeV/c) 2 6 7 8,910 5 20 PHENIX, PRL101, 162301 (08) p_ (GeV/*c*) D.d'E., EJP-C 43 (2005)295 Medium transport coeff.: Initial gluon density: $R_{AA} \sim 1 @ \sqrt{s} \sim 20 GeV \Rightarrow$ SPS $dN^{g}/dy \sim 400$ $<q_{0}> \sim 3.5 \text{ GeV}^{2}/\text{fm}$ **RHIC** $R_{AA} \sim 0.3 @ \sqrt{s} = 62 \text{ GeV} \Rightarrow$ $dN^{g}/dy \sim 800$ $<q_{o}> \sim 7 \text{ GeV}^{2}/\text{fm}$

RHIC $R_{AA} \sim 0.2 @\sqrt{s} = 200 \text{ GeV} \Rightarrow$

 $dN^{g}/dy \sim 1400$

High p_⊤ suppression (III): centrality-dependence ✓

David d'Enterria (MIT)

High p_⊤ suppression (IV): path-length dependence ✓

Parton E_{loss} path-length $\propto L^2$ (static), L (expanding):

Less suppression in-plane ("short" direction) More suppression out-of-plane ("long" direction)

 $\Delta \phi = 90^{\circ}$

Lectures overview

QGP School, Torino, Dec. 2008

David d'Enterria (MIT)

Plan of lectures

Backup slides

AuAu (dAu) @ 200 GeV:high p_{τ} (un)suppression !

■ R_{AA} << 1: well below pQCD expectations for hard scattering x-sections in vacuum

PHENIX, PRL 88, 022301 (2002)

Au-Au suppression due to final-state interactions absent in "control" d-Au colls.

PRL 91, 0723ii (2003)

QGP School, Torino, Dec. 2008

David d'Enterria (MIT)

25-years of jet quenching phenomenology

Mono-jets:

PUB-82-059-THY.1982

Leading hadron suppression:

XNWang&Gyulassy PRL 68, 1480 (1992)

Medium-modified FFs:

Mach-cones in
 Mach-cones in

Armesto et a

hep-ph/0405301

Jet broadening in η:

Casalderrey, Shuryak, hep-ph/0411315

Cerenkov angles, ...

Vacuum	Static medium:	Flowing medium
(reference)	Broadening	Anisotropic shap
22000	22000	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hadron/Nucleus colliders: luminosity

Collider luminosity L characterizes its "ability" to deliver collisions per unit time & cross-section [m⁻²s⁻¹]:

$$\mathcal{L} = \frac{kN^2 f_{F(\sigma_{x,y})}}{4\pi\sigma_x^* \sigma_y^*} \rightarrow$$

k: # of bunches. k= 2808N: # of protons/bunch. $N = 1.15 \times 10^{11}$ f : revolution frequency. f = 11.25 kHz σ_x, σ_y : beam size at coll. point. $\sigma_{x,y} = 16 \ \mu m$ $F\phi_{xy}$): x-angle at coll. point. $\sigma_{x,y} = 165 \ \mu rad$

→ LHC: $\mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ $\sim 10 \text{ nb}^{-1}\text{s}^{-1}$!

• Events collected in time t for process with cross-section σ : N = $\int \mathcal{L} dt \sigma$

■ To maximize *L*:

- (1) Many bunches (k)
- (2) Many particles per bunch (N^2)
- (3) Small beam-size: $\sigma_{u}^{*} = (\beta * \varepsilon)^{1/2}$
- (4) Crossing angle: $F(\sigma_{x,y})$

LHC: $\int \mathcal{L} dt = 100 \text{ fb}^{-1} \text{ in } 1 \text{ - year } (10 \text{ s})$

High beam "brilliance" N/ϵ \rightarrow Injector chain(particles per phase space vol.)performance !

Small envelope → Strong focusing !

Beam overlap at IP \rightarrow Beam-lines

(LHC: 10^{34} cm⁻²s⁻¹ \gg Tevatron: $2 \cdot 10^{32}$ cm⁻²s⁻¹ \gg SppS: $6 \cdot 10^{30}$ cm⁻²s⁻¹)

Au+Au @ 62.4 GeV (central): suppression predictions

High p_{T} @ CERN-SPS: Cronin or quenching

- Cronin enhancement in peripheral ... and suppression in top central ?
- Look for onset of suppression at RHIC Au+Au, p+p @ $\sqrt{s_{NN}} \approx 20$ GeV ?

d+Au nuclear modification factor (at y=0)

High p_T production in d+Au not suppressed but enhanced ! R_{dAu} > 1 as in p+A "Cronin enhancement":

 p_{τ} broadening due to initial-state soft & semihard scattering.

• "pQCD" cross-sections ($R_{AA} \sim 1$) recovered at $p_T > 8$ GeV/c

QGP School, No, Au, shadowing effects in kinematic region probed (y = 0).