Jets in heavy-ion collisions at RHIC and LHC

Carlos A. Salgado Universidade de Santiago de Compostela

International School on Quark-Gluon Plasma and Heavy Ion Collisions: past, present, future

<u>carlos.salgado@usc.es</u>

http://cern.ch/csalgado

Jet quenching has been established at RHIC as a fundamental tool in the study of hot matter in heavy-ion collisions

- Single inclusive suppression
- Two- and three-particle correlations
- Particle species dependence: Specially heavy-quarks

Completely new opportunities at the LHC

- Larger kinematical reach

- New hard probes, in particular <u>reconstructed JETS</u>

[More in David D'Enterrias' lectures]

Torino, December 2008

Contents

I. Gluon multiplication in vacuum.
II. Parton propagation in matter
III. Hard Probes in HIC. Phenomenology I
IV. Hard Probes in HIC. Phenomenology II

Torino, December 2008

Some bibliography

[Lot of work done by now, this is just a small compilation where you can find more references]

- Vacuum, hard processes:

Books, e.g. QCD and Collider Physics, Ellis, Stirling and Webber Lectures, e.g. A.D. Martin, arxiv:0802.0161

— Jets and energy loss in heavy ion collisions

J. Casalderrey-Solana and C.A. Salgado, arxiv:0712.3443

A. Kovner and U.A. Wiedemann, hep-ph/0304151

S. Peigne and A.V. Smilga, arxiv:0810.5702

Torino, December 2008

Contents of the 1st lecture

Gluon multiplication in vacuum

- Deep Inelastic Scattering \rightarrow DGLAP evolution
- Jets
- Factorization
- Examples
- Hard probes in nuclear collisions
 - What for?

Torino, December 2008

Deep inelastic scattering (DIS)

 $\stackrel{E}{\rightarrow} \text{The invariant mass of the outgoing system} \\ W^2 = (p_N + q)^2 = M_N^2 + 2p_N \cdot q + q^2 \\ W \Rightarrow \text{Deep } (Q^2 \gg M_N^2) \text{ Inelastic } (W^2 \gg M_N^2) \\ x = \frac{Q^2}{2M_N(E' - E)}$

Parton model: incoherent (elastic) photon-parton scattering
 A proton is a cloud of free partons

$$\frac{d\sigma}{dxdQ^2} = \sum_{q} \int_0^1 d\xi f_q(\xi) \frac{d\hat{\sigma}_{eq}}{dxdQ^2}$$

 $\Rightarrow f_q(\xi)$ probability of finding a quark with fraction of momentum ξ

Torino, December 2008

Deep inelastic scattering (DIS)

Parton model: incoherent (elastic) photon-parton scattering
 A proton is a cloud of free partons

$$\frac{d\sigma}{dxdQ^2} = \sum_q \int_0^1 d\xi f_q(\xi) \frac{d\hat{\sigma}_{eq}}{dxdQ^2}$$

 $\Rightarrow f_q(\xi)$ probability of finding a quark with fraction of momentum ξ

Torino, December 2008

Structure functions and PDFs

Structure functions and PDFs

Torino, December 2008

A "proton" in QCD...

 \Rightarrow QCD is a quantum field theory

Quantum fluctuations are present...

A cloud of "sea" quarks and gluons together with valence quarks

A "proton" in QCD...

 \Rightarrow QCD is a quantum field theory

Quantum fluctuations are present...

A cloud of "sea" quarks and gluons together with valence quarks

Including QCD-evolution

QCD corrections:
 include inelastic photon-quark scattering
 Leading order in QCD

Or equivalently: Given an initial quark, what is the probability to split, giving a quark or gluon with fraction of momentum z
 Altarelli-Parisi splitting functions

$$d\mathcal{P}(z,k_{\perp}^{2}) = \frac{\alpha_{s}}{2\pi} \frac{1}{k_{\perp}^{2}} P(z) dz dk_{\perp}^{2}$$

$$P(z) = C_{F} \left[\frac{1+z^{2}}{1-z}\right]$$

Torino, December 2008

Divergencies I

 \Rightarrow Including gluon radiation, the structure function is now

$$F_2(x,Q^2) = x \sum_q \int_x^1 \frac{dz}{z} f_q\left(\frac{x}{z}\right) e_q^2 \left[\delta(1-z) + \frac{\alpha_s}{2\pi} \left(P(z)\log\frac{Q^2}{\mu_0^2} + C(z)\right)\right]$$

 \Rightarrow Where an infrared regulator has been introduced $\rightarrow \mu_0$

$$\int_{\mu_0^2}^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} = \log\left(\frac{Q^2}{\mu_0^2}\right) \qquad \qquad Splitting is divergent$$

Renormalization: put divergences in parton distribution functions

$$f_q(x,\mu^2) = f_q(x) + \int_x^1 \frac{dz}{z} f_q\left(\frac{x}{z}\right) \frac{\alpha_s}{2\pi} \left(P(z)\log\frac{\mu^2}{\mu_0^2} + C_1\right)$$

 \Rightarrow So, formaly they are infinite...

Torino, December 2008

Divergencies II

Renormalization: put divergences in parton distribution functions

$$F_2(x,Q^2) = x \sum_q \int_x^1 \frac{dz}{z} f_q\left(\frac{x}{z},\mu^2\right) e_q^2 \left[\delta(1-z) + \frac{\alpha_s}{2\pi} \left(P(z)\log\frac{Q^2}{\mu^2} + C_2\right)\right]$$

 \Rightarrow ... and renormalize the PDFs (F_2 does not depend on μ^2)

$$\frac{\partial F_2(x,Q^2)}{\partial \log \mu^2} = 0 \quad \Longrightarrow \quad \frac{\partial f_q(x,\mu^2)}{\partial \log \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P(z) f_q\left(\frac{x}{z},\mu^2\right)$$

 \Rightarrow In this way, we can define again

$$F_2(x,Q^2) = x \left[\frac{4}{9} (u(x,Q^2) + \bar{u}(x,Q^2)) + \frac{1}{9} (d(x,Q^2) + \bar{d}(x,Q^2)) + \frac{1}{9} (s(x,Q^2) + \bar{s}(x,Q^2)) + \dots \right]$$

(other definitions are possible depending on the finite parts C)

Torino, December 2008

A technical point

 \Rightarrow The splitting functions need to be regularized for $z \rightarrow 1$

Torino, December 2008

The DGLAP equations

⇒ The whole set of equations include all possible splittings and flavors

$$\frac{\partial q_i(x,Q^2)}{\partial \log Q^2} = \frac{\alpha_s}{2\pi} \left[\int_x^1 \frac{dz}{z} \sum_j P_{q_i q_j}(z) q_j\left(\frac{x}{z},Q^2\right) + P_{q_i g}(z) g\left(\frac{x}{z},Q^2\right) \right] \\ \frac{\partial g(x,Q^2)}{\partial \log Q^2} = \frac{\alpha_s}{2\pi} \left[\int_x^1 \frac{dz}{z} \sum_j P_{gq_j}(z) q_j\left(\frac{x}{z},Q^2\right) + P_{gg}(z) g\left(\frac{x}{z},Q^2\right) \right] \right]$$

[DGLAP: Dokshitzer, Gribov, Lipatov, Altarelli, Parisi]

So, although the parton distribution functions are non-perturbative, it's evolution can be predicted by pQCD.

ightarrow Initial non-perturbative input taken from experiment $f_i(x,Q_0^2)$

The proton contains also gluons: exp. half of the momentum

\Rightarrow The description of DIS is one of the most precise tests of QCD

Torino, December 2008

Description of the data

This is obtained by global fits
 Essential for the phenomenology
 LHC

Torino, December 2008

 \Rightarrow The evolution equation can be written as,

$$f_q(x,Q^2) + df_q(x,Q^2) = \int dy \int dz \,\delta(zy - x) f_q(y,Q^2) \left[\delta(z-1) + \frac{\alpha_s}{2\pi} P(z) d\log Q^2\right]$$

 \Rightarrow So that the probability of finding inside a quark another quark with fraction of momentum z of the parent parton is

$$\mathcal{P}_{qq} + d\mathcal{P}_{qq} = \delta(z-1) + \frac{\alpha_s}{2\pi} P(z) d\log Q^2$$

 \Rightarrow Repeating this, we resum the multiple branchings - DGLAP

$$\underbrace{A = \underbrace{-t_0 - t_1}_{\mathbf{x}_0 \in \mathbf{x}_1} \underbrace{-t_{n-1} - t_n}_{\mathbf{y}_{n-1} \in \mathbf{x}_n} } \left(\mathcal{O}\left(\left[\alpha_s \log Q^2 \right]^n \right) \right)$$

Torino, December 2008

Gluons in e^+e^- annihilation

Torino, December 2008

Gluons in e^+e^- annihilation

Torino, December 2008

Gluons in e^+e^- annihilation

Torino, December 2008

Jets in e^+e^- annihilation

It is interesting to study less inclusive observables, e.g.
 How is the energy distributed in the final state?

Jets in e^+e^- annihilation

 \Rightarrow It is interesting to study less inclusive observables, e.g. How is the energy distributed in the final state?

A two-jet event at LEP

Torino, December 2008

Jets in e^+e^- annihilation

\Rightarrow It is interesting to study **less inclusive observables**, e.g.

How is the energy distributed in the final state?

A three-jet event at LEP

Torino, December 2008

What is a jet (naively)

Torino, December 2008

Torino, December 2008

Torino, December 2008

Torino, December 2008

What is a jet (naively)

Torino, December 2008

What is a jet (naively)

Torino, December 2008

Jet cross sections

 \Rightarrow A jet is a bunch of particles going into a given direction Naively, the number of emitted gluons define the number of jets in the final state This is essentially true, but the gluon emission is divergent $\frac{1}{\sigma} \frac{d^2 \sigma^{q\bar{q}g}}{dx_q dx_{\bar{q}}} = C_F \frac{\alpha_s}{2\pi} \frac{x_q^2 + x_{\bar{q}}^2}{(1 - x_q)(1 - x_{\bar{q}})}$ \Rightarrow Where are these singularities? $1 - x_q = x_{\bar{q}} \, \frac{E_g}{\sqrt{s}} \left(1 - \cos \theta_{\bar{q}g} \right)$

Soft
$$E_g/\sqrt{s} \to 0$$

Collinear $\cos \theta_{\bar{q}g} \to 0$

Torino, December 2008

Several different definitions for jets exist - jet algorithms
 Example, define a minimum invariant mass of the parton pairs

 $\min\{(p_i + p_j)^2\} = \min\{2E_iE_j(1 - \theta_{ij})\} > y_{\text{cut}}s$

 \Rightarrow Integrating the cross section within these limits

Torino, December 2008

Torino, December 2008

Torino, December 2008

Torino, December 2008

Jet evolution

The type of divergences in DIS and jets are basically the same
 The evolution of the jet can be described by DGLAP-like eqs.

⇒ Example: Fragmentation functions

$$\frac{\partial D_i^h(x,Q^2)}{\partial \log Q^2} = \sum_j \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P_{ji}(z) D_j\left(\frac{x}{z},Q^2\right)$$

Give the probability that a parton i produced in a hard process fragments into a hadron h with a fraction of momentum x

Non-perturbative quantities (hadronization) and universal

0000000

Fragmentation functions

Torino, December 2008

Factorization

The DIS cross section has a factorization between the leptonic and hadronic parts
 This is a special case of a more general rule

For many observables, the cross section is the convolution of the partonic cross sections with the **universal** PDFs

$$\sigma = f(x_1, Q^2) \otimes f(x_2, Q^2) \otimes \hat{\sigma}(x_1, x_2, Q^2) \otimes D(z, Q^2)$$

⇒ Long distance non-perturbative terms ⇒ Involve hadronic scales $\mathcal{O}(\Lambda_{QCD})$ ⇒ Evolution can be computed by DGLAP equations

 \Rightarrow Short distance perturbative elementary cross section

Factorization

The DIS cross section has a factorization between the leptonic and hadronic parts

This is a special case of a more general rule

For many observables, the cross section is the convolution of the partonic cross sections with the universal PDFs

$$\sigma = f(x_1, Q^2) \otimes f(x_2, Q^2) \otimes \hat{\sigma}(x_1, x_2, Q^2) \otimes D(z, Q^2)$$

Long distance non-perturbative terms

 \checkmark Involve hadronic scales $\mathcal{O}(\Lambda_{QCD})$

Second Evolution can be computed by DGLAP equations

 \Rightarrow Short distance perturbative elementary cross section

Torino, December 2008

Factorization

The DIS cross section has a factorization between the leptonic and hadronic parts

This is a special case of a more general rule

For many observables, the cross section is the convolution of the partonic cross sections with the universal PDFs

$$\sigma = f(x_1, Q^2) \otimes f(x_2, Q^2) \otimes \hat{\sigma}(x_1, x_2, Q^2) \otimes D(z, Q^2)$$

Long distance non-perturbative terms

- \checkmark Involve hadronic scales $\mathcal{O}(\Lambda_{QCD})$
- Second Evolution can be computed by DGLAP equations

 \Rightarrow Short distance perturbative elementary cross section

Some specific examples...

Torino, December 2008

Lepton-pair production (Drell-Yan)

 The perturbative cross section for the partonic process

$$\sigma(q_i \bar{q}_i \to l^+ l^-) = \frac{1}{N_C} e_i^2 \frac{4\pi\alpha^2}{3\hat{s}}$$

$$\Rightarrow$$
 where $\hat{s} = x_1 x_2 s = M^2$

 \Rightarrow Invariant mass and rapidity of the pair determine quarks' kinematics

$$x_1 = \frac{M}{\sqrt{s}} e^y \qquad \qquad x_2 = \frac{M}{\sqrt{s}} e^{-y}$$

 \Rightarrow So, the factorized cross section is simply

$$\frac{d^2 \sigma^{DY}}{dM^2 dy} = \frac{4\pi \alpha^2}{9M^4} \sum_i e_i^2 \left[x_1 q_i(x_1) x_2 \bar{q}(x_2) + (q \leftrightarrow \bar{q}) \right]$$

Torino, December 2008

Jet production

 $qq \rightarrow qq$

 $q\bar{q} \rightarrow gg |+gg \rightarrow q\bar{q}|$

Lowest order perturbative processes To be convoluted with PDFs

2

Torino, December 2008

 $\Rightarrow q\bar{q}$ contribution to the inclusive high-pt pion production

$$\int \frac{d\sigma}{dt} = \frac{32\pi\alpha_s^2}{27\hat{s}} \left[\frac{\hat{u}}{\hat{t}} + \frac{\hat{t}}{\hat{u}} - \frac{9}{4} \left(\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} \right) \right]$$

$$\frac{d\sigma^{AB \to h}}{dp_T^2 dy} = \sum_i \int \frac{dx_2}{x_2} \int \frac{dz}{z} \ x_1 q_i^A(x_1, Q^2) x_2 \bar{q}_i^B(x_2, Q^2) \frac{d\sigma^{q_i \bar{q}_i \to gg}}{d\hat{t}} D_{g \to \pi}(z, Q^2)$$

Torino, December 2008

 $\Rightarrow q\bar{q}$ contribution to the inclusive high-pt pion production

Torino, December 2008

 $\Rightarrow q\bar{q}$ contribution to the inclusive high-pt pion production

Torino, December 2008

 $\Rightarrow q\bar{q}$ contribution to the inclusive high-pt pion production

Torino, December 2008

 $\Rightarrow 2 \rightarrow 2 \text{ kinematics}$ $y = \frac{1}{2} \log \left[\frac{E + p_z}{E - p_z} \right]$

 \Rightarrow So that the fraction of momenta

$$x_{1,2} = \frac{q_T}{\sqrt{s}} \left(e^{\pm y_1} + e^{\pm y_2} \right)$$

 \Rightarrow With the initial parton momentum

$$q_T = \frac{p_T}{z}$$

 \Rightarrow Two integrals needed:

Subscription of momentum in fragmentation $z \rightarrow \langle z \rangle \simeq 0.5 \div 0.7$

 \checkmark Unobserved particle: x_2

Torino, December 2008

Jets at the Tevatron

 \Rightarrow At the LHC abundant jets will be measured also in PbPb

Torino, December 2008

Global fits

Torino, December 2008

Global fits to proton PDFs

How the PDFs are extracted from data?
 Non-perturbative quantities. We cannot compute them, just evolution with DGLAP

 \Rightarrow Strategy:

 \checkmark Fitting functions for PDFs at some initial scale $Q_0^2\simeq 1~{
m GeV}^2$

$$xf(x,Q_0^2) = A(1-x)^\beta x^\alpha (1 + \epsilon\sqrt{x} + \gamma x)$$

A, α, β, γ, ε are free parameters
 Use the sum rules to fix some parameters
 Compute f(x, Q²) using DGLAP at a given order
 Compute observables (DIS, jets, ...) to fit the parameters by minimizing
 χ²({z}) = ∑ [D_i - T_i({z})]/σ_i

Torino, December 2008

Global fits for nuclear PDFs

 \Rightarrow Use the same approach as for free protons

🎾 Data is limited

Usual solution: parametrize **ratios** of nuclear over proton PDFs

Fix the essential benchmark for other medium effects

Torino, December 2008

Hard probes to study the medium properties

Torino, December 2008

Hard probes in heavy-ion collisions

⇒ SPS $\sqrt{s} = 20$ GeV ($Q \sim 1$ GeV) → marginal access to HP ⇒ RHIC $\sqrt{s} = 200$ GeV ($Q \sim 10$ GeV) → access to HP ⇒ LHC $\sqrt{s} = 5500$ GeV ($Q \gtrsim 100$ GeV) → HP and QCD evolution

⇒ Partonic process happens in a very short time t ~ 1/Q
 ⇒ The extension of the medium modifies the long-distance terms
 ⇒ f_A(x,Q²); D(z,Q²)

Torino, December 2008

A conceptually simple example, J/Ψ suppression

 \Rightarrow A J/Ψ is a $c\bar{c}$ bound state.

 $\sigma^{hh\to J/\Psi} = f_i(x_1, Q^2) \otimes f_j(x_2, Q^2) \otimes \sigma^{ij \to [c\bar{c}]}(x_1, x_2, Q^2) \langle \mathcal{O}([c\bar{c}] \to J/\Psi) \rangle$

 \Rightarrow The potential is screened by the medium

→ The long-distance part is modified $\langle \mathcal{O}([c\bar{c}] \rightarrow J/\Psi) \rangle \rightarrow 0$

 \Rightarrow The J/Ψ production is suppressed [Matsui, Satz 1986]

Torino, December 2008

A conceptually simple example, J/Ψ suppression

 \Rightarrow A J/Ψ is a $c\bar{c}$ bound state.

 $\sigma^{hh\to J/\Psi} = f_i(x_1, Q^2) \otimes f_j(x_2, Q^2) \otimes \sigma^{ij \to [c\bar{c}]}(x_1, x_2, Q^2) \langle \mathcal{O}([c\bar{c}] \to J/\Psi) \rangle$

 \Rightarrow The potential is screened by the medium

→ The long-distance part is modified $\langle \mathcal{O}([c\bar{c}] \rightarrow J/\Psi) \rangle \rightarrow 0$

 \Rightarrow The J/Ψ production is suppressed [Matsui, Satz 1986]

Torino, December 2008

DGLAP evolution in vacuum

$$t = Q^2 \text{ plays the role of time}$$

Ordered gluon splitting given by DGLAP

$$\frac{\partial f(x,t)}{\partial \log t} = \int_{x}^{1} \frac{dz}{z} \frac{\alpha_{s}}{2\pi} \underbrace{P(z)f(x/z,t)}_{\text{splitting function}}$$

f(x,t) are the PDFs or the FF

Torino, December 2008

DGLAP evolution in vacuum

$$t = Q^2 \text{ plays the role of time}$$

$$\int_{a}^{a} \int_{a}^{b} \int_{a}^{-t_1} \int_{a}^{t_2} \int_{a}^{t_3} \int_{a}^{t_4} \int_{a}^{t_5} \int_{a}^$$

f(x,t) are the PDFs or the FF

Torino, December 2008

Jet quenching

What happens when this evolution takes place in the medium created in the collision??

Torino, December 2008

Experimental observations

Photons don't interact with the medium quarks and gluons do

Experimental observations

Torino, December 2008

Hard Probes shopping list

 \Rightarrow Probes which interact strongly with the produced matter

- Jets and high-pT hadron production
- Heavy quark production
- 🌂 Quarkonia production

 \Rightarrow Probes which do not interact strongly with the matter

- 🔌 Bosons: photons, W, Z
- 🄌 Drell-Yan

<u>``</u>

``

 \Rightarrow Combination

🔌 photon+jet, Z+jet ...

Hard Probes shopping list

- Probes which interact strongly with the produced matter
- Jets and high-pT hadron production
- Heavy quark production
- 🔌 Quarkonia production
- \Rightarrow Probes which do not interact strongly with the matter
 - 🔌 Bosons: photons, W, Z
 - 🄌 Drell-Yan

<u>``</u>...

<u>``</u>...

- Combination
- 🄌 photon+jet, Z+jet ...

New regimes at the LHC

Torino, December 2008

New regimes at the LHC

Torino, December 2008

New regimes at the LHC

Torino, December 2008

Summary

 \Rightarrow QCD corrections to naive parton model given by parton splitting Evolution of parton distribution functions PDF 🦄 let structures \Rightarrow Hadronic cross sections present a factorization between long and short distance contributions PDFs and FF are universal \Rightarrow Hard processes are excellent probes of the medium formed in heavy ion collisions Computable in pQCD

Stramework to compute medium-effects (jet quenching)

New regimes at the LHC