Jets in heavy-ion collisions at RHIC and LHC

Carlos A. Salgado Universidade de Santiago de Compostela

International School on Quark-Gluon Plasma and Heavy Ion Collisions: past, present, future

<u>carlos.salgado@usc.es</u>

http://cern.ch/csalgado

Contents

I. Gluon multiplication in vacuum.
II. Parton propagation in matter
III. Hard Probes in HIC. Phenomenology I
IV. Hard Probes in HIC. Phenomenology II

Torino, December 2008

Summary of Lecture 1

 \Rightarrow QCD corrections to naive parton model given by parton splitting Evolution of parton distribution functions PDF 🎽 let structures \Rightarrow Hadronic cross sections present a factorization between long and short distance contributions PDFs and FF are universal \Rightarrow Hard processes are excellent probes of the medium formed in heavy ion collisions Computable in pQCD

Stramework to compute medium-effects (jet quenching)

New regimes at the LHC

LHC physics program

Fundamental Interactions Searches – Higgs, SUSY, extradimensions...

Torino, December 2008

LHC physics program

Torino, December 2008

LHC physics program

How?: Symmetries and breaking of the symmetries

- Chiral symmetry/confinement (ALICE, ATLAS, CMS)
- EW symmetry breaking: Higgs (CMS, ATLAS)
- CP violation (LHCb)

Torino, December 2008

Jet quenching

A jet is an **extended object**:

How does the extension of the medium modify the structure of the jet? Is there a modification of the evolution equations?

Torino, December 2008

Medium-induced gluon radiation:

We need the modification of the splitting probability:

Particle propagation in matter

Notice that we normally compute Feynman diagrams in momentum space
 This is ok for the vacuum where the space-time picture is not important
 For a finite-length medium we need to work in <u>configuration space</u>

Torino, December 2008

High-energy variables

Light-cone variables

$$x^{\pm} = x_0 \pm x_3$$
 $p^{\pm} = p_0 \pm p_3$

 \Rightarrow So that, the scalar product

$$p \cdot x = \frac{1}{2}(p^+x^- + x^-x^+) - \mathbf{p}_\perp \cdot \mathbf{x}_\perp$$

 \Rightarrow Rapidity

$$y = \frac{1}{2} \ln \left[\frac{p_0 + p_3}{p_0 - p_3} \right] = \frac{1}{2} \ln \left[\frac{p^+}{p^-} \right]$$

 \Rightarrow Boost is just adding a factor \rightarrow additive velocity

$$y' = y + y_{\beta} \implies y_{\beta} = \frac{1}{2} \ln \left[\frac{1+\beta}{1-\beta} \right]$$

Torino, December 2008

Particle propagation in matter: Eikonal limit

 \Rightarrow At high energies \rightarrow Eikonal approximation $E \gg k_{\perp}$

 $|\beta\rangle = W_{\beta\alpha}|\alpha\rangle$ $|\alpha\rangle$ \mathbf{X} X The medium rotates the color \Rightarrow Particle does not change its direction of propagation of the probe $W(\mathbf{x}) = \mathcal{P} \exp \left| ig \int dx_+ A_-(x_+, \mathbf{x}) \right|$ Wilson line \Rightarrow Recoil is neglected \rightarrow medium is a background field

Note: We will follow the derivations in the lectures [see for more details] J. Casalderrey-Solana and C.A. Salgado, arxiv:0712.3443

Torino, December 2008

Torino, December 2008

Consider a medium as a collection of static scattering centers
Sequivalently: <u>discretize the space for a recoil-less medium</u>

→ For one scattering center...

$$S_{1}(p',p) = \int d^{4}x e^{i(p'-p) \cdot x} \bar{u}(p') igA_{\mu}^{a}(x)T^{a}\gamma^{\mu} u(p)$$
→ In eikonal approximation $p \simeq p'$

$$\frac{1}{2} \sum_{\lambda} \bar{u}^{\lambda}(p)\gamma^{\mu}u^{\lambda}(p) = 2p^{\mu} \qquad p^{\mu}A_{\mu}^{a} \simeq 2p_{+}A_{-}^{a}$$

$$S_{1}(p',p) \simeq 2\pi\delta(p'_{+} - p_{+})2p_{+} \int d\mathbf{x}_{\perp}e^{-i\mathbf{x}_{\perp}(\mathbf{p}'_{\perp} - \mathbf{p}_{\perp})} \left[ig\int dx_{+}A_{-}(x_{+},\mathbf{x}_{\perp})\right],$$
→ Where we have used that the fields do not depend on x_{-}
[Equivalent to the eikonal approximation]

Torino, December 2008

 \Rightarrow For two scattering centers:

$$S_{2}(p',p) = \int \frac{d^{4}p_{1}}{(2\pi)^{4}} d^{4}x_{1} d^{4}x_{2} e^{i(p_{1}-p)\cdot x_{1}} e^{i(p'-p_{1})\cdot x_{2}} \bar{u}(p') igA_{\mu_{1}}^{a_{1}}(x_{1})T^{a_{1}}\gamma^{\mu_{1}} \times i\frac{p_{1,\nu}\gamma^{\nu}}{p_{1}^{2}+i\epsilon} igA_{\mu_{2}}^{a_{2}}(x_{2})T^{a_{2}}\gamma^{\mu_{2}} u(p)$$

 \Rightarrow Applying the Dirac equation $\bar{u}(p)\gamma_{\mu_1}p_{1,\nu}\gamma^{\nu}\gamma_{\mu_2}u(p')\simeq (2p_+)^2g_{\mu_1-}g_{\mu_2-}$

$$S_2(p',p) = -ig^2(2p_+)^2 \int \frac{d^4p_1}{(2\pi)^4} d^4x_1 d^4x_2 \ \frac{e^{i(p_1-p)\cdot x_1 + i(p'-p_1)\cdot x_2}}{p_1^2 + i\epsilon} A_-(x_1)A_-(x_2),$$

 \Rightarrow The integrals in $p_+, p_{1,\perp}$ give delta-functions, the remaining one

$$\int dp_{1-} \frac{\mathrm{e}^{i(x_{1+}-x_{2+})p_{1-}}}{2p_{1+}p_{1-}+i\epsilon} = -\Theta(x_{2+}-x_{1+})\frac{2\pi i}{2p_{+}}$$

🔶 Giving

$$S_2(p',p) \simeq 2\pi\delta(p'_+ - p_+)2p_+ \int d\mathbf{x}_{\perp} e^{-i\mathbf{x}_{\perp}(\mathbf{p}'_{\perp} - \mathbf{p}_{\perp})} \frac{1}{2} \mathcal{P}\left[ig \int dx_+ A_-(x_+, \mathbf{x}_{\perp})\right]^2$$

Torino, December 2008

 \Rightarrow For two scattering centers:

$$S_{2}(p',p) = \int \frac{d^{4}p_{1}}{(2\pi)^{4}} d^{4}x_{1} d^{4}x_{2} e^{i(p_{1}-p)\cdot x_{1}} e^{i(p'-p_{1})\cdot x_{2}} \bar{u}(p') igA_{\mu_{1}}^{a_{1}}(x_{1})T^{a_{1}}\gamma^{\mu_{1}} \times i\frac{p_{1,\nu}\gamma^{\nu}}{p_{1}^{2}+i\epsilon} igA_{\mu_{2}}^{a_{2}}(x_{2})T^{a_{2}}\gamma^{\mu_{2}} u(p)$$

 \Rightarrow Applying the Dirac equation $\bar{u}(p)\gamma_{\mu_1}p_{1,\nu}\gamma^{\nu}\gamma_{\mu_2}u(p')\simeq (2p_+)^2g_{\mu_1-}g_{\mu_2-}$

$$S_2(p',p) = -ig^2(2p_+)^2 \int \frac{d^4p_1}{(2\pi)^4} d^4x_1 d^4x_2 \ \frac{e^{i(p_1-p)\cdot x_1 + i(p'-p_1)\cdot x_2}}{p_1^2 + i\epsilon} A_-(x_1)A_-(x_2),$$

 \Rightarrow The integrals in $p_+, p_{1,\perp}$ give delta-functions, the remaining one

$$\int dp_{1-} \frac{\mathrm{e}^{i(x_{1+}-x_{2+})p_{1-}}}{2p_{1+}p_{1-}+i\epsilon} = -\Theta(x_{2+}-x_{1+})\frac{2\pi i}{2p_{+}}$$

🔶 Giving

$$S_2(p',p) \simeq 2\pi\delta(p'_+ - p_+)2p_+ \int d\mathbf{x}_{\perp} e^{-i\mathbf{x}_{\perp}(\mathbf{p}'_{\perp} - \mathbf{p}_{\perp})} \frac{1}{2} \mathcal{P}\left[ig \int dx_+ A_-(x_+, \mathbf{x}_{\perp})\right]^2,$$

Torino, December 2008

 \Rightarrow So, summing all the contributions from n-scattering centers

$$S(p',p) = \sum_{n=0}^{\infty} S_n(p',p) \simeq 2\pi \delta(p'_{+} - p_{+}) 2p_{+} \int d\mathbf{x}_{\perp} e^{-i\mathbf{x}_{\perp}(\mathbf{p}'_{\perp} - \mathbf{p}_{\perp})} W(\mathbf{x}_{\perp}),$$

 \Rightarrow Interpretation

The Wilson line gives the S-matrix (equiv. scattering amplitude)
 It describes the propagation of an <u>eikonal particle</u>
 The particle propagates in a straight-line, <u>no change in direction</u>
 The only effect of the medium is to <u>induce color rotation</u>

\Rightarrow So, summing all the contributions from n-scattering centers

$$S(p',p) = \sum_{n=0}^{\infty} S_n(p',p) \simeq 2\pi\delta(p'_{+} - p_{+})2p_{+} \int d\mathbf{x}_{\perp} e^{-i\mathbf{x}_{\perp}(\mathbf{p}'_{\perp} - \mathbf{p}_{\perp})} W(\mathbf{x}_{\perp}),$$

\Rightarrow Interpretation

The Wilson line gives the S-matrix (equiv. scattering amplitude)
 It describes the propagation of an <u>eikonal particle</u>
 The particle propagates in a straight-line, <u>no change in direction</u>
 The only effect of the medium is to <u>induce color rotation</u>

Particle propagation in matter

$W(\mathbf{x}) = \mathcal{P} \exp\left[ig \int dx_{+} A_{-}(x_{+}, \mathbf{x})\right]$

Wilson line

First example: the dipole scattering

Each propagation is a Wilson line at the relevant (fixed) transverse position

$$W(\mathbf{x}) = \mathcal{P} \exp\left[ig \int dx_+ A_-(x_+, \mathbf{x})\right]$$

$$\begin{array}{c|c} \alpha & & \alpha' \\ \hline & & & \\ \hline & & & \\ \beta & & & \\ \hline & & & \\ \beta' & & \\ \hline \mathbf{x}_{\perp} \end{array}$$

 \Rightarrow So, the S-matrix

$$|\alpha';\beta'\rangle \equiv S_{\alpha'\beta'\alpha\beta}|\alpha;\beta\rangle = W_{\alpha'\alpha}(\mathbf{x}_{\perp})W^{\dagger}_{\beta'\beta}(\mathbf{\bar{x}}_{\perp})|\alpha;\beta\rangle$$

Total probability of interaction (cross-section w/ needed factors)

$$P_{\rm tot}^{q\bar{q}} = \left\langle 2 - \frac{2}{N_C} \operatorname{Tr} \left[W(\mathbf{x}_{\perp}) W^{\dagger}(\bar{\mathbf{x}}_{\perp}) \right] \right\rangle$$

[Ex. check these formulas, use e.g. the optical theorem]

Torino, December 2008

<u>Medium averages</u>

The colorless object

 $\frac{1}{N_c} \text{Tr} W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp})$

provides the scattering probability for a **given configuration** of the fields in the medium

To compute an observable, we need to **average** over all the possible medium configurations

 $\left|\frac{1}{N_c} \operatorname{Tr}\left\langle W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp}) \right\rangle \right|$

Torino, December 2008

<u>Medium averages</u>

The colorless object

 $\frac{1}{N_c} \mathrm{Tr} W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp})$

provides the scattering probability for a **given configuration** of the fields in the medium

To compute an observable, we need to **average** over all the possible medium configurations

$$\frac{1}{N_c} \mathrm{Tr} \left\langle W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp}) \right\rangle$$

Torino, December 2008

Medium averages I

 $\Rightarrow \text{ The Wilson lines appear always in colorless combinations as}$ $\frac{1}{N} \text{Tr} \langle W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp}) \rangle = \frac{1}{N} \text{Tr} \langle \exp\{-ig \int dx_{+} A^{\dagger}_{-}(x_{+}, \mathbf{x}_{\perp})\} \exp\{ig \int dx_{+} A_{-}(x_{+}, \mathbf{y}_{\perp})\} \rangle$

 \Rightarrow Expanding the exponents, the leading contribution is quadratic

 \Rightarrow Dipole cross section

$$\sigma(\mathbf{y}_{\perp} - \mathbf{x}_{\perp}) = 2 \int \frac{d^2 \mathbf{q}}{(2\pi)^2} |a(\mathbf{q})|^2 \left[1 - e^{i(\mathbf{y}_{\perp} - \mathbf{x}_{\perp})\mathbf{q}} \right]$$

⇒ For a Yukawa screened potential

$$|a(\mathbf{q})|^2 = \frac{\mu^2}{\pi(\mathbf{q}^2 + \mu^2)^2} \qquad \qquad \sigma(r) = \frac{1}{(2\pi)^2 \mu^2} \left[1 - \mu r K_1(\mu r)\right] \simeq \frac{1}{(2\pi)^2} r^2 \log\left[\frac{2}{\mu r}\right]$$

Torino, December 2008

Medium averages I

 $\Rightarrow \text{ The Wilson lines appear always in colorless combinations as}$ $\frac{1}{N} \text{Tr} \langle W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp}) \rangle = \frac{1}{N} \text{Tr} \langle \exp\{-ig \int dx_{+} A^{\dagger}_{-}(x_{+}, \mathbf{x}_{\perp})\} \exp\{ig \int dx_{+} A_{-}(x_{+}, \mathbf{y}_{\perp})\} \rangle$

 \Rightarrow Expanding the exponents, the leading contribution is quadratic

 \Rightarrow For a Yukawa screened potential

$$\sigma(r) = \frac{1}{(2\pi)^2 \mu^2} \left[1 - \mu r K_1(\mu r) \right] \simeq \frac{1}{(2\pi)^2} r^2 \log\left[\frac{2}{\mu r}\right]$$

Torino, December 2008

 $|a(\mathbf{q})|^2 = \frac{\mu^2}{\pi(\mathbf{q}^2 + \mu^2)^2}$

Two main averages used in jet quenching

- Single-hard approximation (GLV)

$$\frac{1}{N_c^2 - 1} \operatorname{Tr} \left\langle W_A^{\dagger}(\mathbf{x}_{\perp}) W_A(\mathbf{y}_{\perp}) \right\rangle \simeq 1 - \frac{N_c}{2} \int d\xi \, n(\xi) \sigma(x_{\perp} - y_{\perp})$$

- Multiple soft scattering approximation (BDMPS-Z/AWS...)

$$\frac{1}{N_c^2 - 1} \operatorname{Tr} \left\langle W_A^{\dagger}(\mathbf{x}_{\perp}) W_A(\mathbf{y}_{\perp}) \right\rangle \simeq \exp \left\{ -\frac{N_c}{4} \int d\xi \, \hat{q}(\xi) (x_{\perp} - y_{\perp})^2 \right\}$$

- So, the transport coefficient is given by the density times the factor of the quadratic term in the cross section (neglect logs) $\hat{q}(\xi) \equiv 2n(\xi) C$ with $\sigma(r) \simeq C r^2$

- Relation with the Color Glass Condensate: $Q^2_{
m sat} o \hat{q} \, L^2$

Torino, December 2008

Two main averages used in jet quenching

- Single-hard approximation (GLV)

$$\frac{1}{N_c^2 - 1} \operatorname{Tr} \left\langle W_A^{\dagger}(\mathbf{x}_{\perp}) W_A(\mathbf{y}_{\perp}) \right\rangle \simeq 1 - \frac{N_c}{2} \int d\xi \, n(\xi) \sigma(x_{\perp} - y_{\perp})$$

Multiple soft scattering approximation (BDMPS-Z/AWS...)

$$\frac{1}{N_c^2 - 1} \operatorname{Tr} \left\langle W_A^{\dagger}(\mathbf{x}_{\perp}) W_A(\mathbf{y}_{\perp}) \right\rangle \simeq \exp \left\{ -\frac{N_c}{4} \int d\xi \, \hat{q}(\xi) x_{\perp} - y_{\perp})^2 \right\}$$

- So, the transport coefficient is given by the density times the factor of the quadratic term in the cross section (neglect logs)

 $\hat{q}(\xi) \equiv 2n(\xi) C$ with $\sigma(r) \simeq C r^2$

— Relation with the Color Glass Condensate: $Q_{
m sat}^2
ightarrow \hat{q} L$

Torino, December 2008

So, coming back to the dipole

 \Rightarrow The dipole 'counts' the number of gluons, of a given size r, in the nucleus, so the (unintegrated) gluon distribution:

$$N(r) = 1 - \exp\left[-\frac{1}{8}Q_{\text{sat}}^2 r^2\right] \quad \Longrightarrow \quad \phi(k) = \int \frac{d^2r}{2\pi r^2} e^{i\mathbf{r}\cdot\mathbf{k}} N(r)$$

[up to logs: McLerran, Venugopalan 1994]

Two important consequences:

- Saturation scale cuts-off the small momentum region
- 🔌 Geometric scaling:

$$\phi = \phi(k^2/Q_{\rm sat}^2)$$

Torino, December 2008

Non-eikonal terms

 \Rightarrow To compute the medium-induced gluon radiation, we will take into account small departure from a straight line for the gluon

$$\int dp_{-} \frac{\mathrm{e}^{ip_{-}(x_{i+}-x_{(i+1)+})}}{2p_{+}p_{-}-p_{\perp}^{2}+i\epsilon} = -i\frac{2\pi}{2p_{+}}\Theta(x_{(i+1)+}-x_{i+})\mathrm{e}^{i\frac{p_{\perp}^{2}}{2p_{+}}((x_{i+}-x_{(i+1)+}))}$$

⇒ In this case, instead of the Wilson line we obtain a path integral

Torino, December 2008

Non-eikonal terms

 \Rightarrow To compute the medium-induced gluon radiation, we will take into account small departure from a straight line for the gluon

$$\int dp_{-} \frac{\mathrm{e}^{ip_{-}(x_{i+}-x_{(i+1)+})}}{2p_{+}p_{-}-p_{\perp}^{2}+i\epsilon} = -i\frac{2\pi}{2p_{+}}\Theta(x_{(i+1)+}-x_{i+}) + \frac{\mathrm{e}^{i\frac{p_{\perp}^{2}}{2p_{+}}(x_{i+}-x_{(i+1)+})}}{2p_{+}p_{-}-p_{\perp}^{2}+i\epsilon} = -i\frac{2\pi}{2p_{+}}\Theta(x_{i+}-x_{i+}) + \frac{\mathrm{e}^{i\frac{p_{\perp}^{2}}{2p_{+}}(x_{i+}-x_{i+})}}{2p_{+}p_{-}-p_{\perp}^{2}+i\epsilon} + \frac{\mathrm{e}^{i\frac{p_{\perp}^{2}}}{2p_{+}}(x_{i+}-x_{i+})}}$$

 \Rightarrow In this case, instead of the Wilson line we obtain a path integral

Torino, December 2008

Medium-induced radiation (sketch of calculation)

 \Rightarrow We work in the approximation of a very highly energetic quark which radiates a soft gluon

 $E_q \gg \omega \gg k_\perp$

Eikonal propagators for quarks
 Non-eikonal corrections for gluons

⇒ "Recipe": write

Quark propagation $W(\mathbf{x}_{\perp}, x_{+}, y_{+})$

Sluon propagation $G(\mathbf{x}_{\perp}, x_{+}; \mathbf{y}_{\perp}, y_{+})$

🔌 Quark-gluon hard vertex

$$\frac{i}{k_{+}}\epsilon_{\perp}\cdot\frac{\partial}{\partial\mathbf{y}_{\perp}}$$

Then include Fourier transforms, integrals, color traces, factors....

Torino, December 2008

Torino, December 2008

Torino, December 2008

Torino, December 2008

So, now all the problem reduces to compute all the medium averages

Torino, December 2008

So, now all the problem reduces to compute all the medium averages

This, in fact, takes a while.....

Torino, December 2008

\Rightarrow High-energy limit: Eikonal approximation

- Particle propagates in a **straight line** without energy loss
- Described by Wilson lines
- \Rightarrow Non-eikonal corrections
 - Allow for changes in the transverse position
 - **Brownian motion** in transverse plane
- ⇒ Medium-induced gluon radiation
 - Take parent as completely eikonal, and apply corrections to gluon
 - Energy loss by radiation