Jets in heavy-ion collisions at RHIC and LHC

Carlos A. Salgado Universidade de Santiago de Compostela

International School on Quark-Gluon Plasma and Heavy Ion Collisions: past, present, future

<u>carlos.salgado@usc.es</u>

http://cern.ch/csalgado

Summary from Lecture 2

 \Rightarrow High-energy limit: Eikonal approximation

Particle propagates in a **straight line** without energy loss

- Described by Wilson lines
- \Rightarrow Non-eikonal corrections

Allow for changes in the transverse position

Brownian motion in transverse plane

Medium-induced gluon radiation

Take parent as completely eikonal, and apply corrections to gluon

Energy loss by radiation

The final answer

$$k_{+} \frac{dI}{dk_{+} d^{2} \mathbf{k}_{\perp}} = \frac{\alpha_{S} C_{R}}{(2\pi)^{2} k_{+}} 2 \operatorname{Re} \int_{x_{0+}}^{L_{+}} dx_{+} \int d^{2} \mathbf{x} \ e^{-i\mathbf{k}_{\perp} \cdot \mathbf{x}} \times \left[\frac{1}{k_{+}} \int_{x_{+}}^{L_{+}} d\bar{x}_{+} \ e^{-\frac{1}{2} \int_{x_{+}}^{L_{+}} d\xi n(\xi) \sigma(\mathbf{x})} \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{x}} \mathcal{K}(\mathbf{y} = 0, x_{+}; \mathbf{x}, \bar{x}_{+}) - 2 \frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \cdot \frac{\partial}{\partial \mathbf{y}} \mathcal{K}(\mathbf{y} = 0, x_{+}; \mathbf{x}, L_{+}) \right] + \frac{\alpha_{S} C_{R}}{\pi^{2}} \frac{1}{\mathbf{k}_{\perp}^{2}}$$

where...

$$\mathcal{K}\left(\mathbf{r}(x_{+}), x_{+}; \mathbf{r}(\bar{x}_{+}), \bar{x}_{+}\right) = \int \mathcal{D}\mathbf{r} \exp\left[\int_{x_{+}}^{\bar{x}_{+}} d\xi \left(i\frac{p_{+}}{2}\dot{\mathbf{r}}^{2} - \frac{1}{2}n(\xi)\sigma(\mathbf{r})\right)\right]$$

The final answer

 $k_{+}\frac{dI}{dk_{+}d^{2}\mathbf{k}_{\perp}} = \frac{\alpha_{S}C_{R}}{(2\pi)^{2}k_{+}} 2\operatorname{Re}\int_{x_{o}\perp}^{L_{+}} dx_{+} \int d^{2}\mathbf{x} \ e^{-i\mathbf{k}_{\perp}\cdot\mathbf{x}} \times$ $\times \left| \frac{1}{k_{+}} \int_{x_{+}}^{L_{+}} d\bar{x}_{+} e^{-\frac{1}{2} \int_{x_{+}}^{L_{+}} d\xi n(\xi) \sigma(\mathbf{x})} \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{x}} \mathcal{K}(\mathbf{y} = 0, x_{+}; \mathbf{x}, \bar{x}_{+}) - \right|$ $-2\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \cdot \frac{\partial}{\partial \mathbf{y}} \mathcal{K}(\mathbf{y}=0, x_{+}; \mathbf{x}, L_{+}) + \frac{\alpha_{S} C_{R}}{\pi^{2}} \frac{1}{\mathbf{k}_{\perp}^{2}}$ 1 4 4 4 where... $\mathcal{K}\left(\mathbf{r}(x_{+}), x_{+}; \mathbf{r}(\bar{x}_{+}), \bar{x}_{+}\right) = \int \mathcal{D}\mathbf{r} \exp\left[\int_{x_{+}}^{\bar{x}_{+}} d\xi \left(i\frac{p_{+}}{2}\dot{\mathbf{r}}^{2} - \frac{1}{2}n(\xi)\sigma(\mathbf{r})\right)\right]$

The medium-induced gluon radiation

Torino, December 2008

Medium-induced radiation (sketch of calculation)

 \Rightarrow We work in the approximation of a very highly energetic quark which radiates a soft gluon

 $E_q \gg \omega \gg k_\perp$

Eikonal propagators for quarks
 Non-eikonal corrections for gluons

⇒ "Recipe": write

Quark propagation $W(\mathbf{x}_{\perp}, x_{+}, y_{+})$

Sluon propagation $G(\mathbf{x}_{\perp}, x_{+}; \mathbf{y}_{\perp}, y_{+})$

🔌 Quark-gluon hard vertex

$$\frac{i}{k_{+}}\epsilon_{\perp}\cdot\frac{\partial}{\partial\mathbf{y}_{\perp}}$$

Then include Fourier transforms, integrals, color traces, factors....

Non-eikonal terms

 \Rightarrow To compute the medium-induced gluon radiation, we will take into account small departure from a straight line for the gluon

$$\int dp_{-} \frac{\mathrm{e}^{ip_{-}(x_{i+}-x_{(i+1)+})}}{2p_{+}p_{-}-p_{\perp}^{2}+i\epsilon} = -i\frac{2\pi}{2p_{+}}\Theta(x_{(i+1)+}-x_{i+})\mathrm{e}^{i\frac{p_{\perp}^{2}}{2p_{+}}((x_{i+}-x_{(i+1)+}))}$$

⇒ In this case, instead of the Wilson line we obtain a path integral

Torino, December 2008

Non-eikonal terms

 \Rightarrow To compute the medium-induced gluon radiation, we will take into account small departure from a straight line for the gluon

$$\int dp_{-} \frac{\mathrm{e}^{ip_{-}(x_{i+}-x_{(i+1)+})}}{2p_{+}p_{-}-p_{\perp}^{2}+i\epsilon} = -i\frac{2\pi}{2p_{+}}\Theta(x_{(i+1)+}-x_{i+}) + \left(\mathrm{e}^{i\frac{p_{\perp}^{2}}{2p_{+}}(x_{i+}-x_{(i+1)+})}\right)$$

 \Rightarrow In this case, instead of the Wilson line we obtain a path integral

Torino, December 2008

Heuristic discussion I

 \Rightarrow Recall the phases in the path integral

$$\exp\left\{i\frac{k_{\perp}^2}{2\omega}(x_i-x_{i-1})\right\}$$

 \Rightarrow The gluon decoheres from the quark when the phase is order I \Rightarrow So, we can define a gluon formation time $t_{\rm form} \sim rac{\omega}{k_\perp^2}$ \checkmark The radiation is suppressed when $t_{\text{form}} > L$ \checkmark Totally incoherent limit when $t_{\rm form} \ll L$ The accumulated transverse momentum $\langle k_{\perp}^2 \rangle \sim \hat{q} t_{\text{form}} \simeq \sqrt{\hat{q}\omega}$ [or $\langle k_{\perp}^2 \rangle \sim \hat{q} L$ for $t_{\text{form}} > L$] [For an extended discussion, see the review, S. Peigne and A.V. Smilga, arxiv:0810.5702]

The LPM suppression

Torino, December 2008

The LPM suppression II

Medium-induced radiation is infrared and collinear finite

Torino, December 2008

Heuristic discussion II

 \Rightarrow For $t_{\rm form} \lesssim L$ the radiation is, using $\langle k_{\perp}^2 \rangle \sim \hat{q} t_{\rm form} \simeq \sqrt{\hat{q}\omega}$

$$\omega \frac{dI}{d\omega} \simeq \alpha_s \frac{L}{t_{\rm form}} \simeq \alpha_s \sqrt{\frac{\hat{q}L^2}{\omega}} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}}$$

$$\Rightarrow \text{ More specifically} \\ \omega \frac{dI}{d\omega} \simeq \frac{2\alpha_s C_R}{\pi} \begin{cases} \sqrt{\frac{\omega_c}{2\omega}} & \omega < \omega_c \\ \frac{1}{12} \left(\frac{\omega_c}{\omega}\right)^2 & \omega > \omega_c \end{cases}$$

 \Rightarrow So, the average energy loss

$$\langle \Delta E \rangle = \int_0^\infty d\omega \,\omega \frac{dI}{d\omega} \simeq \int_0^{\omega_c} \sqrt{\frac{\omega}{\omega_c}} \simeq \alpha_s \, C_R \,\omega_c \simeq \alpha_s \, C_R \,\hat{q} \, L^2$$

grows quadratically with the lenght

Torino, December 2008

Main predictions of the formalism

Solution Energy loss
$$\Delta E \simeq \frac{\alpha_s C_R}{2\pi} \hat{q} L^2$$

🕝 Jet broadening
$$~~k_{\perp}^2 \simeq \hat{q}L \propto rac{\Delta E}{L}$$

Torino, December 2008

Phenomenology I: Inclusive observables

Implementation: Independent gluon emission (Quenching Weights)

Torino, December 2008

Vacuum and medum-induced gluon radiation treated separately
 Medium-radiation first
 Medium produces only energy loss

(no modification of the evolution)

Independent gluon emission approximation - Poisson distribution

Torino, December 2008

 \Rightarrow Vacuum and medum-induced gluon radiation treated separately 🍽 Medium-radiation first Medium produces only energy loss (no modification of the evolution) Independent gluon emission approximation - Poisson distribution Hard Process 200000000000 1000000000

Torino, December 2008

 \Rightarrow Vacuum and medum-induced gluon radiation treated separately 🍽 Medium-radiation first Medium produces only energy loss (no modification of the evolution) Independent gluon emission approximation - Poisson distribution Medium-induced gluon radiation 000000000000 200000000

Torino, December 2008

 \Rightarrow Vacuum and medum-induced gluon radiation treated separately 🍽 Medium-radiation first Medium produces only energy loss (no modification of the evolution) Independent gluon emission approximation - Poisson distribution DGLAP vacuum evolution and hadronization 000000000 20000000000 1000000000

Torino, December 2008

 \Rightarrow Probability that an arbitrary number of medium-induced gluons carry away a fraction of the energy ΔE of the fast quark/gluon

$$P(\Delta E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dI(\omega_i)}{d\omega} \right] \delta\left(\Delta E - \sum_{i=1}^{n} \omega_i\right) \exp\left[-\int_0^{\infty} d\omega \frac{dI}{d\omega} \right]$$

Contains the probability that nothing happens (no E-loss)

$$P(\Delta E) = p_0 \delta(\Delta E) - p(\Delta E) \longrightarrow p_0 = \exp\left[-\int_0^\infty d\omega \frac{dI}{d\omega}\right] = e^{-\langle N_g \rangle}$$

⇒ Notice that the formation-time effects (LPM suppression) leads to a non-zero value for $p_0 \iff \langle N_g \rangle < \infty$

This probability distribution is normally called Quenching Weights [Baier, Dokshitzer, Mueller, Schiff 2001; Salgado, Wiedemann 2003]

Torino, December 2008

Energy loss

Remember for the first day the fragmentation function

Energy loss

⇒ Remember for the first day the fragmentation function

Medium-induced gluon radiation = energy loss Medium modifies the fragmentation functions

Torino, December 2008

Let us assume that we know the FF in the vacuum
[de Florian, Sassot, Stratmann 2007; Albino, Kniehl, Kramer 2006; Hirai, Kumano, Nagai, Sudoh 2007..]

\Rightarrow The one-particle inclusive cross section is

$$\frac{d\sigma}{dq_T} = \int dz \int d\epsilon \int dp_T f(p_T) P(\epsilon) D(z, Q^2) \delta(q_T - (1 - \epsilon) z p_T)$$
$$= \int \frac{d\epsilon}{1 - \epsilon} \int \frac{dz'}{z'} f\left(\frac{q_T}{z'}\right) P(\epsilon) D\left(\frac{z'}{1 - \epsilon}, Q^2\right)$$

This allows to define a medium-modified fragmentation function as

$$D^{\mathrm{med}}(z,Q^2) = \int \frac{d\epsilon}{1-\epsilon} P(\epsilon) D\left(\frac{z}{1-\epsilon},Q^2\right)$$

[First proposed by Wang, Huang, Sarcevic 1996]

 \Rightarrow Here only energy loss is taken into account, no modification of Q^2

Torino, December 2008

- \Rightarrow First attempts: Use the average energy loss ΔE
- ⇒ This is not good when distributions fall very fast (as in present case) → Let us study two "models" with $\Delta E = 1/2$

$$P_1(\epsilon) = \delta\left(\epsilon - \frac{1}{2}\right) \qquad P_2(\epsilon) = \frac{1}{2}\left[\delta\left(\epsilon - \frac{1}{4}\right) + \delta\left(\epsilon - \frac{3}{4}\right)\right]$$

⇒ The distribution of perturbatively produced partons $f(p_T) \sim \frac{1}{p_T^7}$ ⇒ Ignoring hadronization (FF)

$$\frac{d\sigma}{dqT} = \int d\epsilon \int dp_T P(\epsilon) f(p_t) \,\delta(q_T - (1 - \epsilon)p_T) \simeq \int d\epsilon \, P(\epsilon)(1 - \epsilon)^6$$

This gives 0.015 for Model 1 and 0.09 for Model 2

 \Rightarrow A good knowledge of the distribution of energy loss is essential

Numerical results

Quenching weights in the multiple soft scattering approximation
 Two variables:

[Salgado, Wiedemann, 2003]

Series and the series of the series of the series and the series of the

Torino, December 2008

 \Rightarrow So, everything together now

$$\frac{d\sigma^{AB \to h}}{dp_T^2 dy} = \sum_{i,j,k=q,\bar{q},g} \int \frac{dx_2}{x_2} \int \frac{dz}{z} \ x_1 f_i^A(x_1,Q^2) x_2 f_j^B(x_2,Q^2) \frac{d\sigma^{ij \to k}}{d\hat{t}} D_{k \to h}^{\text{med}}(z,Q^2)$$

 \Rightarrow Use **nuclear** PDFs $f_i^A(x,Q^2) = R_i^A(x,Q^2)f_i^p(x,Q^2)$

 \Rightarrow With the medium-modified FF defined by

$$D^{\mathrm{med}}(z,Q^2) = \int \frac{d\epsilon}{1-\epsilon} P(\epsilon) D\left(\frac{z}{1-\epsilon},Q^2\right)$$

QW depend on the in-medium length and the transport coefficient
 Length given by geometry (not a free parameter)
 Transport coefficient is the fitting parameter

Torino, December 2008

The benchmark first!

proton-proton

Good agreement with NLO pQCD

d-Au from EPS08 nPDFs

Torino, December 2008

The benchmark first!

Torino, December 2008

Fixed length

Torino, December 2008

What if we do the other way round?

Torino, December 2008

Inclusive high-pT hadrons are fragile

Surface bias effects reduce the sensitivity of RAA to changes in the medium parameters (transport coefficient)

$$\hat{q} \simeq 4 \div 14 \,\mathrm{GeV}^2/\mathrm{fm}$$

[Muller 2002; Dainese, Loizides, Paic 2004; Eskola, Honkanen, Salgado, Wiedemann, 2004]

Torino, December 2008

More realistic medium profiles?

Hydrodynamics

Torino, December 2008

Expanding medium

The hydrodynamical description of HIC tells us that the medium is expanding longitudinally and transversely.

The energy density and temperature decrease. Bjorken formula:

$$\epsilon(\tau) \sim \frac{\epsilon_0}{\tau^{4/3}} \qquad T(\tau) \sim \frac{T_0}{\tau^{1/3}} \qquad n(\tau) \sim \frac{n_0}{\tau^{1/3}}$$

 $\Rightarrow \text{ So, the transport coefficient should also decrease with time} \\ \hat{q} \sim \frac{\hat{q}_0}{\tau^{\alpha}}, \quad \alpha = 1 \text{ for particle density scaling and Bjorken expansion}$

 \Rightarrow This can be implemented in the path integral

$$\mathcal{K}\left(\mathbf{r}(x), x; \mathbf{r}(\bar{x}), \bar{x}|\omega\right) = \int \mathcal{D}\mathbf{r} \exp\left[i\frac{\omega}{2}\int_{x}^{\bar{x}} d\xi \left(\dot{\mathbf{r}}^{2} + i\frac{\hat{q}(\xi)}{2\omega}\mathbf{r}^{2}\right)\right]$$

2-dimensional harmonic oscillator with time-dependent frequency

Torino, December 2008

Static-expanding scaling law

Expanding medium

 $\hat{q} \sim \frac{\hat{q}_0}{\tau^{\alpha}}$

Scaling for the spectra

$$\langle \hat{q} \rangle = \frac{2}{L^2} \int d\xi \left(\xi - \xi_0\right) \frac{\hat{q}_0}{\xi^{\alpha}}$$

Allows to perform calculations in an equivalent static scenario

[Salgado, Wiedemann, 2003]

Torino, December 2008

Hydrodynamical model

Hydro calculations one of the main activity in HICs We use the hydrodynamical fits by T. Hirano (code available)

Provides fields of energy density, T, etc... as a function of transverse position ant time

Hydro meets jet quenching

Defining the length in a realistic medium is not trivial.
 We can use instead the scaling law and write

$$\langle \omega_c \rangle(r, \phi) = \frac{1}{2} \langle \hat{q} \rangle L_{eff}^2 = \int_0^\infty d\xi \, \xi \, \hat{q}(\xi); \qquad \langle \hat{q} \rangle L_{eff} = \int_0^\infty d\xi \, \hat{q}(\xi)$$

$$\Rightarrow \text{ With the transport coefficient defined by the hydrodynamical variables. Ex.:} \qquad (\hat{q}(\tau) = 2K \, \epsilon^{3/4}(\tau))$$

$$\Rightarrow \text{ and c a free parameter to be fitted to experimental data} \qquad (f) \qquad$$

Torino, December 2008

\Rightarrow A common fit of several observables to obtain the value of \hat{q}

[Armesto, Cacciari, Hirano, Salgado, in preparation]

Torino, December 2008

[Armesto, Cacciari, Hirano, Salgado, in preparation]

Torino, December 2008

Torino, December 2008

 \Rightarrow The hydro calculation provides the medium profiles for $\xi > \tau_0$ Use different extrapolations for times smaller than thermalization

[Armesto, Cacciari, Hirano, Salgado, in preparation]

Some sensitivity appears. Main features unchanged.

Torino, December 2008

The medium profiles probed

Different hydrodynamical profiles give different values of $K = 2.3 \div 4.5$

Torino, December 2008

The medium profiles probed

Different hydrodynamical profiles give different values of $K = 2.3 \div 4.5$

Torino, December 2008

The medium profiles probed

Different hydrodynamical profiles give different values of $K = 2.3 \div 4.5$

Torino, December 2008

Partial summary

Energy loss distribution important (QW) Different medium profiles give different determinations of the medium properties **Other observables** - Heavy quarks

- Jets (and particle correlations)

Torino, December 2008

Massive quarks

- Gluon radiation is suppressed by mass terms in the heavy quark propagator.
- Also true for the vacuum: Dead cone effect

$$z \frac{dI}{dz dk_{\perp}^2} \simeq \frac{2\alpha_s C_F}{\pi} \frac{k_{\perp}^2}{(k_{\perp}^2 - M^2)^2}$$

For the medium case, we need to modify the quark Wilson line

$$\int dp_{-} \frac{\mathrm{e}^{i(x_{1+}-x_{2+})k_{-}}}{p^{2}-M^{2}+i\epsilon} = -\Theta(x_{2+}-x_{1+})\frac{2\pi i}{2p_{+}}\exp\left\{i\frac{M^{2}}{p_{+}}(x_{1+}-x_{2+})\right\}$$

⇒ These exponents recombine: only change, multiply the integrand by

$$\exp\left\{i\frac{x^2M^2}{k_+}(x_+ - \bar{x}_+)\right\}$$
 [Exercise: check this]

Torino, December 2008

Torino, December 2008

Numerical results

- Sormation time smaller for larger mass LPM less effective
- \Rightarrow Net effect: less energy lost by massive quarks in the medium
 - Less suppression of particles from heavy quarks

Torino, December 2008

Numerical results

Torino, December 2008

The single electron puzzle at RHIC

Suppression of charm and bottom at RHIC

[Armesto, Cacciari, Dainese, Salgado, Wiedemann 2005]

Only non-photonic electrons measured
 Do not distinguish between charm and bottom

Large theoretical uncertainty in the c/b ratio

Measure charm and bottom separately

Torino, December 2008

The single electrons in a hydro medium

Charm + bottom contributions as given by FONLL

Torino, December 2008

The single electrons in a hydro medium

Suppression with only charm contribution to non-photonic electrons

Torino, December 2008

HQ at the LHC

At the LHC charm and bottom separation will be possible
 Double ratio sensitive to mass effects

Torino, December 2008

Determination of qhat

Torino, December 2008

Interpretation of the value of \hat{q}

Torino, December 2008

Interpretation of the value of \hat{q}

Signals large cross sections (much larger than perturbative ones?)

Torino, December 2008

Jet studies in HIC

Torino, December 2008

Jet studies in HIC

Torino, December 2008

Torino, December 2008

Torino, December 2008

 \Rightarrow The implementation of the medium-induced gluon radiation needs of a treatment of the energy carried by an arbitrary number of gluons Not solved from first principles, independent gluon emission approximation used: Quenching weights Only one-gluon inclusive distribution computed \Rightarrow Inclusive suppressions very well reproduced Perturbative benchmark (pp) under good control A correct implementation of the geometry plays a crucial role Nesults with a hydro profile presented $K = 3.5 \pm 0.5$ \Rightarrow Mass effects predict less suppression for heavy quarks Benchmark needs to be improved Other effects could appear (specially for beauty)