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Outline

%k why we do what we do (that is,
decomposing Feynman integrals)

%k new ways of doing that: a fast dive into
intersection theory

Xk how can we make it better? rational
algorithms!

%k proof-of-concept implementation over
finite-fields

%k some examples that it actually works




Motivation

%k LHC-HL upgrade: observables at %-level accuracy
%k new physics searches
%k testing SM
%k important: high-multiplicity and masses

%k understanding of amplitudes and Feynman integrals

* %-level ~ at least NNLO ~ >2 loops

%k Exploiting physical and mathematical structures

%k connections with maths and computing



Recipe for a theoretical prediction

many ingredients:

& PDFs to describe the proton structure

@ hard scattering

- radiation and evolution to hadronic states



Precision calculation of perturbative
scattering amplitudes

* at the core of theoretical predictions
* rich and interesting mathematical structures f)

* a combination of

polynomial numerator

. L quadratic denominators
rational function in the

components of loop momenta

= calculation of integrals over the loop momenta



Computing loop amplitudes

Amplitudes as a linear combination of Feynman integrals

A = Zajlj

rational coefficients with i integrals in a “nice”/
dependence on particle content standard form

Llay,...,a,] =J (Hddk> 7"

I’l

Not all are linearly independent!



Reduction to master integrals
why?
* extremely large number of integrals contributing

to an amplitude

* properties/symmetries of an amplitude manifest
only after the reduction

* important for the calculation of the integrals

Reduction into a basis of linearly independent master integrals
G} C L}
L= D, G

{G;} = minimal linearly independent set

* this talk!



Laporta algorithm

Feynman integrals in dimensional regularization obey linear relations,
e.g. Integration By Parts identities

(oo =g
o okt Nz g | k! = loop

adding also Lorentz Invariance ids, symmetry relations, ...

reduction as solution of a large
and sparse system of identities



Computation of Mls * myPhD:)

Can be done
* analytically in terms of special functions (MPLs,
elliptic functions, ...)
* numerically (Sector decomposition, AMFlow)

most effective method is Differential Equations (DE)
* derivative of Mls with respect to
external invariants and/or masses

* reduce it again to Mls
* obtain a system of DEs for the Mis

[K axGi - MG. x=g.

) Ik m,

* can be (often) put in a canonical form — Feynman integrals
solved as iterated integrals over a fixed kernel



Algebraic complexity

processes with

many loops
give rise to HUGE intermediate expressions

drawbacks of Laporta procedure
* very large system — computational bottleneck

* algebraic structure of FI not manifest



Looking for other ways...

AWl -, Intersection theory
3 / * allows for a direct decomposition

= * exploits the vector space structure

\ j obeyed by Feynman integrals
we consider n-folds integrals inz = (z;, ..., Z,)
integrals “dual” integrals

r

|
‘C”R) = | dz,...dz,——@g(z) <€0L| = szl---dznu(z)¢L(Z)
.J u(z)

with

@; | @y rational functions @ u(z) = HB(Z)?,

{ Vi generic exponents
J

Bj polynomials



Intersection numbers

calculation of scalar products
between left and right integrals

_A

Mastrolia, Mizera (2018) .
s

(@1 | pg)

they’re rational!

Vector space characterized by:
* Dimension v
* Basis \ei(R))and dual basis (el.(L)l

* Scalar product: intersection number



with

‘§0R> —

Change of representation

Baikov change of vars
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€ | ¢) generic vector o el-(R)> } i basis vectors
— Feynman integral to reduce =~ — master integrals

decomposition of integrals as

U U
o) = D c®le®)y  c® =3 €Ny | g)
i=1 J=1
e similar formulae
where we introduced the metric for dual integrals

o o s

— (o) ,(R)
C,;= (e \ej )

l



decomposition \\=)
as projections

& \go) generic vector — Feynman integral to reduce

@ { \ei(R))}?zlbasis vectors — master integrals



re '
duction to master integrals

calculating the
scalar products (
ANy,

!
& - 04@* CZ@




computation of
Intersection numbers




Univariate algorithm

we have 1-fold integrals in the variable z
Frellesvig et al. (2019)

1
| pr) = J'dz_(pR(Z)
u(z)

univariate intersection numbers

<¢L‘§0R> — 2 ReSz=p(l//¢R)
PEZ,

where s is the local solution of
ou

Uu

0, +oy=¢, ©=

around eachp € &
P, = {zlzisapoleofa)}U{oo}




Ansatz around p

max

=Y, az-pi+0(@-pm)

i=min

* plug the ansatz in the differential equa’ci(dZ + o)y = @
* solve for the c;

Intersection numbers are always rational functions of the
kinematic invariants and of the dimensional regulator

|

O




Multivariate algorithm

¥ we have n-folds integrals in the variables z = (z;, ..., z,)

| pr) = J'dZn | ¢R>n—1

B [ 0r),-ris an (n — D-fold integral in 2, ...z,

Vin-1)

| PrIn—1 = Z C”R,j‘ej(R))n—l

J=1
basis of master integrals
for the (n — 1) layer

we decompose n—fold integrals into a
basis of (n — 1)—fold master integrals



PEPq
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¥ where y; is the local solution of

0, W, +w; Qi =@, (j=1,...,n)

around each p € P,
g’g — {Zn ‘ Znis d pole Ofg} U {OO}

L _ L
aZn<ei( )‘n—l o Z Qij(ej( )‘n—l
J

solved locally with the ansatz
max

Y; = Z Cij (Zn —p)j + 0<(Zn _p)max+1>

j=min



* integrands are rational
* jntersection numbers are rational

~— BUT &

* non-rational contributions in intermediate stages
* after taking the sum over all residues we see cancellations

non-rational terms in the poles of @ and €2
\/
g:b sy ~°®
Q) o’
S \/ >

* computational bottleneck
* non-suitable for applications with finite-fields




p(z)-adic series expansion

B »—adic numbers

expansion of a rational number
as series expansion of a prime

number p with coefficients given
by remainder of integer division

(©9)

= ) cp'R

i=min

& »(2)—adic functions
expansion of a rational function as
series expansion of a prime

polynomial p(z) with coefficients

given by remainder of polynomial
division



polynomial remainder w.r.t. p(z) —
“ i.e. substituting p(z) with &

Lf(2)] p(o)—s =J(2) mod p(z) —

expansion for 6 — 0

max deg p-1

| = 2 X 5+ 0 max)

5— i=min j=0




Example: univariate algorithm

(oLl pr) = Z (Ll PR) p
PRIEZ 7]

{similar for multivariate case §

summing over all p(z) € & [z]

P [z] = { factors of the denominator of @ } U {oo}

CEach addend of the form <€”L | §0R>P(Z

to the intersection number coming from the roots of p(z)

) IS the sum of all contributions

{(@; | ), is computed as the contribution at p = co with the
“standard” algorithm



to solve (0, + @)y = ¢y

we make an ansatz of the form

max deg p-1

=y c,.jzfp(z)i+0(p(z)max“>

i=min  j=0

¥ we multiply the solution by ¢y

—1 deg p-1
=2, X &Ip@ +0(p))
i j=0

¢
" ~

. by the univariate global residue theorem

Weinzierl (2021) _
C_1,deg p-1
\PLlop) =—— w
C




Finite-fields and rational reconstruction

* Dealing with algebraic complexity
* large intermediate expressions
* intermediate steps more complicated than final result

idea: reconstruct analytic results from numerical evaluations

* evaluations over finite-fields £ D (computing modulo a prime p)

* use machine-size integers p < 204 (fast and exact)
* collect numerical evaluations and infer analytic results

*

rational algorithms
parallelizable
* examples: FinRed, FiniteFlow, FireFly+Kira, Caravel

*



how do they work

We have a rational function f(z) whose analytic form is not known
* black box interpolation: numerical procedure to evaluate f(z) at

o L RS T e

over the field 2, = (0,...,p — 1)

28

* evaluate f(z) numerically for several Z and p

. . Wm . . .
* multivariate reconstruction algorithms — analytic form of f(z) mod p

* upgrade analytic f(z) over QQ using rational reconstruction algorithm
and Chinese remainder theorem |




FiniteFlow

Framework to build numerical algorithms with

* high-level interface — Mathematica package
* computational graphs

HA

idea:
* set of core algorithms implemented in C++ (

I
* custom algorithms made by linking the
eNa\uadte
core ones in a high-level interface A
* graph evaluation implemented in C++ \ %
&



finite-fields implementation

GF, Peraro (to appear)
implementation on FiniteFlow of the multivariate recursive algorithm

method based on solutlon of Ilnear systems and serles expansions

é #ratlonal operatlons

list of n-variate intersection numbers we want to reduce, e.qg.
{( ej(L) | 0p), { ej(L) | ei(R)>}

prellmlnary step _

we can deduce the
intersection numbers (@L\e(R)) * <€i(L) et™)

needed for each step *( (e(L)\ )\e(R)) x <e(L)
Zn n—1 '




needs as inputs
» denominator factors p.(z,)

8 univariate algorithm
analytic input: u(z)
¥ multivariate algorithm g
 (n — 1)-variate intersection numbers reconstructed in z, only

* p = 0,00 — Laurent expansion
* all other factors — p(z)-adic expansion < D

our implementation is an iteration:
starting from 1-forms, we compute all the necessary
intersection numbers to get the n-forms given as input



* Q
|n|]3ut for the «
T step

(el /

Vp—1
L
; (o] = §,€”L,j<ej( )‘
i=1

* rational reconstruction of 2, only in z,, with

everything else set to a number mod p

* jdentify denominator factors of &, in z,, fully
reconstruct a simple subset of them

avoid reconstructing large
iIntermediate expressions

In all variables
Z4 oo
&- -

can be done in a small
number of evaluations




example: two-loops bubble

* definition of the family

propagators:

* =k

* 2= (ky —p))’ * 2
T = ko —
* 7. = (k, — k2)2 5 = (ky — py)

* =k

* |list of int. num.s we want to calculate

we proceed with the orderingz; = 2, = 3 = 24 — 5



| —forms in z;

* pasis
1
(1e®)) = (P} = {1.—}
<1
* {25, 23, 24» 25, d, 5 | are fixed parameters

* compute int nums and Qij for next step

* evaluation over FF and reconstruction only in z,

denominator factors:
2 2 _ _ _ 2 . 9)
§7Z3 + ST — S733y — S73%5 + S5 + L ( §S%4 — S3+ 34 — 3% — L5y t+ Z3Z5> + 2524

222 + (223 — 225)z, + Z32 + z52 — 2Z3Z5}

univ rec...
- done

Generated 28 sample points

Approximate time per evaluation (single core): 6.4e-05 sec.




2—forms in 7,

* pasis
1 1 1
R L
(e = (e®1) = {1.———|
{1 <o K149
* 123, 24, 25, d, 5 } are fixed parameters
* evaluation over FF and reconstruction only in z;

denominator factors:

{Zg — {4543 — <5 Z3(S — g4 Z5) + Z32 + Z4Z5}

and so on ...




until...

last step: 5—forms in 5

* pbasis
1 1 1

(1e®)} = (P} = { ————,
J J 21202435 212325 27324

* 1d, s} are fixed parameters
* compute int. nums. and project into Mls

output:

}



Basis choice

We assumed the basis for each layer to be known....

how do we find them?
2 strategies
* master-monomials analysis e'
* over-complete basis approach

master-monomials analysis

* number of Ml related to the number of solutions of some
polynomial eq.s Lee,Pomeransky (2013)
* finding the “independent monomials”

* use this poly eqg.s to guess the number of MI for each layer
* # Ml = # of Independent monomials

* choice of Ml < choice of “master monomials”



Over-complete basis approach

start from a list of integrals that form a over-complete basis

~/

Er=118"0)), & ={E"])
compute an over-complete metric — not invertible!
C, = (&"&")
dual basis: column-reduction of C,
& = {<€j(L)| } = {<é](-L)| }icindep. columns C &

basis: row-reduction of independent columns

_ R\ — 115R ~
&r=1{ \ej( )>} = { \ej(. )> }jeindep. rows C 6k



k

k

Conclusions

Important step in th. predictions: reduction to master integrals
new approach: intersection theory

p(z)—adic expansion of rational functions

FF implementation of rational algorithm for intersection numbers

test on many one- and two-loops examples

& outlook

work directly at the amplitude level
simplify/optimize implementation

finish the paper :)
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