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Outline \

The plasma as a dielectric medium:

— The Maxwell equations in a medium,

— The dielectric tensor €;;(w, k),

— The propagation of transverse and longitudinal excitations;

Microscopic evaluation of the dielectric tensor in the Hard (Thermal)

Loop approximation: the result of classical kinetic theory;

Physical applications: study of general medium effects
(plasma-oscillations, thermal masses, Debye-screening, damping and

energy-loss processes) starting from the dielectric tensor;

The link with the Thermal Field Theory calculation based on

Feynman-diagrams;

Summary /




/ The general setup

We consider a hot-relativistic gauge (e.g. QED, QCD...) plasma
e hot-relativistic: m < T, e ~ T*, n ~ T? (Stephan-Boltzmann law)

—— massless plasma particles with typical momenta k ~ T

e gauge: coupling through the covariant derivative 0,, —igA,
NB pure thermal fluctuations entail (A*) ~ T, hence for a field
fluctuation 6(z) ~ >, e F?

— the propagation of hard modes (k ~ T') is midly modified:

— the propagation of sufficiently long-wavelenght soft excitations
(k ~ gT), even for a small value of the coupling, (g < 1) is
strongly affected by thermal fluctuations

O, —igA, ~ —igT — igT

K These are the effects we are going to describe!
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A plasma as a dielectric medium \

e A plasma is a system of charged particles (colored in the case of the

QGP) free to propagate over macroscopic distances, giving rise to a

non-trivial collective dynamics;

For the purpose of displaying general collective phenomena occurring
in a plasma like the QGP it is sufficient to consider an electromagnetic
plasma of relativistic particles of charge ¢ = *e.

A perturbation of the electromagnetic field will produce an induced
current

(@) = 9. % ¢ [ GBS [fepa) = f-(pa)] with " = (Lv)

polarizing the medium (spin factor for an e® plasma: g, =2).

e When necessary a dictionary will be provided to translate the results

to the case of a QCD plasma (of ¢, g, g). /
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The Maxwell equations in a medium 1

e Studying the propagation of excitations of the e.m. field in a dielectric
medium the induced charge and current densities pinq and 7,,, will act

as a further source term. One has:

V - E = pext + pind V.-B=0
0B OF

VXFVE=—— VxB=3 - -
X 8t X J ext +J1nd+ 8t

e It is useful to introduce the field D = FE + P, which embodies the
effect of the medium polarization (P).
Being V-P = —p;nq and O: P = 3,,4:

V-D=pext V- -B=0

0B 0D
V % 5 V X Jext T 5

/
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e It is convenient to consider the Fourier components of the fields e.g.

The Maxwell equations in a medium 11

E(t,x) = E(w,k)e "W k™)
e One introduces the dielectric tensor € (w, k)
D' (w, k) = € (w,k)E’ (w, k)
which summarizes the medium response.

e The Maxwell equations in Fourier space read:
K [eij(w,k)Eﬂ} — ipes  K'B' =0

FIRETER — wBT ERRIBR — it [eij (w, k)] E

.

Combining the 3" and 4™ eqgs. and exploiting e”/*ek'™ =g§itgim —gim§it...

~

/




/ The Maxwell equations in a medium 111

...one gets

. 2 . v 1.0 . S
k) = 5 (87 - B0 | Pk = - Lt

A (w,k)

The normal modes of the e.m. field in the plasma (i.e. the excitations
which propagates even in the absence of external sources) are obtained

solving

det [A(wk + ik, k)] =0
The solutions are then of the form E(t,x) = Ege’* e {wri=F@),
e 7, < 0: damped modes;

e 7, = 0: stable modes;

~

Ko Ye > 0: plasma instability (amplitude exponentially growing with t) /
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More on plasma instabilities \

e They represent processes (quite common in a plasma) in which energy

is transfered from the hard plasma particles to long-wavelength (soft)
collective excitations (at variance with what we are used looking at

waves propagating in an elastic medium dissipating energy);

They were proposed as a possible mechanism to explain the observed

rapid thermalization in heavy-ion collisions® (79 <1 fm/c);

They develop, for instance, in the case of an anisotropy in the
momentum distribution. In heavy-ion collisions, during the initial
free-streaming one has

v, = 2/t

so that, around z =~ 0, one finds only particles with vanishing

longitudinal momentum.

aS. Mrowczynski and M.H. Thoma, Ann. Rev. Nucl. Part. Sci. 57, 61 (2007)

Qld references therein.

/




/ Isotropic plasma \

.

e In the case of an isotropic medium the dielectric tensor can be
expressed as

e (w, k) = k'K ep(w, k) + ((Yij - /%z/%J> er(w, k)

e The Maxwell equations give:

()

[kzkjeL(w,k) n (5”—kw) (€T<w,k) _ k—)] B (w,k) = == jl(w, k)

A

— Transverse modes: E(w,k.) = E,/y(w, kz)ly/y
er(w, k) — k2/w2 =0

They would be the only excitations propagating in the vacuum

(photons/gluons with transverse polarization)

— Longitudinal mode (only in the plasmal!): E(w,k;) = E,(w, k)G,

er(w, k) =0 /




.

Fvaluation of the dielectric tensor:
classical kinetic theory

Calculations in terms of the particle distribution function:

fo(x, D)

Classical probability of finding a plasma particle of charge ¢ = +e
with momentum p at the space-time point x = (¢, x).

10




/ The Vlasov equation I \

The time-evolution of the distribution function is described by the equation
thq(aj7p) :C[f]7 where

e D, =0, +v-V,+p-V, is the total derivative along a trajectory in

phase space;
o C|[f] is the collision integral (gain-loss terms).

For fluctuations of f, occurring on a very-short time-scale 0t < 7con the
collisions cannot modify significantly the particle distribution and one can

set the RHS to zero. One gets then the Vlasov equation:
Otfg +v-Vafy+ F-Vyfy, =0 where

F =q(E+vxB)

QB At equilibrium f,(z,p) = f°(ep,) = 1/[e”? £ 1], hence E = B = 0. /
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/ The Vlasov equation II

Let us consider a small perturbation of the g-particle distribution

fQ($7p) — fo(ep) + (qu(CC,p)
Keeping only the linear terms in the Vlasov equation one has:

df’ df’
(0 +v-V2)ify(r.p) = ~¢(E+vx B)vo = quED
€p dep

In order to solve the equation it is useful to set

0 0 df*

fQ(xap) — f (EP T QW(ZC,’U)) ~ f (EP)_QW(xav)de ’
p

with W satisfying the equation

v 0 W(x,v) =v-E(x)
t
— W(z,) :/ QB @ — vt —t'))e"

— o0

.
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/ The Vlasov equation II1I

Hence, for the induced current (spin degeneracy factor g; = 2)

]ﬁd(x) =2 X 6/ (;753,1)# [5f—|—(p7x) o 5f—(p7x)] )

one gets (4 f1 give an equal contribution):

. dp . df° [ o
]i’;’ld(x):—462/(2w)3v“d€p i drv-E(x —vr)e "

Writing it in Fourier space:

ke . 9 d€y vl !
. k) = E k
Jina (@, F) sz/ Ir w—v -kt @k

where the Debye screening mass

™ /o dep 3

Qas introduced. We will comment more on its role in the following!

/
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Getting the dielectric tensor...
From D = FE + P, with 0, P = j,,4, one gets
D' (w,k) = € (w, k) B (@, k) = 67 7 (w,k) + ~ fina(w, B
— jhna(w, k) = iw (89 = ¢ (w, k) ) B (w, k)

From the explicit expression of 7, , one finally obtains:

O S
’ W At w—wv -k +in

It is then possible to evaluate the longitudinal and transverse components:
cr(w, k) = k'K € (w, k)
1
b= [T (@ k) -]

N /
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/ The dielectric tensor of the plasma \

e The transverse/longitudinal dielectric functions

2 T 2
B mp | 2 x(1l—2x7). x+1
ET(w,k)—l—m _QT —|— 2 1nx_1]
2
B mp r. x+1 , L w
€L(W,k)—1+?_1—§lnx_1] with LU:E

e Some applications:

— Study of the excitations propagating in the plasma: appearence of
a longitudinal excitation (plasmon), thermal mass acquired by the
transverse modes (photons/gluons) and possible relevance for the
QCD thermodynamics.

— Screening of electric charges (e.g. dissociation of quarkonia in the
QGP: J/v suppression);

K — Parton energy-loss: soft-collision contribution. /
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The normal modes in the plasma
(thermal corrections to the gluon propagator)

16




/ The transverse/longitudinal modes \

— o
25 |— oK -

light-cone (w=k)

oo/mD

Dispersion relations of the transverse/longitudinal excitations:
er(w, k) — k% /w® = 0; er(w, k) =0
e Both modes at k=0 start at w=w,1 =mp/V3 (plasma frequency)

e At large momentum (k> mp)

— The longitudinal mode approaches the light-cone;

2 2, m}
K — wp (k) ~ k*+ 22 (photon/gluon thermal mass mee =mp /v/2!) /
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The plasma oscillation \

e The longitudinale mode (plasmon or plasma-wave) is a collective

charge oscillation

The plasma frequency wp can be obtained expanding the equation
er(w, k) =0 for k < w:
2 2
k
mD[ +...]:O — w:wPIE@

V3

Having wp1 ~ mp, the plasma oscillations occur on a time-scale

1 —

k2 | 3w?

Atpl ~ 1/wp1~ 1/gT

The time required to collision to change significantly the momentum
of a particle can be shown to be

Atcoll ~ 1/94T

For weak-coupling A, < At.on and studying the collective modes in
the collisionless approxrimation results a posterior: justified. /
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The transverse mode \

e For large momenta k > mp the dispersion relation of the transverse

excitation is not the one of a massless photon/gluon but rather the

one of a massive particle

wy o~ k74 mgo
E>mp
The value of the asymptotic thermal mass m~ of the photon/gluon

can be determined substituting w? = k* + m2, into
er(w, k) — k% /w® =0

and expanding for k£ > mp,ms. One gets:

2 2 2
mp m 2 mp

The fact that the gluon acquires a thermal mass mqy ~ g1 will be of

relevance for the QCD thermodynamics! /
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e The entropy-density of a plasma of non-interacting gluons is given by

The relevance for the QCD thermodynamics?

the Stephan-Boltzmann law

dk
= 2 1+ Ng)log(1l + Ni) — Nglog N
SsB X 8 ,></(27T)3 [(1 + Ng)log(1 + Ny) k log Ny ]
polar. colors
47'('2 3 .
=, 2 X 8 X %T (being Ni =1/ [exp(Ber) — 1))
mg:

e We have seen that the main effect of the interaction is to assign the

gluon a thermal mass M. ~ g7’

e This should lead to deviations from the Stephan-Boltzmann result

(referring to a gas of massless particles).

.

@For an overview on the subject see the lectures by C. Ratti

/
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/ The QCD thermodynamics: numerical results \

15 2 25 3 35 4 45 5
T/T.
e Grey band: lattice-QCD data (Boyd et al., Nucl. Phys. B 469, 419);

e Lines: results of the Hard Thermal Loop approximation (Blaizot et al.)

The 10-20% deviation from the ideal-gas limit nicely reproduced and

mainly due to the thermal mass mo ~ ¢1' acquired by the gluons.

K Slow approach to Ssp due to the running of the coupling ¢(7). /
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/ The plasma frequency in everyday life \

In the case of a medium of non-relativistic particles one can ignore the

k-dependence and the dielectric tensor gets a simpler expression:
€ (w) = 67 e(w) with e(w)~1— -2

: L 2 _ . 2
For a plasma of electrons in a positive background one has w;, = ne”/m.

The dispersion relation of e.m. waves in the plasma is given by:
_ k* 2 _ 2 2
e(w) = — W =wy +k°.

Only waves with w > wy can propagate in the plasma. Waves with w < wy

w2

are reflected!

e AM (v ~ 1 MHz) radio-waves are reflected by the ionosphere and can

reach long distances; FM waves (v ~ 100 MHz) cross the atmosphere.

o Visible light is refiected by the surface of metals (plasma: electrons of

K the conduction band), which become transparent to UV rays. /
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Screening and charmonium suppression
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Screening of electric charges

Let us consider a charge ¢ moving with velocity v in the plasma:

V-D(t,x) =qdé(x —vt) — ik-D(w,k) =27 qd(w — k-v)

From D"(w, k) = € (w, k)E’ (w, k) one has:

ik e (w, k)E (w, k) =21 q6(w — k-v)

~

In terms of the gauge potential A" = (¢, A) one has F = —ik¢ + iwA. In
Coulomb gauge k-A = 0 and one gets:

kKer(w, k)p(w, k) =21 q6(w — k-v)

Hence, after F'T:

.

dk eik-(m—vt)
t ) =
ot @) q/ (2m)3 k2er(w = kv, k)

The electric field generated by a charge crossing the plasma is entirely

described by the longitudinal dielectric function!

/
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/ The static limit: Debye screening \

Let us considet the case of a charge at rest. In such a case v = 0 and only

the static limit

of the dielectric function is of relevance. One gets (r = |x|):

dke e _
0@ =1 [ G = e

27)3 k2 +m?2  4dxr

The Debye screening mass (mp ~ €I') turns the Coulomb interaction into
a short range Yukawa-like potential!

The screening results from the collective effect of a large number of
elementary charges: in a plasma at temperature 1" the is
n ~ T3, hence in a sphere of radius R = rp = 1/mp one finds

T° 1

75 ™~ o3 > 1 elementary charges

N /

25
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/ Debye screening in the QGP: J/¢) suppression \

In the case of QCD the effective QQ potential in the plasma reads:

—mpr
e D

Vog(r) = —Cros (Cr=4/3 color factor)

In the QGP both both quarks and gluons carry color charge and
contribute to the screeening. One has:

N. N
mD_gT\/S t

For T'= 400 MeV, N. = Ny =3, as = 0.3 one has rp = 1/mp ~ 0.21 fm,

to be compared with

e cc (1s) ground state: 7,y ~ 0.47 fm (> rp!) — J/9 expected to melt
i a QGP at a sufficiently high temperature®;

e bb (1s) ground state: 7y ~ 0.2 fm (< rp) — Y only midly affected by
the QGP at the experimentally accessible temperatures;

K aFor more details on J/v suppression see the lectures by R. Arnaldi. /
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/ Debye screening in the QGP: a cartoon

0 .
I ...................
— VDebye(r)
l VCoqumb(r) ]
g
e
> |
1 )
15 | | | | | |
0 0.4 0.6 0.8 1
r(fm)
The felt on average by the cc pair

1S

K Around 7~y the potential is still steep enough to keep it bound.
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Damping and energy-loss processes
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The Landau damping: generalities

e The dielectric tensor € (w, k) can develop an imaginary part;

e Physically such an imaginary part reflects a damping of the field

oscillations, leading to an energy transfer to the plasma particles.
Remember that, in optics, for the propagation of a plane-wave in a

medium with refraction-index n(w) one has:

—iwt—kz) _ —wt iTn(w)r o) n(w) = v/ e(w).

For a complex dielectric function € = €; 4 7€2 one can approximate

n(w) ~ e(w) + i2 e2(w)

61(w)

so that the imaginary part lead to a damping of the oscillations:

_w € (w)

e € 2Ver(w)

~
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/ The Landau damping: the HTL result

From the explicit expression of the HTL dielectric tensor:

. . 2 . . 1
Ime” (w, k) = %’U%J/ dcosfy, d(w—v-k)
W N v

-1 -~

d(w—k cos by)

one gets:
2
Imer (w, k) = WZ?ZQD% (k2—w2) and
™3 w w?
ImeT(w, k?) = 4w2D E <1— ﬁ) Q(k2—w2)

e The energy is transfered to particles moving with projection of the

velocity v-k equal to the phase velocity w/k of the field oscillation;

e It follows that the damping occurs only for space-like (|w|<k) modes!
NB These are not the normal modes of the field. They must be excited

~

K by some external current Jext, €.2. a fast charge crossing the plasma./
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/ An application: parton energy-loss \

e A hard parton (F > T') crossing the plasma will loose energy
(jet-quenching)

e Actually so far (at RHIC) the process was studied mainly at the level

of single-hadron spectra®, considering the quantity

dN/dpp
N6011>dN/dpgﬂp

Raa(pr) = <

e Various energy-loss mechanisms contribute
— Radiation of soft gluons (w < FE),

— Collisions involving the exchange of hard (@) ~ T or larger) and

soft () ~ mp) momenta.

The contribution of soft collisions to the energy-loss can be evaluated

starting from er/r(w, k).

K @For an overview on jet-reconstruction in heavy-ion see the lectures by E. Brury
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/ Energy loss: soft-collisions 1 \

.

e The energy lost (due to soft scatterings) by a charge ¢ = +e crossing
the plasma is equal to the work done by the induced electric field on

the charge itself:

dE
dx

— 1‘/d:l:E(t,il?)'jext(t?m)

(%

soft soft

with jext (t7 CU) — q’v5(ac o ’Ut) - jext (w7 k) — (27’(')(]’05(&) o k’U)

e One gets:
dE 1 1 dw dk —i(w—k-v)t
- — Zguv-E(t.vt) = = Ho—kv)ty, Blw. k
| = v B ta [ Se e v-E(w, k)

e The electric field can be obtained from the Maxwell equations:

—_i 257 1 ij 7470 1 ] k
w [k " er(w, k) " (5 ok ) er(w, k) — k2/w2] Tt (1K)

/

E'(w, k) =

32
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Energy loss: soft-collisions 11

e The final result is then:

= = (_?62 / (;71’-6)3 [We;(w,k) ' w[ezﬂi,—k;{/g/wﬂw:k.v

dz
e The energy loss is due to the vmaginary part of the dielectric tensor

soft

dlE
x

_ o ]
_ é/ dk w Imer (w, k) N (U — k_z) Imer(w, k)
d soft ; v (27‘-)3

Fler(w, k)2 k) 22

w2

w

e The generalization to the QGP case is done replacing

22
T N. N
e’ — Crg°, mp _C A ( + f>

3 3 6

N /
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/ Energy loss: numerical results \

T=400MeV  0=0.3
012 T T T T T T T T ‘ T T T T

0.1 —

— cham (M =1.5GeV) | |
— beauty (M, =4.8 GeV)

=3

Q

@
I

(-dE/dx)™" (GeV/m)
§
T ‘ T
|

o
K
T T
|

I3

Q

)
I

|

O Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il
10
p (GeV/c)

e In the plot: energy loss of ¢ and b quarks due to soft collisions (¢ < mp)

e On top of this one must add the contribution of hard collisions (¢ > mp):

/nB/F / 1inB/F(k')/ L
2E Jo! 2k’ r 2F

x (2m)*6W (P+K—P' —K') [M,,,(s,1)

N /
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The link with the Thermal Field Theory
approach

e So far the transverse/longitudinal dispersion relations where

found as normal modes of the gauge field in a dielectric medium;

e We wish to provide a different perspective and show how they

arise as poles of the gluon propagator in the plasma.

N /
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e The longitudinal /transverse gluon propagator in Coulomb gauge reads

The gluon propagator in the QGP 1

(q° being complex)

1
q®>+11.(¢", q)’

—1

0 _
AT(Q 7Q) - (qO)Q _ q2 — HT(q07Q)’

Ar(q’,q) =

o II; 7 are the gluon self-energies in the medium and (at one-loop) are

given by the following diagrams:

O ol

(@)

(C) (d)
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/ The gluon propagator in the QGP 11 \

.

e It turns out that Il 1 (Q) ~ g°T"?, so that

— For hard gluon momenta () ~ T') the self-energy provides a small
correction to the tree-level propagator, which can be accounted for

perturbatively, e.g.

—1 —1 —1
A = " + QQHLQQ + ..

— For soft gluon momenta () ~ g7’) all the terms in the above

expansion would be of the same order

1 1 0on 1
Ap ~ g2T? + g2T? (9°T )ngz

and one has to keep the resummed expressions for the propagators,

+ ...

no matter how small the coupling is.

e The longitudinal /transverse excitations are obtained solving:

q2‘|‘HL(WL7Q):O, W%—QQ—HT(WT,Q) = 0. /
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The gluon propagator in the QGP III \

e For soft gluon momenta the self-energies get the dominant contribution
from the integration over hard (p ~ T') momenta (Hard Thermal Loop
approximation) and can be evaluated analytically (z = ¢°/q):

x, x+1

g (x) = m%<1—§lnx_1>,
m% o o, x+1
r(z) = 58 x+(1—x)§lnx_1 :

e The link with the longitudinal /transverse dielectric functions
er/r(w,q) is transparent and in fact the dispersion relations wy, ;7 (q)

one obtains are the same!

e One can expand the propagators around their quasi-particle poles:

—Z17(q)
A ¢, q + ... (regular terms),
L/T( ) qO—’WL/T C]O - wL/T(Q) ( )
the residues Z; (k) giving the weight of the contribution. /
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The quasi-particle spectrum

2 T T T T
—Z®m,
— Z(m,

— w9
2 | — ok .
light-cone (w=k)

Z() m,

%
k/mD

e For small momenta (kK < mp) the spectrum is dominated by the

collective plasma oscillation;
e For large momenta (k> mp) the longitudinal mode disappears from
the spectrum and one is left only with the physical degrees of freedom

i.e. transverse gluons with a thermal mass mq.

Y

/
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Summary

e | tried to provide a consistent picture of a relativistic gauge plasma,
relying on the assumption of a suffiently weak value of the coupling g

(NB # weakly-coupled system!);

e Several results of possible relevance for the QGP phenomenology
(thermal masses, screening, energy-loss) where shown to be general
plasma-physics phenomena and derived within classical kinetic theory.
Such a setup requires a quite limited theoretical background and

provides at the same time a quite transparent physical picture;

e The link with the Thermal Field Theory approach was finally
presented, showing the equivalence between the kinetic setup and the

so called Hard Thermal Loop approximation.

N /
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e Textbooks:

Some literature

— J.I. Kapusta and C. Gale, “Finite- Temperature Field Theory:

Principles and Applications”;

— M. Le Bellac, “Thermal Field Theory”;

e Review articles and lecture notes:

— J.P. Blaizot, “Theory of the quark gluon plasma”,
Lect. Notes Phys. 583, 117 (2002);

— J.P. Blaizot and E. Iancu “The Quark gluon plasma: Collective
dynamics and hard thermal loops”,
Phys. Rept. 359, 355-528 (2002);

— S. Mrowczynski and M.H. Thoma, “What Do Electromagnetic
Plasmas Tell Us about Quark-Gluon Plasma?”,

\ Ann. Rev. Nucl. Part. Sci. 57, 61 (2007).
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Back-up material
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/ A simple QM model

Let us consider the hamiltonian of a perturbed harmonic oscillator:

2
p 1 A3 o4

One introduces as usual the raising/lowering operators a' and a, so that

1
H, = wy (aTa—i— 5) with « = (a—kaT) and |a, aT] = 1.

2Wp

The thermal average in the unperturbed system is of course:

_Ir [e_BHO...}
<>0 — Tre—ﬁHO
The fluctuation of the “field” x are of particular interest:
1 1+ 2N,
@ = gyrlaatalal vaal pale) = ()= TR

=0 14+2aTa

Qhere Ny = (a'a)o = 1/[exp(Bwr) — 1].

~

/
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G he expectation value of H; is given by (the weight is gaussian!)

(Hio = 2w 2ty = %wi(<x2>0)2 = 24 (ﬂy

to be compared with the e.v. of the unperturbed hamiltonian:
1 o 1+ 2N
H = N — pr— -
(Ho)o Wk( k‘|‘2> wk< o )
At T" = 0 one has:

_ by B B -
<H1>T—0 = —Wk, <HO>T_O — ﬂ N <H1>T_O < <H0>T_O
32 2 S

and if A\ < 1 the system is always perturbative.
However at large T (T > wy) the e.v. of H; can become larger then Ho:

N (LE2N) AT
8 g 2Wg 8 Wi

Hence no matter how small the coupling is for modes with wy < AT the
Qfstem is strongly coupled!
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