Searching for Life in the Universe: How, Where and Why?

Amedeo Balbi
Physics Department \& INFN, University of Rome Tor Vergata

experimental milestones

theoretical issues

simplicity smoothness equilibrium

where does life fit in? how typical is it?
understanding what life is, what are its limits and what is its distribution in the universe might have some impact on cosmology and particle physics

Horneck et al 2016
what can we infer regarding the possible abundance of life in the universe from the early emergence of life on Earth?
almost nothing: for example, Spiegel \& Turner (2012) use a Bayesian analysis to show that the posterior probability for abiogenesis almost completely reflects the chosen prior probability; the result, however, changes dramatically when one assumes evidence of even just one independent instance of abiogenesis, both on Earth or beyond (see also Korpela 2011, Brewer 2008)

Fig. 2. CDF of λ for abiogenesis with independent lineage, for logarithmic prior. $\lambda_{\min }=10^{-3} \mathrm{Gyr}^{-1}, \lambda_{\max }=10^{3} \mathrm{Gyr}^{-1}$. A discovery that life arose independently on Mars and Earth or on an exoplanet and Earth - or that it arose a second, independent, time on Earth - would significantly reduce the posterior probability of low λ.

where to look for?

Cockell et al. 2016

Boundaries continue to expand...

circumstellar habitable zone (CHZ)

but real life is complicated...

Astronomical factors

Cockell et al. 2016

lessons from the solar system

Size and Orbit of the Terrestrial Planets of the Solar System

Venus: too thick CO_{2} atmosphere (90 bar), runaway greenhouse, lack of tectonic, T~500 ${ }^{\circ} \mathrm{C}$

Mars: too thin CO_{2} atmosphere (0.006 bar, close to water triple point), no greenhouse, no magnetic field, lack of tectonic, volcanism, $\mathrm{T} \sim-50^{\circ} \mathrm{C}$
they both had milder conditions in the past, with strong evidence for stable liquid water on Mars

habitability of Mars

- Today, the dry dusty soil at the surface of Mars is unlikely to be habitable because of high levels of high-frequency UV radiation and of oxidation due to peroxide and perchlorate
- No sign of present life was conclusively found on Mars by probes explicitly designed with this science goal (Viking mission, 1976)
- Life could have originated on Mars in the past and gone extinct, or it might still be present in isolated niches (e.g. below the surface or beneath rocks)
- ExoMars will look for present and past signs of life

habitability outside the CHZ

example: icy moons of the Solar System (Europa, Enceladus)

more to come from present (Cassini) and future (i.e. JUICE) space missions

habitability outside the CHZ

example: Titan

- rocky active surface, covered with ethane-methane lakes, possibly criovolcanism and a methane cycle
- thick atmosphere, mostly gaseous nitrogen
- internal structure models include the possibility of a subsurface water ocean
- photochemical reactions allow for production of rich organic compounds, including HCN, shown to be a precursor of aminoacids in Miller-Urey experiments
- interesting laboratory for complex organic chemistry, including reactions which might have taken place on early Earth
- life is unlikely at temperatures as low as those on Titan surface and in liquid hydrocarbons, but there may be better conditions under the surface
- might be very similar to the most common kind of rocky planets in the galaxy, those orbiting M2 (red dwarf) stars
- any life form on Titan would be radically different than on Earth, opening exciting possibility for a completely independent origin

extended habitable zone

Seager 2014

galactic habitable zone

Lineweaver et al. 2004

Detections Per Year

radial velocity

(in)
(b)

$$
v_{r}^{\max }=28.4\left(\frac{P}{1 \mathrm{yr}}\right)^{-1 / 3}\left(\frac{M_{\rho} \sin i}{M_{\jmath}}\right)\left(\frac{M_{\star}}{M_{\odot}}\right)^{-2 / 3}(\mathrm{~m} / \mathrm{s})
$$

- current sensitivity $\sim 1 \mathrm{~m} / \mathrm{s}$
- signal from earth-like exoplanets $\sim 10 \mathrm{~cm} / \mathrm{s}$ (within reach of nextgeneration ultra-stable spectrometers)
- measurement of mass (lower limit) and period
- 549 confirmed planets until now

transit

- signal from earth-like exoplanets $\sim 10^{-4}$ (within reach of current space observations)
- low success rate due to geometric alignment probability
- measurement of radius and period
- atmosphere characterization
- 1233 confirmed planets until now

Fig. 1. Non-Kepler exoplanet discoveries (left) are plotted as mass versus orbital period, colored according to the detection technique. A simplified mass-radius relation is used to transform planetary mass to radius (right), and the >3500 Kepler discoveries (yellow) are added for comparison. 86% of the non-Kepler discoveries are larger than Neptune while the inverse is true of the Kepler discoveries: 85% are smaller than Neptune.
radius vs mass and estimated composition for Kepler exoplanets

"Advances in Exoplanet Science from Kepler" Lissauer, Dawson \& Tremaine, Nature 2014

Potentially Habitable Exoplanets

Ranked by the Earth Similarity Index (ESI)

$[0.84]$
GJ 667 C c
[0.84]
Kepler-442 b
GJ 667 C f*

[0.67]

Kapteyn b*

$$
\begin{gathered}
{[0.67]} \\
\text { Kepler-62 f }
\end{gathered}
$$

[0.61]
Kepler-186 f

Wolf 1061 c

[0.76]

[0.60]
GJ 667 C e*

Planetary Property	Reference Value	Weight Exponent
Mean Radius	1.0 Eu	0.57
Bulk Density	1.0 Eu	1.07
Escape velocity	1.0 Eu	0.70
Surface Temperature	288 K	5.58
Note: Eu = Earth's units		

estimates for the Milky Way

Petigura et al 2013; Kopparapu 2013; Dressing \& Charbonneau 2015

Cowan et al. 2015

in principle, the main factors influencing the climate of exoplanets can be empirically determined by photometric and spectroscopic observations
for terrestrial planets this will be extremely difficult, but might be within the reach of next-decade instruments (JWST, E-ELT)

how to look for life (biosignatures)

atmospheric spectrum

surface spectrum

- look for atmosphere with gases out of thermochemical redox equilibrium (ideally, redox pairs such as $\mathrm{O}_{2}-\mathrm{CH}_{4}$)
- caveats:
- biosignatures can change significantly over time (cfr. past Earth history)
- false positives are possible (e.g. O_{2} from photodissociation of $\mathrm{H}_{2} \mathrm{O}$)

earth as an exoplanet

before leaving for the Jupiter system, the Galileo probe was used to look for biosignatures from Earth

A search for life on Earth from the Galileo spacecraft

Carl Sagan', W, Reid Thompson', Robert Carlson', Donald Gurnett

 \& Charles Hord

In its December 1990 fly-by of Earth, the Gallileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigenent with a sharp absorption edge in the red part of ogether, these are strongly suggestive of life on Earth. Moreover, the presence of narrow; band, pulsed, amplitude-modulated radio transmission seems uniquely ateributable to intelligince. These observations constitute a control experiment for the search for extraterrestrial life by modern interplanetary spacecraft.

 suruar - vot 3m - 21 cetouer 193
 715

FIG. 1 a, Galiseo long-wavelength-visible and near-infrared spectra of the Earth over a relatively cloud-free region of the Pacific Ocean, north of Borneo. The incidence and emission angles are 77^{\prime} and 57° respec tively. The ($\left.0 \sum_{s}-x^{-} \sum_{4}\right) 0-0$ band of O_{2} at $0.76 \mu \mathrm{~m}$ is evident, along with a number or $H_{2} 0$ leatures. Using several cloud/ree regions of amagat $+25 \% b$ and c Infrared spectra of the Earth in the 2.4-5.2 $\mu \mathrm{m}$ region. The strong $\mathrm{v}_{3} \mathrm{CO}_{2}$ band is seen at the $4.3 \mu \mathrm{~m}$, and water vapour bands are found, but not indicated, in the $3.0 \mu \mathrm{~m}$ region. The ν_{3} band of nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$, is apparent at the edge of the CO_{2} band near $4.5 \mu \mathrm{~m}$, and $\mathrm{N}_{2} \mathrm{O}$ combination bands are also seen near $4.0 \mu \mathrm{~m}$. The

methane (0010) vibrational transition is evident at $3.31 \mu \mathrm{~m}$. A crude estimate ${ }^{20}$ of the CH_{4} and $\mathrm{N}_{2} \mathrm{O}$ column abundances is, for both species, of the order of 1 cm -amagate ($=1 \mathrm{~cm}$ path at STP).

FIG. 3 Representative spectra from three areas on the land surface (see Fig. 2c). A gently sloping spectrum (circles, Area A) is consistent with any of several types of rock or soil. An intermediate spectrum (squares, Area B) shows some evidence of an absorption band near $0.67 \mu \mathrm{~m}$ (RED). Substantial areas on the surface have an unusual spectrum (diamonds, Area C) with a strong absorption in the RED band and a steep band edge just beyond $0.7 \mu \mathrm{~m}$. This spectrum is inconsistent with all likely rock and soil types, and is plausibly associated with photosynthetic pigments (see text).

TABLE 1 Constituents of the Earth's atmosphere (volume mixing ratios)

	Standard abundance (ground-truth Earth)	Galileo value	Thermodynamic equilibrium value
Molecule			
Estimate 1 1 Estimate 2t			

[^0]
(Top) Visible wavelength spectrum from Earthshine measurements plotted as normalized reflectance (Turnbull et al 20067).
(Middle) Near-IR spectrum from NASA's Extrasolar Planet Observation and Deep Impact Extended Investigation mission, with flux in units of watts meter-2 micrometer-1 (Robinson et al. 2011).
(Bottom) Mid-IR spectrum as observed by Mars Global Surveyor en route to Mars, with flux in units of Watts meter-2 Hertz-1 (Christensen et al 1997)

Seager 2014

- obtaining similar atmospheric spectra for Earth-like planets is not a nearterm goal
- some nearby super-Earth atmospheres around M-dwarfs might be observable in a ten-year time span (e.g. from JWST or ground based large telescopes)
- lots of theoretical modeling + laboratory measurements needed in the meantime ("Atmosphere in a Test-Tube" project, with R. Claudi et al.)

extremophiles survival (and biosignatures) in simulated icy moons environments

with D. Billi (U. Tor Vergata), A. Ceccarelli, E. Pettinelli (U. Roma Tre)

Sample preparation to study extremophile survival in laboratory ice-liquid water systems simulating salt (or acid)/ice mixtures, as expected for the icy crusts of Europa, Ganymede, Callisto and Enceladus.

The project uses the cold camera facility in Roma Tre and the collection of extremophiles in Roma Tor Vergata.

In addition to studying the survival rates, we plan to conduct spectroscopic measurements on the ice samples in order to detect differences due to the presence of living organisms.

photosynthesis around M-dwarfs

with R. Ferrazzoli, D. Billi (U. Tor Vergata)

chlorophyll absorbs light preferentially at wavelengths $\sim 450 \mathrm{~nm}$ and $\sim 680 \mathrm{~nm}$...

50 ... but if one looks into even longer
wavelengths (near infrared) finds a reflectivity increase of a factor 10 called vegetation red edge
green part of the spectrum
the red edge might be a useful biosignature, but there can be abiotic mechanisms producing similar lines; also, photosynthetic life around other stars with different emission spectra can have adapted differently
super-Earth around M dwarfs stars are an interesting target:

- M dwarfs are more abundant and long-lived than G-type stars
- transits are easier to detect with present-day technology (shorter period, larger flux variation during transit)
- lower levels of UV radiation in older M stars, decreasing the probability of destruction of biosignature gases and of false positives
but: habitable zone is closer to the star (tidal locking, flares, etc)
theoretical studies of the possibility of "exo-vegetation" (Wolfencroft \& Raven 2002, Kiang et al 2007) + the existence of alternative photosynthetic paths on Earth (Mielke et al., 2011; Gan and Bryant, 2015), motivate the study of photosynthesis around M dwarfs

1. study the response of extremophile microorganisms capable of photosynthesis in the IR to simulated M starlight
2. measure the reflectance spectra of such organisms in laboratory conditions
3. model the expected signal from realistic exoplanetary surface coverage
real observations will be extremely challenging

- the planet is unresolved, and its light is not separable from that of the star
- cloud coverage introduces significant uncertainty
observing the polarized signal might increase the chance of detecting and distinguishing photosynthetic pigments (use
 phase modulation, angle dependence, differential measurement)

Stellar light, unpolarized:

Conclusions

- astrobiology is a relatively new field, and requires a very broad range of competences from different research areas: interdisciplinary collaboration is strongly encouraged
- in the coming years, new data will allow for the possibility of searching for signs of life beyond Earth, both in and out the solar system
- in the near term, a number of existing and planned astrophysical observations have a relevance for the topic:

```
exoplanets discovery and characterization from space:
```

- CHEOPS (ESA, 2017)
- PLATO (ESA, 2024)
- TESS (NASA, 2017)
- JWST (NASA, 2018)
- ARIEL (ESA, proposed, 2026)
exoplanets discovery and characterization from the ground:
- HARPS (@3.6 m La Silla Observatory Chile, operative)
- HARPS-N (@3.6 m Telescopio Nazionale Galileo, La Palma, operative)
- ESPRESSO (@8 m Very Large Telescope, Chile, 2016)
- CODEX (@39 m Extremely Large Telescope, Chile, 2024)
- solar system exploration

JUICE (observation of Jupiter icy moons, launch planned in 2028),
ExoMars (first phase in action, second phase launches in 2018)

- very long term goal: direct imaging of earth-like exoplanets
- lots of theoretical work \& modeling need (habitability, biosignatures, etc)
- very exciting prospects, but chances of success depends on how common life is: anyway, we will learn much along the way...

[^0]: ${ }^{*}$ Galileo values for $\mathrm{O}_{2}, \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$ from NIMS data; O_{3} estimate from UVS data.

 + From ref. 16 (P, 1 bar, T, 280 K).
 \& From ref. 17 (P. 1 bar, T, 298 K).
 § The observed value; it is in thermodynamic equilibrium only if the under-oxidized state of the Earth's crust is neglected.

