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experimental milestones

discovery of discovery of solar system

. exoplanets exploration
extremophiles

synthetic biology

astrobiology
interdisciplinary study of the origin, evolution,
distribution and future of life in the universe

how to remotely
what is habitable? detect life”?

what is life?

theoretical iIssues
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understanding what life is, what are its limits and what is its distribution in the
universe might have some impact on cosmology and particle physics

|“

all “possible” laws of physics / physical constants

observed
laws

observed laws are environmental
[

ife needs fine-tuning of physical laws (multiverse+anthropic selection)

see e.g., legmark, Aguirre, Rees
& Wilczek 2006; Barnes 2012

life will appear in almost any
physical circumstance

see e.g., Loeb 2013; Harnik,
Kribs, and Perez 2006

no anthropic explanation
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what can we infer regarding the possible abundance of life in the universe from
the early emergence of life on Earth?

almost nothing: for example, Spiegel & Turner (2012) use a Bayesian analysis
to show that the posterior probability for abiogenesis almost completely
reflects the chosen prior probability; the result, however, changes dramatically
when one assumes evidence of even just one independent instance of
abiogenesis, both on Earth or beyond (see also Korpela 2011, Brewer 2008)
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Fig. 2. CDF of A for abiogenesis with independent lineage, for logarithmic prior.
Amin = 1073Gyr~!, Amax = 103Gyr—!. A discovery that life arose inde-
pendently on Mars and Earth or on an exoplanet and Earth - or that it arose a second,
independent, time on Earth — would significantly reduce the posterior probability of
low A.
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Susceptibility 1o collision

influence on obliquity

but real life Is complicated...

Astronomical factors

Orbital characteristics

Planetary factors

Requirements for tidal heating/
width and location of habitable zone

Star type

Presence of a Moon

Moon-forming impacisI

Mass
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Atmospheric composition
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lessons from the solar system

Size and Orbit of the Terrestrial Planets of the Solar System

== Ky (3 -

Venus: too thick CO2
atmosphere (90 bar), runaway
greenhouse, lack of tectonic,

T~500°C

Mars: too thin CO2 atmosphere
(0.006 bar, close to water triple
point), no greenhouse, no
magnetic field, lack of
tectonic, volcanism, T~-50°C

they both had milder
conditions in the past, with
strong evidence for stable
liquid water on Mars




habitability of Mars

Today, the dry dusty soil at the surface of Mars is unlikely to be habitable because of high levels of
high-frequency UV radiation and of oxidation due to peroxide and perchlorate

No sign of present life was conclusively found on Mars by probes explicitly designed with this
science goal (Viking mission, 1976)

Life could have originated on Mars in the past and gone extinct, or it might still be present in
isolated niches (e.g. below the surface or beneath rocks)

ExoMars will look for present and past signs of life

hPossible Methane Sources and Sinks

Cosmic Dust

/ / fethane
Su Janics

Oulgassing

Mathane



habitability outside the CHZ

example: icy moons of the Solar System (Europa, Enceladus)

Metallic Core Ice Covering EtHOPK Comets and | AR NOETOR
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Ice flow Ice thickness ~4 km
Ice shell: =
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Accretion ice
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habitability outside the CHZ

example: Titan

organic-nch atmosphere
and surface

de-coupled outer shell
(water-ice / clathrate)

global subsurface ocean

hgh-pressure ice Vi shell

hydrous silicate core
~2000 km radius

e rocky active surface, covered with ethane-methane lakes, possibly criovolcanism and a
methane cycle

¢ thick atmosphere, mostly gaseous nitrogen
e internal structure models include the possibility of a subsurface water ocean

e photochemical reactions allow for production of rich organic compounds, including HCN,
shown to be a precursor of aminoacids in Miller-Urey experiments

® interesting laboratory for complex organic chemistry, including reactions which might
have taken place on early Earth

e life is unlikely at temperatures as low as those on Titan surface and in liquid
hydrocarbons, but there may be better conditions under the surface

e might be very similar to the most common kind of rocky planets in the galaxy, those
orbiting M2 (red dwarf) stars

e any life form on Titan would be radically different than on Earth, opening exciting
possibility for a completely independent origin



extended habitable zone

Hydrogen-atmosphere planets

Earthlike planets .
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galactic habitable zone
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Number of Detections
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radial velocity transit
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- current sensitivity ~1 m/s - signal from earth-like exoplanets

- signal from earth-like exoplanets ~10-4 (within reach of current space
~10 cm/s (within reach of next- observations)
generation ultra-stable - low success rate due to geometric
spectrometers) alignment probability

- measurement of mass (lower limit) - measurement of radius and period
and period - atmosphere characterization

- 549 confirmed planets until now - 1233 confirmed planets until now
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Fig. Non-Kepler exoplanet discoveries (left) are plotted as mass versus orbital period, colored according to the detection technique. A simplified mass-radius relation is
used to transform planetary mass to radius (right), and the > 3500 Kepler discoveries (yellow) are added for comparison. 86% of the non-Kepler discoveries are larger than
Neptune while the inverse is true of the Kepler discoveries: 85% are smaller than Neptune.

Batalha 2014



radius vs mass and estimated composition for Kepler exoplanets

Planet Radius (Ry)
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Potentially Habitable Exoplanets = PHIE

Ranked by the Earth Similarity Index (ESI)
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Planetary Property Reference Value Weight Exponent

Mean Radius 1.0 Eu 0.57
Bulk Density 1.0 Eu 1.07

Escape velocity 1.0 Eu 0.70

Surface Temperature 288 K 5.58
Note: Eu = Earth’s units




estimates for the Milky Way

22% of G stars 11 billion
statistically has an

Earth-sized planet potentially habitable exoplanets

Petigura et al 2013; Kopparapu 2013; Dressing & Charbonneau 2015



Transit/Eclipse Albedo Reflectance
Spectroscopy Spectroscopy
Surface Simple Surface
G| s

Phase/EcIipse Emission
Mapping Spectroscopy

Simple
Climate
Model

In principle, the main factors
Eclipse iInfluencing the climate of

Egress Ingress

—— Glibous exoplanets can be empirically
determined by photometric and

spectroscopic observations

Phases

Quarter

Cecent for terrestrial planets this will be
Transit extremely difficult, but might be
within the reach of next-decade

Cowan et al. 2015 instruments (JWST, E-ELT)




how to look for life (biosignatures)

atmospheric spectrum surface spectrum

“Blue of the sky”
measures

total amount “Vegetation (). 30 (rrrrrereyr ey ey ———————————y——p——p——————
of re jump” | |
indicates y Carbon dioxide

[ ]
presence of suggests possible 1
land plants v volcanic activity pMethane 0.25 1
indicates [ und :

/ »

anaerobic

bacteria

‘ s

' T 015}
ﬁ }
< [

&
[+8)
s
=
2
[==]

L (ground)

O yoal.
sy N :_,'__L’_/\_/
and ozone

were produced tvaater }
by living organisms - gggts 0.00L L A X
habitability 04 0.5 0.6 0.7 0.8

_ Wavelength (um)

Wavelength

look for atmosphere with gases out of thermochemical redox equilibrium
(ideally, redox pairs such as O2—CHa)

caveats:
biosignatures can change significantly over time (cfr. past Earth history)
false positives are possible (e.g. O2 from photodissociation of H20)



before leaving for the
Jupiter system, the
Galileo probe was
used to look for
biosignatures from
Earth

earth as an exoplanet

A search for life on Earth from the Galileo
spacecraft
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amagat + 25%. b and ¢, Infrared spectra of the Earth in the 2.4-5.2 um
region. The strong vy CO, band is seen at the 4.3 um, and water vapour
bands are found, but not ingkcated, In the 3.0 ym region. The v, band
of nitrous oxide, N,O, is apparent at the edge of the CO, band near
4.5 pm, and N;O combenation bands are also seen near 4.0 um. The
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FIG. 3 Representative spectra from three areas on the land surface
(see Fig. 2¢). A gently sloping spectrum (circles, Area A) is consistent
with any of several types of rock or soil. An intermediate spectrum
(squares, Area B) shows some evidence of an absorption band near
0.67 um (RED). Substantial areas on the surface have an unusual spec-
trum (diamonds, Area C) with a strong absorption in the RED band and
a steep band edge just beyond 0.7 um. This spectrum Is inconsistent
with all likely rock and soil types, and is plausibly associated with photo-

synthetic pigments (see text).

TABLE 1 Constituents of the Earth's atmosphere (volume mixing

ratios)
Standard Thermodynamic
abundance Gakleo equilibrium value
Molecule (ground-truth Earth)  value® Estimate 1tEstimate 23

N, 0.78 0.78
0, 0.21 0.19+0.05 0.21%
H.0 0.03-0.001 0.01-0.001 0.03-0.001
Ar 9x10"* 9x10"?
COo, 35x10* 5+425x10" 35x10"
CH. 16x10"° 3:15x10° <10™ 10"
N,O 3x10"7 ~10° 2x10™ 2x10"
0, 10 '-10"" >10 " 6x10 "7 3x10™

* Galleo values for 0,, CH, and N.O from NIMS data; O, estimate

from UVS data.

t From ref. 16 (P, 1 bar; T, 280 K),
+ From ref. 17 (P, 1 bar; T, 298 K).
$ The observed value; it is in thermodynamic equilibrium only if the

under-oxidized state of the Earth’s crust is neglected.
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obtaining similar atmospheric spectra for Earth-like planets is not a near-
term goal

some nearby super-Earth atmospheres around M-dwarfs might be
observable in a ten-year time span (e.g. from JWST or ground based large
telescopes)

lots of theoretical modeling + laboratory measurements needed in the
meantime (“Atmosphere in a Test-Tube” project, with R. Claudi et al.)



extremophiles survival (and biosignatures) in
simulated icy moons environments

with D. Billi (U. Tor Vergata), A. Ceccarelli, E. Pettinelli (U. Roma Tre)

Sample preparation to study extremophile survival
In laboratory ice-liquid water systems simulating
salt (or acid)/ice mixtures, as expected for the icy
crusts of Europa, Ganymede, Callisto and
Enceladus.

The project uses the cold camera facility in Roma
Tre and the collection of extremophiles in Roma Tor
Vergata.

In addition to studying the survival rates, we plan
to conduct spectroscopic measurements on the

ice samples in order to detect differences due to
the presence of living organisms.




photosynthesis around M-dwarfs

with R. Ferrazzoli, D. Billi (U. Tor Vergata)
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chlorophyll absorbs light preferentially at

! H,0 ...but if one looks into even longer
wavelengths ~450 nm and ~680 nm.. ' H,0 wavelengths (near infrared) finds a

reflectivity increase of a factor 10
called vegetation red edge
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the red edge might be a useful biosignature, but there can be abiotic mechanisms producing similar lines;
also, photosynthetic life around other stars with different emission spectra can have adapted differently



super-Earth around M dwarfs stars are an interesting target:
M dwarfs are more abundant and long-lived than G-type stars
transits are easier to detect with present-day technology (shorter period, larger
flux variation during transit)
lower levels of UV radiation in older M stars, decreasing the probability of
destruction of biosignature gases and of false positives

but: habitable zone is closer to the star (tidal locking, flares, etc)

theoretical studies of the possibility of “exo-vegetation” (Wolfencroft &
Raven 2002, Kiang et al 2007) + the existence of alternative
photosynthetic paths on Earth (Mielke et al., 2011; Gan and Bryant,
2015), motivate the study of photosynthesis around M dwarfs

Fig.1. In figure we can see samples of (a)
Physcomitrella growing on agar plates by
Sabisteb—Anja Martin from the Ralf_Reski
lab. (b) Chlamydomonas reinhardtii, (c)

1. study the response of extremophile Key: s i pC R

— Chla Chl b al.  2012), (e) Acaryochloris marina, (f)

Ostreobium quekettii and (g) Chlorogloeopsis

microorganisms capable of photosynthesis ® s
in the IR to simulated M starlight

2. measure the reflectance spectra of such
organisms in laboratory conditions

3. model the expected signal from realistic
exoplanetary surface coverage
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real observations will be extremely challenging
- the planet is unresolved, and its light is not
separable from that of the star

- cloud coverage introduces significant uncertainty

observing the polarized signal might
iIncrease the chance of detecting and
distinguishing photosynthetic pigments (use
phase modulation, angle dependence,
differential measurement)
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Conclusions

astrobiology is a relatively new field, and requires a very broad range of
competences from different research areas: interdisciplinary collaboration is
strongly encouraged

In the coming years, new data will allow for the possibility of searching for signs of
life beyond Earth, both in and out the solar system

In the near term, a number of existing and planned astrophysical observations have

a relevance for the topic:
exoplanets discovery and characterization from space:
» CHEOPS (ESA, 2017)

PLATO (ESA, 2024)
TESS (NASA, 2017)
JWST (NASA, 2018)
ARIEL (ESA, proposed, 2026)

exoplanets discovery and characterization from the ground:
HARPS (@3.6 m La Silla Observatory Chile, operative)
HARPS-N (@3.6 m Telescopio Nazionale Galileo, La Palma, operative)
ESPRESSO (@8 m Very Large Telescope, Chile, 2016)
CODEX (@39 m Extremely Large Telescope, Chile, 2024)

solar system exploration
JUICE (observation of Jupiter icy moons, launch planned in 2028),
ExoMars (first phase in action, second phase launches in 2018)

very long term goal: direct imaging of earth-like exoplanets

lots of theoretical work & modeling need (habitability, biosignatures, etc)

very exciting prospects, but chances of success depends on how common life is:
anyway, we will learn much along the way...



