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Study of QCD thermodynamics

Theoretical investigations of QCD thermodynamics make use of different methods and

tools

From first principles:

� Lattice QCD

� Perturbation theory (large T and/or µ)

Models:

� Nambu-Jona-Lasinio (NJL) -type models (Nambu and Jona-Lasinio, Phys. Rev. 122

(1961) 345, Phys. Rev. 124 (1961) 246)

� Hadron Resonance Gas (HRG) -type models (Hagedorn, Nuovo Cim. Suppl. 3

(1965), 147)

� Functional methods (functional renormalization group - FRG, Dyson-Schwinger

equations, etc...)

� ...
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The phase diagram of QCD

Different phases of QCD matter (in equilibrium) are depicted in (temperature vs

baryo-chemical potential) phase diagram

� Hadron gas at low-T and/or low-µB

� Quark Gluon Plasma (QGP) at large

T and (possibly) at large µB

� More exotic phases proposed at low-T

and high-µB (color superconductivity,

etc...)
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Equation of state at µB = 0

A combination of methods gives us good understanding of the EoS at µB = 0 at all

temperatures

� Perturbative QCD at high temperature

→ “pure quark-gluon phase”

� HRG model at low temperature

→ “pure hadron phase”

� Lattice QCD bridges between regimes and

captures the transition

Borsányi et al., PLB 370 (2014) 99-104
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From Hagedorn to hadron resonance gas

� In its modern interpretation, the model does not have a continuous spectrum ρ(m),

like the one postulated by Hagedorn. Instead, the discrete set of known (or predicted)

hadrons is considered, and summed over

� Nonetheless, hadronic states indeed seem to populate an exponentially increasing

spectrum, when spin and isospin multiplicities are taken into account

Cumulative number of states

N(m) =
∑
i

giΘ(m−mi)

S. Godfrey et al., PRD 32, 189 (1985);

S. Capstick et al., PRD 34, 2809 (1986);

Particle Data Group PTEP 2020, 083C01

(2020) and earlier versions

PDG2005

PDG2014

QM
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Hadron Resonance Gas model

The basic idea is the same as Hagedorn’s: approximate a gas of interacting hadrons in

their ground state through a non-interacting gas of hadrons and all their resonant states

Being non-interacting, it is formally extremely simple:

lnZ(T, V, µ⃗) =
∑

i∈hadrons

lnZi(T, V, µ⃗) ,

where µ⃗ = (µB , µQ, µS).

The one-particle partition function reads

lnZi(T, V ) =
V ηigi
(2π)3

∫
d3p ln

[
1 + ηizie

−ϵi/T
]
,

where:

� gi is spin degeneracy

� ηi = (−1)Bi+1 = 1(−1) for baryons (mesons)

� relativistic particles ϵi =
√

p2 +m2
i

� zi = exp[µi/T ] = exp[(µBBi + µQQi + µSSi)/T ] is the fugacity 5/30



Hadron Resonance Gas model

The pressure follows trivially

P (T, µ⃗) = −T
∂ lnZ
∂V

= −T

V
lnZ =

∑
i

T
ηigi
2π2

∫ ∞

0

dp p2 ln
[
1 + ηie

− ϵi−µi
T

]
,

the number density

n(T, µ⃗) =
∑
i

gi
2π2

∫ ∞

0

dp p2
1

ηi + e
ϵi−µi

T

,

energy density

ϵ(T, µ⃗) =
∑
i

gi
2π2

∫ ∞

0

dp p2
ϵi

ηi + e
ϵi−µi

T

,

and so on..
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HRG model vs lattice QCD

Agreement between HRG model and lattice QCD is excellent up to around the transition

temperature for virtually every observable

NOTE: the temperature where deviations start to occur decreases with increasing µB , as

expected from the shape of the transition line

Borsányi et al., JHEP 08 (2012) 053 7/30
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HRG model vs lattice QCD

Agreement between HRG model and lattice QCD is excellent up to around the transition

temperature for virtually every observable
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Why the HRG model?

So, the HRG model provides an accurate description of the thermodynamics in the

confined region. Why is it important?

I. Theory-experiment comparison: HRG offers a number of advantages over lattice

QCD results

� No sign problem: can be used at finite chemical potential

� Lattice QCD gets increasingly demanding at lower T (it is good if we can avoid

simulating low temperatures)

� Individual particle contributions can be isolated

� Additional effects typical of experimental setup can be included:
� Decays of resonances

� Finite acceptance in detectors

� etc.

⇒ Better for comparison to experimental results

II. Theory-theory comparison: HRG can be used to understand results from lattice

QCD at low T in terms of hadronic degrees of freedom, and to reverse-engineer from

lattice results 10/30



Fluctuations of conserved charges

Looking at observables which are particularly sensitive to NLO effects (interactions, exotic

states), one can test the HRG model description in detail

Fluctuations of conserved charges

They are defined as:

χBQS
ijk (T, µB , µQ, µS) =

∂i+j+kP (T, µB , µQ, µS) /T
4

∂ (µB/T )
i ∂ (µQ/T )

j ∂ (µS/T )
k

and are related to the moments of net-particle distributions:

mean: M = χ1 variance: σ2 = χ2

skewness: S = χ3/ (χ2)
3/2

kurtosis: κ = χ4/ (χ2)
2
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Heavy-ion collisions: event-by-event fluctuations

Due to limited acceptance and efficiency of detectors, conserved charges are conserved only on

average. Possible to measure the moments of the distribution

STAR Collaboration: PRL 112 (2014) 032302
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Fluctuations of conserved charges - Experiment

Event-by-event net-particle distributions allow to measure different cumulants (and ratios

thereof):

STAR: Phys. Rev.Lett. 113 92301 (2014); Phys. Lett. B 785 551 (2018); arXiv: 2001.06419 [nucl-ex]



Freeze-out in heavy-ion collisions

The stages of a heavy-ion collision

� Thermalization: after a short time τ0 the

system thermalizes to a QGP (if the energy

density is sufficient)

� Hadronization: when the system reaches TC ,

hadrons are formed

� Chemical freeze-out: all inelastic collision

cease and chemical composition is fixed

(yields, fluctuations)

� Kinetic freeze-out: elastic collisions cease

and spectra are fixed → free streaming to the

detectors

Hui Wang’s PhD thesis [Wang:2012jua]
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Freeze-out parameters extraction

Thanks to measurements of net-particle moments (mean, variance, etc.), given two

numbers, one can get T, µB

Several effects are taken into account

⋄ Resonance decays, considering (strongly) stable hadrons:

Ni = N0
i +

∑
R

PR→iNR

where PR→i = BRR→i n
R
i is the average number of particles i produced by a particle R

⋄ Include acceptance cuts on the kinematics of measured particles:

pmT ≤ pT ≤ pMT |y| < y∗ (or |η| < η∗)

(it is not clear how to include correct radipity/pT distributions)

⋄ Impose strangeness neutrality to constrain chemical potentials:

⟨nS⟩ = 0 ⟨nQ⟩ = 0.4 ⟨nB⟩

Note: strictly speaking, there is an overall factor which corresponds to the system volume V . It

is often (not always) removed by considering ratios of moments.
14/30



Thermal fits to particle yields: a success story

The simplest case: number of particles (1st moment). With one temperature yields are

reproduced fairly well over 7 orders of magnitude

ALICE Collaboration, NPA971 (2018); NPA982 (2019)

At LHC collision energies, the chemical potential is often not fitted, but rather fixed to

µB = 1MeV or 0 15/30



Thermal fits to yields across energies

Systematic analysis of yields over energy scan (freeze-out parameters are now T, µB):

� ALICE, Pb-Pb at
√
s = 5.02TeV (ALICE Collaboration, NPA 982 (2019))

� STAR, Au-Au at
√
s = 200− 11.5GeV (STAR Collaboration, PRC 96 (2017) 044904; 1906.03732)

Flor et al., PLB 814 (2021) 136098

Freeze-out at µB = 0 occurs at TFO = 158.0± 3.8MeV 16/30



Thermal fits: a double freeze-out scenario

It’s been hypothesized that strange and non-strange particles freeze-out at different stages

(thus temperatures) during the system’s evolution: flavour hierarchy

Flor et al., PLB 814 (2021) 136098

Strange and non-strange states are fitted separately, and a much better fit quality is

obtained ⇒ in 2FO scenario: T light
FO = 150.0± 2.5MeV, T strange

FO = 163.0± 4.0MeV
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Freeze-out parameters from fluctuations

Thanks to measurements of higher order flutuations (variance, etc.), these quantities too

could be used to extract freeze-out parameters

� Blue points: net-proton and net-charge

(p,π,K) with M/σ2

� Red points: net-kaon M/σ2 and strange

antibaryon-baryon ratios

� A hierarchy in the freeze-out temperatures

seems to appear from fits to fluctuations
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Theory-theory comparison

� The simplicity of the HRG model is also in the fact that it does not have free parameters.

One “free parameter” is the hadronic spectrum utilized to sum over. Although “bulk”

quantities like pressure, entropy etc. depend on it fairly mildly, more specific quantities can

really test its content
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The agreement is pushed to lower temperatures. Interactions, which play a larger role in higher

moments, are likely the reason of the disagreement

Bazavov et al., PRD 95 (2017) 054504 19/30



Theory-theory comparison

Different improvements have been proposed to restore agreement with lattice QCD at

larger temperatures for more specific observables:

� Different hadron spectra: new hadron states are discovered routinely, their

inclusion does improve agreement for some observables

Bazavov et al., PRL 113 (2014) 072001; Alba et al., PRD 96 (2017) 034517; Alba et al., PRC 101

(2020) 054905

� Excluded volume and van der Waals interactions: repulsive (excluded volume)

and attractive interactions have been introduced. Agreement is improved Vovchenko et

al., PRL 118 (2017) 182301; Vovchenko, IJMPE 29 (2020) 05, 2040002

� S-matrix formalism: inclusion of information from scattering experiments on the

partial waves expansion of hadron-hadron scatterings. Problem is not much info is

available from such experiments

Dashen, Ma, Bernstein, Phys. Rev. 187 (1969) 345; Pok Man Lo, EPJC 77 (2017) 8, 533
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Example: hadron spectrum
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Hadron spectrum: additional states?

Strangeness-related observables show conflicting results when further states are added to

the spectrum: ⇒ Systematic analysis of hadron spectrum

Different lists

� Particle Data Group (PDG) lists particle

according to experimental evidence

� Quark models predict many additional states

(especially in the strange sector)

� Lattice QCD can help determine which states exist

� In figure:

PDG 2016 (**, *** and **** states): 608 states

PDG 2016+ (*, **, *** and **** states): 738 states

Quark Model: 1517 states

Hypercentral QM (hQM): 985 states

Alba et al. PRD 96 (2017) 034517
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Hadron spectrum: partial pressures

Separate contribution to the pressure from different quantum numbers (in
Boltzmann approximation):

P

T 4
=

∑
i

(−1)Bi+1 di

2π2T 3

∫
dk k2 ln

(
1 + (−1)Bi+1 exp [− (ϵi − µi) /T ]

)
≃

≃
∑
i

di

2π2T 3

∫
dk k2e−(ϵi−µi)/T ≃

∑
i

eµi/T
di

2π2T 3

∫
dk k2e−ϵi/T

The pressure then becomes:

P (T,
µB

T
,
µS

T
) = PBS

00 + PBS
10 cosh(

µB

T
)+

+ PBS
01 cosh(

µS

T
)+

+ PBS
11 cosh(

µB

T
−

µS

T
)+

+ PBS
12 cosh(

µB

T
− 2

µS

T
)+

+ PBS
13 cosh(

µB

T
− 3

µS

T
)
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Hadron spectrum: partial pressures

Comparison between lattice QCD and HRG for the different lists:
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� No significant difference between lists for |S| = 0 baryons

� All lists except QM list contain too few |S| = 1 states

Alba et al. PRD 96 (2017) 034517
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Hadron spectrum: partial pressures

Comparison between lattice QCD and HRG for the different lists:
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� The QM list contains too many |S| = 2 states, but works well for |S| = 3 baryons

� Again the PDG2016 list is not enough in both cases

Alba et al. PRD 96 (2017) 034517
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Extension to the HRG model: excluded volume

In order to take into account interactions for a refined model, excluded volume interactions

(know from measurements)

The pressure is corrected via a modification in

the effective chemical potential

p(T, µB) =
∑
i

pid(T, µi − vip)

which yields:

ni(T, µB) =
nid
i (T, µi − vip)

1 +
∑

j vjn
id
j (T, µj − vjp)

where different assumption can be made on the

excluded volumes vi

repulsive

core

CD Bonn

Reid93

AV18
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Extension to the HRG model: EV + van der Waals

Further extensions have been considered, like the addition of attractive interactions

The pressure takes on the form:

p(T, µB) =
∑
i

pid(T, µ∗
i )−

∑
ij

aijninj

where all sums run over all species, and:

� the modified chemical potential satisfies:

µ∗
i +

∑
j

b̃ijp
id(T, µ∗

j )−
∑
j

(aij + aji)nj = µi

� b̃ij and aij are the generalized excluded volume and attractive interaction parameters,

which in general might depend upon the pair of particles

note: in general, a real vdW gas predicts a critical point at:

Tc =
8a

27b
nc =

1

3b
pc =

a

27b2

Vovchenko et al., PRC 96 (2017) 045202
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Extension to the HRG model: EV + van der Waals

In this model, it is sufficient to include interactions only among nucleons, with:

bNN = 3.42 fm3 aNN = 329MeV fm3

to reproduce the features of nuclear matter, namely the binding energy E/A ≃ 16MeV

and saturation density n0 = 0.16 fm−3.
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Extension to the HRG model: EV + van der Waals

This predicts a critical point at T ≃ 19.7MeV and µB ≃ 908MeV (with nc ≃ 0.05 fm−3)
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Theory-theory comparison with vdW HRG

Including interactions unsurprisingly inproves the agreement of HRG with lattice QCD

results around the transition
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Summary

� Hadron resonance gas model proves excellent at describing low-T thermodynamics

results from lattice QCD

� At T ≤ 120MeV lattice results are expensive (thus rare) → HRG effectively trusted to

be the correct description

� HRG can give insight in what degrees of freedom contribute to certain observables

� Comparison with experiment has proven fruitful for a long time. Fits to yields and

fluctuations give us knowledge on freeze-out locations at different collision energies

� Many experimental effects can be at least partially incorporated

� Improvements to the model have been studied, yielding info on e.g. interactions and

even the phase structure of QCD (at low T)
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