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The phase diagram of QCD
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Study of QCD thermodynamics

Theoretical investigations of QCD thermodynamics make use of different methods and

tools

From first principles:

� Lattice QCD

� Perturbation theory (large T and/or µ)

Models:

� Nambu-Jona-Lasinio (NJL) -type models (Nambu and Jona-Lasinio, Phys. Rev. 122

(1961) 345, Phys. Rev. 124 (1961) 246)

� Hadron Resonance Gas (HRG) -type models (Hagedorn, Nuovo Cim. Suppl. 3 (1965),

147)

� Functional methods (functional renormalization group - FRG, Dyson-Schwinger

equations, etc...)

� ...
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QCD Lagrangian

We know Quantum Chromodynamics (QCD) is a gauge theory with color SU(3)c
symmetry:

LQCD =
∑
f ψ̄f (iγ

µDµ −mf )ψf − 1
4G

a
µνG

µν
a

where:
Gaµν = ∂µA

a
ν − ∂νA

a
µ + gS f

abcAbµA
c
ν

Dµ = ∂µ + i gS t
aAaµ

Problem: perturbation theory for QCD is not feasible in the regime around the QCD

transition because gS is not small

Solution: the path integral formulation does not rely on a perturbative approach, and

gives us the partition function:

Z[A, ψ̄, ψ] =

∫
DAaµ(x)Dψ̄(x)Dψ(x) e−

∫
d4xLE [A,ψ̄,ψ]

where SE =
∫
d4xLE is the euclidean QCD action. Lattice QCD starts from here. 3/57



Lattice formulation of QCD

Problem: we cannot calculate the full integral for Z[A, ψ̄, ψ].

Solution: define the theory on a discretized 3+1d lattice of size N3
s ×Nτ , with lattice

spacing a. This allows us to reduce the (otherwise infinite) dimensionality of the problem.

� The quark fields ψ̄, ψ are defined on the lattice sites,

the gauge fields Aµ are defined on the lattice links as

Uµ = exp[iaAµ] ∈ SU(3)

� Now, one can calculate a finite number of integrals

to evaluate expressions of the like:

Z[U, ψ̄, ψ] =

∫
DU Dψ̄Dψ e−SG[U,ψ̄,ψ]−SF [U,ψ̄,ψ]

where SG and SF are the gauge (gluonic) and

fermionic actions
4/57



Lattice formulation of QCD

Actually, we can analytically perform the integral over the quark fields (the fermionic

action is bilinear in the quark fields), and remain with:

Z[U, ψ̄, ψ] =

∫
DU detM [U ] e−SG[U ]

and any observable Ô can then be calculated as:〈
Ô
〉
=

1

Z

∫
DU Ô detM [U ] e−SG[U ]

Problem: the integrals cannot be calculated by brute force. Even for a small 104 lattice,

integral is 320000-dimensional!

Solution:

� Monte Carlo integration with importance sampling: interpret the factor

detM [U ] e−SG[U ] as a weight for the configuration U , and reduce the sum only to the

most “likely” configurations
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Metropolis-Hastings algorithm

A Markov-chain Monte Carlo (MCMC) process to generate configurations according to

a distribution P (U). At equilibrium, we must have detailed balance (transition and

back-transition have equal probability):

P (U)P (U ′|U) = P (U ′)P (U |U ′) ⇒ P (U)

P (U ′)
=
P (U |U ′)

P (U ′|U)

where:

� P (U) is the probability to have configuration U

� P (U ′|U) is the probability to transition from U to U ′

We split the transition into a proposal and a (possible) acceptance:

P (U ′|U) = pr(U ′|U)ac(U ′|U)

where:

� pr(U ′|U) is the probability of proposing U ′ when we have U

� ac(U ′|U) is the probability to accept the transition
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Metropolis-Hastings algorithm

Substituting we get:
ac(U ′|U)

ac(U |U ′)
=
P (U ′)pr(U |U ′)

P (U)pr(U ′|U)

In the Metropolis-Hastings algorithm, the choice is:

ac(U ′|U) = min

{
1,
P (U ′)pr(U |U ′)

P (U)pr(U ′|U)

}
If, in addition, we choose a flat proposal probability pr(U |U ′) = pr(U ′|U) (e.g. change a

single link variable) we have that:

� if weight increases, change is accepted

� if weight decreases, change is accepted with probability

p = exp(−∆SG) detM(U ′)/ detM(U)

This leads to correct equilibrium state, while allowing fluctuations
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Lattice formulation of QCD

� Euclidean actions SG and SF only depend on coupling g (or β = 6/g2) and fermion

masses mf . Their relationship is fixed by the so-called line of constant physics

(lcp). The line of constant physics β(mf ) is set such that the action reproduces the

physics correctly when β is varied. It is obtained e.g. by imposing that mπ/fπ takes

on its physical value

� The finiteness of the lattice spacing a serves as a regulator for the theory. At the end

one wishes to recover the continuum theory with lima→0 (limNτ→∞): continuum

limit → very delicate

� Calculations are done in a finite volume. When possible, one wishes to study the

thermodynamic limit limV→∞: a.k.a. infinite volume limit
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Lattice formulation of QCD

� Length in “temporal” direction is given by the inverse temperature T−1 = β = Nτa

(inverse temperature β = 1/T not to be confused with gauge coupling β = 6/g2;

unfortunate convention!)

� Summarizing

V = (Nsa)
3 , T =

1

Nτa

� Scale setting: everything we calculate on the lattice is dimensionless, expressed in

terms of the lattice spacing a. Eventually, we have to express a in physical units. We

calculate some quantity whose value is well known, and use it to set the scale (e.g.

pion decay constant, pion mass, kaon mass, etc.). For example:

amπ = value = a · 135MeV ⇒ a =
value

135MeV
=

value

135
197.33 fm

A value for a gives us T and V in physical units, and every other dimensionful quantity

9/57



Thermodynamic description of QCD

The thermodynamics of QCD is commonly investigated in the grand canonical

ensemble
� Grancanonical partition function:

Z =
∑
N

ZNe
µN

where:

� ZN is the canonical partition function with N particles

� µ is the chemical potential associated to the particle number N

(the chemical potential is the energy associated to a change in the number N of

particles)
� In QCD, there are 3 conserved “particle numbers”, which one can see as:

� Quark numbers: u, d, s

µN = µuNu + µdNd + µsNs

� Conserved charges: B, Q, S

µN = µBNB + µQNQ + µSNS

Note: weak processes ignored in heavy-ion physics, heavy flavours assumed not to thermalize 10/57



The QCD transition
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Deconfinement: Polyakov loop

At the QCD transition, in reality two transitions occur at once: deconfinement and chiral

symmetry restoration.

Deconfinement

The Polyakov loop is defined as:

P (x⃗) =
1

Nc
Tr

Nτ−1∏
i=0

U4(x⃗, i)

While the (pure) gauge action is invariant under the Z3 center symmetry (Z3 is the center

of SU(3), i.e. every member of SU(3) commutes with members of Z3), the Polyakov loop is

not. Hence, a finite value of ⟨P (x⃗)⟩ indicates spontaneous symmetry breaking of center

symmetry. This happens at large temperatures.

⇒ The polyakov loop is an order parameter for the SSB of center symmetry.
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Deconfinement: Polyakov loop

Moreover, one can show that

⟨P ⟩ ∼ e−F

where F is the free energy associated to placing a free color charge in the system.

This means that:

� ⟨P ⟩ = 0 means F → ∞, hence the system is confined

� ⟨P ⟩ = 1 means F = 0, hence the system is deconfined

⇒ The polyakov loop is an order parameter for confinement.

Note: because the center symmetry is exact only in the limit of infinitely heavy quarks, for

physical masses the Polyakov loop is only an approximate order parameter.
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Chiral symmetry restoration: chiral condensate

At the QCD transition, in reality two transitions occur at once: deconfinement and chiral

symmetry restoration.

Chiral symmetry restoration

For massless quarks, the QCD action has exact chiral symmetry. The chiral condensate is

defined as: 〈
ψ̄fψf

〉
=
T

V

∂ lnZ
∂mf

A non-zero value of the condensate indicates that the symmetry is spontaneously broken,

which is the case in the low-temperature phase.

⇒ The chiral condensate is an order parameter for chiral symmetry restoration.

Note: because chiral symmetry is exact in the limit of massless quarks, for physical masses the

chiral condensate is only an approximate order parameter (much like the Polyakov loop for

confinement).
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The QCD transition: observables

At the physical point (small but non-zero quark masses) both observables are able to

distinguish between the two phases, but neither is a true order parameter:
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Although deconfinement and chiral transition are two “different” transitions, we have no

evidence of them taking place at different temperatures. Unique TC !

NOTE: this chiral condensate is renormalized subtracting the zero-temperature value 15/57



More on chiral symmetry restoration

While the positive parity baryons have a mass that is stable with T, the negative parity

chiral partners’ masses go down at around Tc

1

1.2

1.4

1.6

N(−)

N(+)

Σ(−)

Σ(+)

0 50 100 150

T [MeV]

1

1.2

1.4

m
(T

)/
m

+
(T

0
)

Λ(−)

Λ(+)

0 50 100 150

Ξ(−)

Ξ(+)

S=0 S=−1

S=−1
S=−2

octet (spin 1/2)

Aarts et al., PRD 99 (2019) 074503

16/57



The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition

changes

� At the physical point ms/mud ≃ 27, the transition is a smooth crossover!

� In the heavy-quark limit (pure gauge), the transition is first order
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The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of

the transition

Left: physical masses Right: infinite masses (pure gauge)

� For a crossover (left), the peak height is independent of the volume

� For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi et al., arXiv:2202.05234 [hep-lat]
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Thermodynamics of QCD: equation of state

The Equation of State (EoS) is extremely important since it completely describes the

equilibrium properties of QCD matter.

It is one of the main inputs to hydro and several other tools for calculations in heavy-ion

collisions and higher-density physics.

Thermodynamic quantities follow directly from the grancanonical partition function Z and

the relation:

−kBT lnZ = U − TS − µN

� Pressure: p = −kBT ∂ lnZ
∂V

� Entropy density: s =
(
∂p
∂T

)
µi

� Charge densities: ni =
(
∂p
∂µi

)
T,µj ̸=i

� Energy density: ϵ = Ts−p+∑
i µini

� Speed of sound: c2s =
(
∂p
∂ϵ

)
s/nB

� More (Fluctuations, etc...)
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Equation of state at µB = 0

A combination of methods gives us good understanding of the EoS at µB = 0 at all

temperatures

� Perturbative QCD at high temperature

→ “pure quark-gluon phase”

� HRG model at low temperature

→ “pure hadron phase”

� Lattice QCD bridges between regimes

and captures the transition

Borsányi et al., PLB 370 (2014) 99-104
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Equation of state from the lattice

The pressure cannot be determined directly on the lattice, because it is not a derivative of

lnZ with respect to a parameter.

One alternative is the so-called integral method, whereby the pressure is calculated via an

integral of the trace anomaly I(T ):

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT ′

T ′
I(T ′)

T ′4

where the trace anomaly I(T ) can be determined directly on the lattice, and is:

I(T )

T 4
= T

∂(p/T 4)

∂T

∣∣∣∣
V

=
ϵ− 3p

T 4

Why can it be determined directly on the lattice? Note that, because T = 1/(Nτa):

∂

∂T
=
∂a

∂T

∂

∂a
= − 1

NτT 2

∂

∂a

hence:

T
∂

∂T
= − 1

NτT

∂

∂a
= −a ∂

∂a 21/57



Equation of state from the lattice

Now, the lattice spacing depends only on the parameters of the action, the coupling

β = 6/g2 and the fermion masses mf , hence:

∂

∂a
=
∂β

∂a

∂

∂β
+
∑
f

∂mf

∂a

∂

∂mf

Now, in homogeneous systems one has:

p =
T

V
lnZ =

1

Nτa(Nsa)3
lnZ ⇒ p

T 4
=

(
Nτ
Ns

)3

lnZ

so the trace anomaly reads:

I(T )

T 4
= −a

(
Nτ
Ns

)3
∂

∂a
lnZ = −a

(
Nτ
Ns

)3
∂β

∂a

∂ lnZ

∂β
+

∑
f

∂mf

∂a

∂ lnZ

∂mf


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Equation of state from the lattice

Now, we notice that:

�
1

NτN3
s

∂ lnZ
∂β = ⟨−sG⟩ is the gauge action

�
1

NτN3
s

∂ lnZ
∂mf

=
〈
ψ̄fψf

〉
is the chiral condensate of flavour f

Then, we note that:
dT

T
= −da

a
hence:

I(T )

T 4

dT

T
= N4

τ dβ

⟨−sG⟩+
∑
f

∂mf

∂β

〈
ψ̄fψf

〉
where ∂mf/∂β is obtained from the line of constant physics.

To conclude, we can calculate the pressure in QCD up to a constant via an integral over

one of the parameters of the theory:

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT ′

T ′
I(T ′)

T ′4 23/57



Equation of state from the lattice

What about the constant? We said the pressure cannot be determined directly.

However, we can use a similar approach and integrate it in some parameter from a starting

point where we know it. In particular, we know that p = 0 in the limit mq → ∞.

Hence, the pressure is determined as an integral in the quark masses down from infinity:

p(T0)

T 4
0

=

∫ ml

ms

dm2

〈
ψ̄ψ

〉
R,2 (m2) +

∫ ms

∞
dm3

〈
ψ̄ψ

〉
R,3 (m3)

Because at the physical point quark masses differ by flavour, we need to break the integral

into pieces.

This constant plus the integral of I(T ) gives us the pressure p(T ).
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Equation of state: example of continuum extrapolation
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Lattice QCD: equation of state at µB = 0

Change in active degrees of freedom is evident around the transition

Note: Stefan-Boltzmann limit for free gas (large T):

pQCD =
π2

45
T 4(N2

c − 1) +
∑

flavours

Nc
3π2

[
7π4T 4

60
+
µ2
fπ

2T 2

2
+
µ4
f

4

]
Borsányi et al., JHEP 11 (2010) 077
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Lattice QCD: equation of state at µB = 0

Change in active degrees of freedom is evident around the transition

Note: Stefan-Boltzmann limit for free gas (large T):

pQCD =
π2

45
T 4(N2

c − 1) +
∑

flavours

Nc
3π2

[
7π4T 4

60
+
µ2
fπ

2T 2

2
+
µ4
f

4

]
Borsányi et al., JHEP 11 (2010) 077
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Lattice QCD: equation of state at µB = 0

� Current lattice simulations are performed with realistic setup (continuum limit,

physical quark masses)

� Great agreement between different collaborations

Borsányi et al., PLB 370 (2014) 99-104, Bazavov et al. PRD 90 (2014) 094503
28/57



The sign/complex action problem

We saw that euclidean path integrals are calculated with MC methods using importance

sampling, with a Boltzmann weight detM [U ] e−SG[U ] for the configuration U

Z(V, T, µ) =

∫
DUDψDψ̄ e−SF (U,ψ,ψ̄)−SG(U)

=

∫
DU detM(U)e−SG(U)

When a chemical potential is introduced, a problem appears:

[detM(µ)]∗ = detM(−µ∗)

which means that in general the determinant is complex (complex action problem).

This means that it cannot serve as a statistical weight to guide importance sampling.

However, that is not the case if:

� there is particle-antiparticle-symmetry (µ = 0):

� the chemical potential is purely imaginary (µ2 < 0)

[detM(µ)]∗ = detM(−µ∗) = detM(µ) 29/57



The sign/complex action problem

Because finite-µ physics is of great interest, alternatives have been widely explored:

� Taylor expansion around µ = 0

One calculates derivatives of the QCD pressure at µ = 0, then construct the expansion:

p(T, µ)

T 4
=

∑
n

c2n(T )
(µ
T

)2n

, cn(T ) =
1

n!

∂n(p/T 4)

∂µn

∣∣∣∣
µ=0

=
1

n!
χn(T )

� Reweighting

Because the Boltzmann weight contains detM(µ), which is complex, move it to the

observable:

detM(µ) =
detM(µ)

detM(µ = 0)
detM(µ = 0)

� Imaginary chemical potential

Simulate at imaginary µ, then (somehow) analytically continue to real µ
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Lattice QCD at finite µB - Taylor coefficients

Results for the Taylor coefficients are currently available up to O( µ̂8
B), but the reach of the

equations of state is still limited to µ̂B ≲ 2− 2.5 despite great computational effort

� The reach of Taylor expansion is

limited by:

A) the radius of convergence

(unknown), linked to the closest

(complex) singularity of Z

B) in practice, computational power

and the (small) number of terms

� Very computationally demanding

� Signal extraction is increasingly

difficult with higher orders
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Borsányi et al. JHEP 10 (2018) 205
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Lattice QCD at finite µB - Taylor coefficients

Results for the Taylor coefficients are currently available up to O( µ̂8
B), but the reach of the

equations of state is still limited to µ̂B ≲ 2− 2.5 despite great computational effort

� The reach of Taylor expansion is

limited by:

A) the radius of convergence

(unknown), linked to the closest

(complex) singularity of Z

B) in practice, computational power

and the (small) number of terms

� Very computationally demanding

� Signal extraction is increasingly

difficult with higher orders

Bazavov et al. PRD101 (2020), 074502
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Taylor expansion

A good coverage in µB is obtained, but convergence seems still far, especially at low T
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Reweighting

The idea behind reweightin is really simple. Because we have a complex weight, change the

weight and move the original weight into the observable:〈
Ô(µ)

〉
=

1

Z(µ)

∫
DU Ô(µ) detM(µ)e−SG =

=

∫
DU Ô(µ)detM(µ)

detM(0)detM(0)e−SG∫
DU detM(µ)

detM(0)detM(0)e−SG

=

=

〈
Ô(µ)detM(µ)

detM(0)

〉
0〈

detM(µ)
detM(0)

〉
0

where ⟨· · · ⟩0 indicate averages over distribution detM(0)e−SG .
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Reweighting

Of course, this does not solve all problems!

Two problems can arise from evaluating the expression

〈
Ô(µ)

〉
=

〈
Ô(µ)detM(µ)

detM(0)

〉
0〈

detM(µ)
detM(0)

〉
0

� Overlap problem: because we use importance sampling, we generated configurations

according to the distribution detM(0)e−SG . However, the physics we search is

described by detM(µ)e−SG . If they do not overlap sufficiently, we are sampling the

distribution in the wrong way, leading to systematic errors which are hard to quantify

� Sign problem: if the denominator is nearly vanishing, the error on our estimate

blows up

34/57



Reweighting

Improvement over this simple version of reweighting can be made:

� we can reweight simultaneously in more than one parameter, e.g. (T, µ) instead of µ

only, or the quark mass, etc..

� we can exploit characteristics of the observables, e.g. if we know it is real, we can

disregard the phase
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Imaginary chemical potential

Simluations at imaginary chemical potential have been used extensively to calculate

several quantities. We can do this because the transition at µ = 0 is a crossover, so the

partition function is analytic!
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d(p/T^4)/dµ
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ĸ

The actual procedure depends very much on the observable of interest 36/57



The QCD transition at finite chemical potential

One defines the transition line Tc(µB) as:

Tc(µB)

Tc(µB = 0)
= 1 + κ2

(
µB

Tc(µB)

)2

+ κ4

(
µB

Tc(µB)

)4

At physical quark masses, the chiral transition

is more convenient:

Chiral condensate〈
ψ̄ψ

〉
=
T

V

∂ lnZ

∂mud

Chiral susceptibility

χ =
T

V

∂2 lnZ

∂m2
ud

At the transition temperature TC , the chiral

condensate has an inflection point, and the

chiral susceptibility has a peak.
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Chiral observables at imaginary µB

At imaginary chemical potential, the transition moves as Tc(µB)
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Extract the peak at each µB , for every Nτ , and find the transition line

Borsányi, PP et al. PRL 125 (2020), 052001 38/57



The transition at finite chemical potential

Current results (different collaborations agree within errors):

Tc(µB = 0) = 158.0± 0.6 MeV κ2 = 0.0153± 0.0018 κ4 = 0.00032± 0.00067
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hep-ph/1403.4903

nucl-th/1512.08025
nucl-ex/1701.07065

The transition line can also be determined via simulations at µB = 0 only (left plot)

Bazavov et al. PLB 795 (2019) 15-21; Borsányi et al. PRL 125 (2020), 052001
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The width of the transition at finite chemical potential

It is also interesting to see whether the width of the transition changes (if it vanishes, we

are at a first order transition)
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One gets at µB = 0 for the width:

∆T (LT = 4, µB = 0) = 15.0± 1.0 MeV
which also has a very mild chemical potential dependence (no critical point in sight)
Borsányi et al., PRL 125 (2020), 052001
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Intermezzo: strangeness neutrality

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

⟨nS⟩ = 0 ⟨nQ⟩ = 0.4 ⟨nB⟩ or µQ = µS = 0
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Imaginary chemical potential: equation of state

A similar approach is used for the equation of state. In this case, calculate baryon density

at imaginary µB , then extrapolate it to real µB
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Borsányi et al. PRL 126 (2021), 232001
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Thermodynamics at finite (real) µB

The pressure is just the integral:

p(T, µ̂B)

T 4
=
p(T, 0)

T 4
+

∫ µ̂B

0
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χB
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T 3
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Borsányi et al. PRL 126 (2021), 232001; Borsányi et al. 2202.05574
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Equation of state at finite µ̂B

Currently, this method gives us the widest coverage in µB of the QCD phase dagram
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Isentropic trajectories could in principle hint to the presence of a critical point, but we

don’t see any at the moment
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Fluctuations of conserved charges

Fluctuations of B,Q, S are defined as derivatives of the free energy:

Z(V, T, µB , µQ, µS) =
∑
B,Q,S

eBµBeQµQeSµSZC(V, T,B,Q, S)

wrt the associated chemical potentials:

χBQSijk (T, µB , µQ, µS) =
1

V T 3

∂i+j+k lnZ (T, µB , µQ, µS)

∂ (µB/T )
i
∂ (µQ/T )

j
∂ (µS/T )

k

They are very important quantities to study the QCD phase diagram, for a few reasons:

� we saw that baryon fluctuations are the Taylor coefficients of the pressure

� we will see shortly that they are useful probes for critical behavior

� they give insights into the active degrees of freedom in the system

� they allow a comparison to experiment
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Fluctuations of conserved charges

The value of calculated fluctuations compared to e.g. the HRG model gives info about the

relevant degrees of freedom
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Bollweg et al., PRD 104 (2021) 074512; Bellwied et al., PRL 111 (2013) 202302

Disagreement with HRG model is also below Tc. Why does χ4/χ2 peak at different T for strange

and light? Difference in hadronization temperature? 46/57



Theory-theory comparison

The value of calculated fluctuations compared to e.g. the HRG model gives info about the

relevant degrees of freedom
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Higher orders push the agreement to lower temperatures. Interactions, which play a larger role in

higher moments, are likely the reason of the disagreement

Bazavov et al., PRD 95 (2017) 054504
47/57



Fluctuations of conserved charges

One can see that lnZ is the generating function for moments of net-charge distributions:

⟨B⟩ = 1

V T 3

∂ lnZ (T, µB , µQ, µS)

∂ (µB/T )
= χB1〈

B2
〉
− ⟨B⟩2 =

1

V T 3

∂2 lnZ (T, µB , µQ, µS)

∂ (µB/T )
2 = χB2

⟨BS⟩ − ⟨B⟩ ⟨S⟩ = 1

V T 3

∂2 lnZ (T, µB , µQ, µS)

∂ (µB/T ) ∂ (µS/T )
= χBS11

In experiment, moments/cumulants ⟨(∆N)n⟩events of net-particle distributions are

measured:

mean: M = χ1 variance: σ2 = χ2

skewness: S = χ3/ (χ2)
3/2

kurtosis: κ = χ4/ (χ2)
2

Proxies are used for different conserved charges (proton for B, proton+kaon+pion for Q,

etc..)
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Fluctuations of conserved charges

How can CONSERVED CHARGES fluctuate?

� If we could measure ALL particles in a collision, they would not

� If we look at a small enough subsystem, fluctuations occur and become meaningful
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Heavy-ion collisions: event-by-event fluctuations

� Conserved charges in QCD are all quark numbers

−→ B (baryon number), Q (electric charge), S (strangeness)

� Weak effects are not considered (time’s too short)

� Charm is ignored (might not thermalize)

� Conserved charges are conserved only on average in experiment

STAR Collaboration: PRL 112 (2014) 032302 50/57



The QCD critical point

51/57



The critical point of QCD: why it’s “expected”

Many models of QCD predict the existence of a critical point:

but don’t help us in guessing where it may be!
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The critical point of QCD: universality

The critical point of QCD is expected to be in the same universality class as the 3D Ising

model. Critical exponents determine how different quantities diverge at the critical point

� α : specific heat at h = 0 behaves as

C ∼ |t|α;

� β : spontaneous magnetization (i.e. in the

limit h→ 0+) scales as M ∼ (−t)β ;

� γ : zero-field susceptibility

χ ≡ (∂M/∂H)H=0 ∼ |t|−γ ;

� δ : along the h axis, i.e. for T = TC , the

magnetization follows M ∼ sign(h) |h|1/δ;

� and so on...

� The following holds: 2 = α+ β(1 + δ)

Because the critical exponents of QCD will be the same, if there is a critical point, we

might know what to expect! 53/57



The critical point of QCD: universality

If there is a critical point, I can locally map linearly its surroundings in the Ising phase

diagram onto the QCD phase diagram.

Derivatives with respect to t or h in Ising are translated (and mixed) in toderivatives with

respect to T and µB in QCD, hence criticality appears in derivatives of lnZ wrt µB .

⇒ baryon fluctuations will show critical behaviour! 54/57



Looking for critical behavior: experiment

It can be shown that baryon fluctuations diverge at the critical point with increasing

powers of the correlation length → higher order net-proton fluctuations are most promising
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Experimental results are promising, though errors are still large

STAR, PRL 128 (2022), 202303; Stephanov, PRL 107 (2011) 052301
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Looking for critical behavior: extrapolations

Extrapolations from lattice can be made for fluctuations too, e.g.:
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Lattice results similar to experiment, hard to draw conclusions for now

Borsányi et al., PRD 104 (2021) 094508; Bazavov et al., PRD101 (2020), 074502
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Summary

� Lattice QCD is a regularization scheme for QCD that does not rely on a perturbative

expansion, and the most robust tool to explore QCD thermodynamics. Most of what

we know on the QCD phase diagram comes from lattice

� Chiral restoration and deconfinement occur at the same temperature

Tc ≃ 156− 158MeV. At physical quark masses, this transition is a smooth crossover

(at infinite quark masses, it is of first order)

� The equation of state of QCD is known to high precision, and shows liberation of

degrees of freedom and approach to Stefan-Boltzmann limit

� While lattice QCD cannot at the moment give direct results at non-zero chemical

potential (sign problem), thanks to extrapolations the phase diagram can be studied

for (not too large) finite µB
� At finite µB , we know the location of the phase transition line and the equation of

state

� The search for the critical point is in full swing from theory and experiment alike.

Here lattice has a harder time, because µB might be very large at the critical point
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