Chiral symmetry

Andrea Beraudo

INFN - Sezione di Torino

Ph.D. lectures,
Last update: April 2024

Chiral symmetry



Introduction

The confinement/deconfinement phase transition is accompained by the
breaking/restoration of chiral symmetry. Aim of this lecture is to discuss
the role of two global symmetries of the QCD lagrangian (isospin and
chiral symmetry) in understanding

@ the hadron spectrum

@ the origin of the baryonic mass of our universe
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@ Derivation of the QCD Lagrangian (local gauge symmetry)

@ Reminder: global symmetries and conserved currents in QFT

The QCD lagrangian and its global symmetries
The QCD-vacuum and chiral symmetry breaking

An explicit example: the linear sigma model

Chiral symmetry restoration at finite temperature

Chiral symmetry



The QCD Lagrangian: construction

Let us start from the free quark Lagrangian (diagonal in flavor!)

£5% = Ge()li) — melar(x).
The quark field is actually a vector in color space (N.=3):

e.g. for an up quark uT(x) = [ur(x), ug(x), up(x)]
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The QCD Lagrangian: construction

Let us start from the free quark Lagrangian (diagonal in flavor!)
£5% = 3, ()lid — melar(x).
The quark field is actually a vector in color space (N.=3):
e.g. for an up quark u” (x) = [u,(x), ug(x), up(x)]

The free quark Lagrangian is invariant under global SU(3) (i.e. VIV =1
and det(V)=1) color transformations, namely:

qa(x) — Vg(x) and g(x) — q(x) VT,
with
V =exp[i6?t’] and [t?,t°] =if®tc (a=1,...N2-1).

fabe: real, antisymmetric structure constants of the su(3) algebra.
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The QCD Lagrangian: construction

Let us start from the free quark Lagrangian (diagonal in flavor!)
£5% = 3, ()lid — melar(x).
The quark field is actually a vector in color space (N.=3):
e.g. for an up quark u” (x) = [u,(x), ug(x), up(x)]

The free quark Lagrangian is invariant under global SU(3) (i.e. VIV =1
and det(V)=1) color transformations, namely:

qa(x) — Vg(x) and g(x) — q(x) VT,
with
V =exp[i6?t’] and [t?,t°] =if®tc (a=1,...N2-1).

fabe: real, antisymmetric structure constants of the su(3) algebra.
We want to build a lagrangian invariant under local color transformations:

q(x) — V() q(x) q(x) — q(x) VI(x),

where now V/(x) = exp [i6?(x)t?].
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Due to the derivative term, Egree is not invariant under local SU(N,)
transformations:

Lhee 5 £/7°° = £ 1 g(x) VI(x) [igV(x)] q(x) (1)
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Due to the derivative term, Egree is not invariant under local SU(N,)
transformations:

Liee — £/ = LI 1 g VI () [i9V(x)] (%) )

The solution is to couple the quarks to the gauge field A, = A7 t?
through the covariant derivative

Oy — Du(x) = 0u—igAu(x),
getting:
Lq =q()[Px) — mla(x) = Lg% + gq(x)A(x)a(x).
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Due to the derivative term, Egree is not invariant under local SU(N,)
transformations:

Liee — £/ = LI 1 g VI () [i9V(x)] (%) )

The solution is to couple the quarks to the gauge field A, = A7 t?
through the covariant derivative

Oy — Du(x) = 0u—igAu(x),
getting:
Lq =q()[Px) — mla(x) = Lg% + gq(x)A(x)a(x).

The transformation of A, under local SU(N.) must be such to
compensate the extra term in Eq. (1):

Ay — AL = VA VT - é(aHV)vT.

Exercise: verify that £, is now invariant under local SU(N,)
transformations. In particular:

D,.q — VD,q = D, — VD, V' (2)
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Due to the derivative term, Egree is not invariant under local SU(N,)
transformations:

Liee — £/ = LI 1 g VI () [i9V(x)] (%) )

The solution is to couple the quarks to the gauge field A, = A7 t?
through the covariant derivative

Oy — Du(x) = 0u—igAu(x),
getting:
Lq =q()[Px) — mla(x) = Lg% + gq(x)A(x)a(x).

The transformation of A, under local SU(N.) must be such to
compensate the extra term in Eq. (1):

Ay — AL = VA VT - é(aHV)vT.

Exercise: verify that £, is now invariant under local SU(N,)
transformations. In particular:
D,.q — VD,q = D, — VD, V' (2)

We must now construct the lagrangian for the gauge-field A,
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Remember the (U(1) invariant) QED lagrangian of the e.m. field
1
LOED  — =3 Fu P with Fuy = 0,A, = 0,A,.

gauge

The field-strength F,, can be expressed through the covariant derivative

Dy=0,+ieA, — Fu = %’ [D,,D.]
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Remember the (U(1) invariant) QED lagrangian of the e.m. field
1
LD = —ZFWF’“’ with  F, = d,A, — 0, A,.
The field-strength F,, can be expressed through the covariant derivative
Dy=0,+ieA, — Fu = %’ [D,,D.]
The generalization to QCD is now straightforward:

Fru = é D,.D)] —  Fu = 8,A, — A, — ig[Au, A

F3, = 0,A; — 0,A% + gf " AL AS  (verify!)
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Remember the (U(1) invariant) QED lagrangian of the e.m. field

1
LQED _ZFWF’“’ with  Fu, = 0,A, — 0, AL

gauge

The field-strength F,, can be expressed through the covariant derivative
D,=0,+ieA, — Fu=—[D,D,)]
e
The generalization to QCD is now straightforward:

F

Ik

i ]
W — E [D/l_’D,/] — FMV = 6}1/41/ — 81"4# — 18 [A/MAI/] .
F3, = 0,A; — 0,A% + gf " AL AS  (verify!)
From the transformation of the covariant derivative in Eq. (2) one has
Fu., — VF,, VT, not invariant!

so that the proper SU(N,)-invariant generation of the QED lagrangian is

1 1
EQCD — 7§TI'(FH,,FHV) — __F? fFpra

gauge 4 W

where we have used Tr(t?t?) = (1/2)§2°.
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The QCD Lagrangian and Feynman rules

The final form of the QCD Lagrangian is then
L£QCD _ Z Ge[iP— myrlgr — Z,:/jlull:uua7

leading to the following Feynman rules (ex: derive them!)

J i 5 i(py" +m) b, v a, f 5([{)2'(_9;“' +..)
_ P2 —m2 e 000000000000 k2 + ic
p k
a a, p
iyt?]' i b, v

a f[g" (pr — p2)’ + ¢ (p2 — p3)" + g""(p3 — p1)"]
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Global symmetries and conserved currents

Consider a Lagrangian invariant under the infinitesimal transformation

¢ —r ¢+0¢
ie.
oL oL
0= L(¢+09) = L(9) = 5700+ 5r3-50(0u0)
i
oL oL N\ . 9L
=559+ 2 (305,07 s,
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Global symmetries and conserved currents

Consider a Lagrangian invariant under the infinitesimal transformation

¢ — ¢+

oL oL
=L(¢+09) — L(¢) = %&? + 9(0,0)
w

oL oL oL
— =5 9. ( —2% 56\ -5, 2%
0(*) (b * (), <0(a/10) OO) ()l (r)((?u (7) 5¢

Employing the Euler-Lagrange equations one gets then the conserved
current (at the classical level! quantum anomalies may appear)
oL dQ

Y — 3,0 —
JH = ()(d“()Oo = Q= [d°xj"(x), with ™ =0

5(9u9)
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Global symmetries and conserved currents

Consider a Lagrangian invariant under the infinitesimal transformation

6— 0406
ie.
= £(6+80) = £(0) = 500+ 550(0,0)
a or  \ . oL
350+ 00 (5,7 e, 0%

Employing the EuIer—Lagrange equations one gets then the conserved
current (at the classical level! quantum anomalies may appear)
dQ

b = Q= [d®xj°(x), with e =0

M=
I = 900,9)

In case of invariance under a continuous group ¢ — e %'t one has a
conseved current for each generator of the group, i.e.

; oL
3(8M¢,-)
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Partially conserved currents

It may happen that the Lagrangian contains a term £; which breaks
explicitly the symmetry, but is very small compared to the others:

L=Lo+ Ly, with L£; <Ly

An example is represented by the mass term for the light quarks in the
QCD Lagrangian, for which myjghe < Aqep.
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Partially conserved currents

It may happen that the Lagrangian contains a term £; which breaks
explicitly the symmetry, but is very small compared to the others:

L=Lo+ Ly, with L£; <Ly

An example is represented by the mass term for the light quarks in the
QCD Lagrangian, for which myjghe < Aqep.

In this case the concept of a partially conserved current (PCC) is still very
useful to understand qualitative features of the spectrum of the theory.
Under the field transformation ¢ — ¢+d¢ one has L— L+6L1, hence

% (5 56,5 s0) =t

PCC
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The massless QCD lagrangian: global symmetries

The matter part of the massless QCD Lagrangian can be written as
L3P =4[iPlg = Gr [IPlar + G, [Plar.
A5

In the above g = [u,d, (s)]" and gg/L = 5

qg.
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The massless QCD lagrangian: global symmetries

The matter part of the massless QCD Lagrangian can be written as
L3P =4[iPlg = Gr [IPlar + G, [Plar.
1+4°

In the above q = [u, d, (s)]” and qr/L = q.
The above Lagrangian is clearly invariant under the global symmetry
UR(Nf) X UL(Nf) = UR(].) X SUR(Nf) X U/_(].) X SU[_(Nf)

This corresponds to the following rotations in flavour space

qgr — efiocRefl'GEt"qR7 qr — efiaLefl'OitaqL

Gr — Gre’“Re!%R gL — g e’ et

In the above t?'s (a =1,...N2 — 1) are the generators of the SU(Nr)
group and all the parameters ag, oy, 0%, 0] are independent.
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The massless QCD lagrangian: global symmetries

The matter part of the massless QCD Lagrangian can be written as
L3P =4[iPlg = Gr [IPlar + G, [Plar.
1+4°

In the above q = [u, d, (s)]” and qr/L = q.

The above Lagrangian is clearly invariant under the global symmetry
UR(Nf) X UL(Nf) = UR(].) X SUR(Nf) X U/_(].) X SU[_(Nf)

This corresponds to the following rotations in flavour space
qgr — efiocRefl'GEt"qR7 qr — efiaLefl'OitaqL
Gr — aRelozR el@fﬂ.‘a7 qr — ﬁLeiaL ei0fta
In the above t?'s (a =1,...N2 — 1) are the generators of the SU(Nr)
group and all the parameters ag, oy, 0%, 0] are independent.

One gets the classical conserved currents
Jry = ARy AR/ JrjL = ARy AR/
For Ny =2, t*=72/2 (Pauli matrices) and j,g’/aL = qr"(77/2)ar /L
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The massless QCD lagrangian: global symmetries (II)

It is convenient to combine the L/R currents into vector and axial ones

VI =g +il =a"a,
A= g =l =T,
VS = 4 =gy (e 2)q,
AP = g =t ="y (7/2)q
Going from N¢=2 to Nf=3 one simply replaces (77/2) — (A\?/2)

(Gell-Man matrices in flavour space).
They are associated to the symmetry group

Uv(l) X SU\/(N{) X UA(].) X SUA(Nf)

We will comment on the role of each of these classical symmetries.
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Uy (1) symmetry

It corresponds to the invariance for
i

qg— e '“q, q—qe”

rotating by the same angle R and L components.
It is associated to the conservation of the baryon number

B = (1/3)0" = (1/3) [¢x 4! (x)a(x)
= (1/3) [ [ak(x)an() + gl (D (L

i.e. the net number of quarks (right-handed plus left-handed).
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Uy (1) symmetry

It corresponds to the invariance for
i

qg— e '“q, q—qe”

rotating by the same angle R and L components.
It is associated to the conservation of the baryon number

B = (1/3)0" = (1/3) [¢x 4! (x)a(x)
= (1/3) [ [ak(x)an() + gl (D (L

i.e. the net number of quarks (right-handed plus left-handed).

Baryon number is exactly conserved in QCD. This does not mean that it
is exactly conserved in nature, as suggested by the matter-antimatter
asymmetry in our universe
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Ua(1) symmetry

It corresponds to the invariance (of the massless Lagrangian) for

qg— e g, g—sge " (since {4",7°} = 0)

rotating by opposite angles R and L components (75qR/L:iqR/L).
It would be associated to the conservation of the axial charge

Qa= [dxa!(1%ax) =[x [ak(x)an() - al(x)a ()

i.e. to the number of right-handed minus left-handed quarks.
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Ua(1) symmetry

It corresponds to the invariance (of the massless Lagrangian) for

g— e g, G—ge " (since {(1".7°} =0)

rotating by opposite angles R and L components (75qR/L:iqR/L).
It would be associated to the conservation of the axial charge

Qa= [dxa!(1%ax) =[x [ak(x)an() - al(x)a ()

i.e. to the number of right-handed minus left-handed quarks.
However, although being a symmetry of the classical QCD action, Ua(1)
is not a symmetry of the theory, being broken by quantum fluctuations:

2
L g 1 afuv Fca fFa
8'“/4'1 __Nfﬁie ® F/’”’ B
2
_ 8" Fap,ara
= N;-S_FobeF,
1672 b

Quantum anomalies of axial currents at the basis of the 7% — ~v decay
and of the i/ being much heavier than the other pseudoscalar-mesons
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SUvy(Nf) symmetry

It corresponds to the invariance for

qg— e q  G— g, (t*=72/20r X\?/2)

rotating by the same angles 6°'s R and L components.
It leads to the conservation (we focus on Nf=2) of the Isospin charges

Q= / dx g (x) 7 q(x),

which play the role of generators of the Isospin rotations.
It is a symmetry of the Lagrangian and of the theory: QCD vacuum (and
spectrum) invariant under Isospin transformations (more in the following)

o107}

0)=10 < QV0)=0

Isospin charges annihilate the vacuum!
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SUa(Nf) symmetry

It corresponds to the invariance for

_;‘0‘31_“‘9'y5q7 g— ae—i@"t‘a'\f” (ta _ 7_3/2 or )\a/2)

g—>e

rotating by opposite angles R and L components.
It leads to the conservation (we focus on Nf— ) of the axial charges

m—/$m %(x).

playing the role of generators of the chiral (flavour-changing) rotations.
Although being a symmetry of the Lagrangian, it is not a symmetry of
the theory: QCD vacuum (and spectrum) not invariant under chiral
rotations (spontaneous symmetry breaking!)

e 9%0) £[0) & QFl0) #£0 ie. Q30)=[P7)
Chiral charges create physical states: pseudoscalar mesons
Hqcpl0) =0 and [Hqep, Qi) =0 = H|P?) =0 (Goldstone theorem)

Pions (kaons and 7)) can be considered the Goldstone bosons associated
to chiral-symmetry breaking: much lighter than other hadrons!
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SUa(Nr) symmetry and the QCD spectrum

According to the Goldstone theorem there is one massless boson for each
generator of a broken continuous symmetry.
a

A
In the case Nf=3, with generators t? = 5 (a=1,...8), they can be
identified with the octet of pseudoscalar mesons

T ) K+
e ~ @ m, ~ 138 MeV
a=1 @ myg =~ 495 MeV
o kK F e m, ~ 548 MeV
g=-1  ¢=0

NB due to the axial anomaly the original symmetry group is reduced
Ua(N¢) — SUa(Nr), hence the number of spontaneously broken
generator is 8 instead of 9: in fact m,y = 958 MeV, much heavier than
all the other pseudoscala mesons
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Quark masses and explicit symmetry-breaking

Consider the transformation of the mass term in the QCD Lagrangian

Ly =—qmq = —qrmqL — G mqr
One has, being m = diag[m,, mg, (m;)],

gmqg — qmq — i0°gmtiq + 607Gt mqg + ...
SUy(Nr)

gmgqg Smf) gmq — i0°Gmt°~°q — i07°gy° 7 mq + ...
From 0, j* = 0L; one gets:
0, VH =ig[m,t%)q and 0,A"? =ig{m,t"}y°q
Focus on the Nf = 2 case:

@ as long as m,=my#0, the isospin current is exactly conserved.
Since m,~ my, isospin is an almost exact symmetry of QCD

@ m#0 explicitly breaks chiral symmetry. However, since m<Aqcp,
one speaks of Partially Conserved Axial Current (PCAC)
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Transformations of mesonic currents

We now understand better the physical meaning of isospin and chiral
transformation by considering their action on current operators having
the quantum numbers to create/destroy different mesons:

pion-like state: @ = ig7>q; sigma-like state: o
rho-like state: g* =qG7y"q; ar-like state: n =

Channel PS S \% PV
Particle T o p a
Mass (MeV) | 138 | 500 | 770 | 1260

@ Pions are responsible for the long-range NN attractive interaction;

@ Due to their large width, scalar mesons are difficult to identify.
Usually one identify the sigma with the f(500) state of the PDG, a
broad 2-pion resonance, playing a major role in the nuclear binding;

@ Vector mesons are responsible for the short-range repulsive NN
interaction. In symmetric nuclear matter major role played by
isoscalar w(782) meson: wh ~ G+*q.
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Transformations of mesonic currents: SUy (Nr)

The transformation of the quark fields is given by

g— e TG Gy gl /)

From {72, 7%} = 2§20 and [72, 7%] = 2ie?>°7¢, one gets:
@ [soscalar mesons: gg — qGq, hence 0 — o

@ Isovector mesons

2 2
= igT°q+€0°(ig7°9°q)

. 5 . 5 b 5Tb b 5
7 iqTy’q — iqTY’q+0° (97 59— 577q

Hence, they transform as vectors

T — T+0

Isospin rotations mix mesons belonging to the same multiplet, having the
same mass. It is a symmetry of the QCD spectrum!

Chiral symmetry



Transformations of mesonic currents: SUa(Ny)

The transformation of the quark fields is given by
q— e—i99(73/2)’y5q’ g — ae—i05(75/2)’y5
From {72 7%} = 2§20 and [72, 7%] = 2ie?>°7<, one gets for instance

b
. T
m: igTiyq — /qr'yq+0b<q7' Sata 5T q)

= igT°q+6°qq
The complete set of chiral transformations is given by (verify!):

—

T— 7T+ 00, c—oc—0-7
ot — p* + 6 x a”, at — "+ 0 xpt
Scalar/pseudoscalar and vector/pseudovector mesons are mapped one

into the other by chiral rotations. However, such a symmetry is not found
in the spectrum (my # my, m, # m,,), it is spontaneously broken!
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Pion decay and PCAC

Pion decay is an electro-weak process

W
d wh wt

In the Fermi theory it can be described as a point-like current-current
interaction, with both vector and axial components (V —A).
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Pion decay and PCAC

Pion decay is an electro-weak process

d wh wt

In the Fermi theory it can be described as a point-like current-current
interaction, with both vector and axial components (V —A).

Only the axial current has the quantum number to annihilate a pion and
the matrix element connecting the pion with the (QCD) vacuum is

(014, (x)[m°(q)) = —i g, 5% e ™

with £, =93 MeV taken from 75*P.
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Pion decay and PCAC

Pion decay is an electro-weak process

W
d wh wt

In the Fermi theory it can be described as a point-like current-current
interaction, with both vector and axial components (V —A).

Only the axial current has the quantum number to annihilate a pion and
the matrix element connecting the pion with the (QCD) vacuum is

(015, (x)|7*(q)) = —ifrqu 0% e
with 7. =93 MeV taken from 75*P. Taking the divergence one gets:
a b _ 2¢cab _—ig-x __ 2 cab_—ig-x
(0]0" A% (x)|m°(q)) = —f=q 0% e "9 = —fm;6%e ™"

In case axial current were exactly conserved, 8“AZ:0 and hence m, =0.
Small pion mass comes from explicit symmetry breaking. (m, 4 #0)
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Spontaneous chiral-symmetry breaking: the linear o-model

The linear o-model is the simplest hadronic lagrangian consistent with the
isospin and chiral symmetry and including the possibility of spontaneous
breaking of chiral symmetry. Here we illustrate its construction.
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Spontaneous chiral-symmetry breaking: the linear o-model

The linear o-model is the simplest hadronic lagrangian consistent with the
isospin and chiral symmetry and including the possibility of spontaneous
breaking of chiral symmetry. Here we illustrate its construction.
Remember the transformation of the pion and sigma fields:

SUy(2): #—R+0%x7 o —o0

SUA(2): ® — @400, o — 0—0-7
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Spontaneous chiral-symmetry breaking: the linear o-model

The linear o-model is the simplest hadronic lagrangian consistent with the
isospin and chiral symmetry and including the possibility of spontaneous
breaking of chiral symmetry. Here we illustrate its construction.
Remember the transformation of the pion and sigma fields:

SUy(2): #—R+0%x7 o —o0
SUs2): 7 — ®+00, o — 0—0-7
Hence, under infinitesimal transformations, for their squares one has:
SUy(2) : 72— 72 0% — o?

SUa(2) : 72— 242070, o> — 0> —20-7c
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Spontaneous chiral-symmetry breaking: the linear o-model

The linear o-model is the simplest hadronic lagrangian consistent with the
isospin and chiral symmetry and including the possibility of spontaneous
breaking of chiral symmetry. Here we illustrate its construction.
Remember the transformation of the pion and sigma fields:

SUy(2): #—R+0%x7 o —o0
SUs2): 7 — ®+00, o — 0—0-7
Hence, under infinitesimal transformations, for their squares one has:
SUy(2) : 72— 72 0% — o?
SUa(2) : 72— 242070, o> — 0> —20-7c

The combination (72+0?2) is invariant under SUy,4(2) transformations:
pion and sigma fields must enter in the Lagrangian in such a form:

’ 1
L? 5(0,,,7?0“7? + 0,0 0t0) — V(7% +0?)

o—mod

where, with compact notation, ¢'=(7, o) (i=1,...4). The linear
o-model is also known, due to its symmetry, as O(4) model
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Let us now introduced also the nucleons. In order not to break chiral

symmetry they must enter in the Lagrangian as massless particles:
cokin iy, where = (p,n)"

o—mod

Under SUy 4(2) transformations the nucleon behaves as the quark field
SUV(2): o — e T2 ah — 4pel®(7/2)
SUA(2): & — e 0Dy Ty e it/
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Let us now introduced also the nucleons. In order not to break chiral

symmetry they must enter in the Lagrangian as massless particles:
Lok — juay,  where ¢ = (p,n)T

o—mod
Under SUy 4(2) transformations the nucleon behaves as the quark field
SW@): s e TG T e/
SUM2): 6 — e 2P Gy e/
SUy(2) x SUA(2) symmetry constraints its coupling with the mesons
‘C:i)rm)d = —&r ; {IH 57? T+ U]

Let us verify it invariance under SUy(2) transformations:
Yoy — Yorp
—r . 55 o — el 67
V7wl — 9l ’7577'7']¢+'*¢[’75737b T
[Iry5 b a b]w _i_a [ify5(9 X 7-(-)7‘—’} w

From [72, 7°] =2ie?"“7¢ one gets [ 7Ty — [ iv>7-7]ub

Repeat for SUA(2) transformations...
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Bov — o~ io Grrou
—%%r%% — (0 7Y
= Yo i~5§.m]»-
HiRTle — PliE T]w—/— [i7°7® 777" o]y
S S+ 7
=l R T +9[ir°8-7 oy

Hence, while the scalar and pseudoscalar interactions are sepately
invariant under isospin rotations, only the combination [0+ iv>%- 7]
remains invariant under chiral transformations. This entails that a unique
coupling constant governs both the scalar and the pseudoscalar
interactions.
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We have seen that, although the QCD (and the effective o-model)
Lagrangian is invariant under SUa(Nr), the spectrum is not. The
potential must induce a spontaneous breaking of chiral symmetry

V(o, n=0)

V = V(7?+0?) = % [(7?2 +0?) — f2]2

Fields acquire a vacuum expectation value (VEV) minimizing the
potential (%) =0 and (o) = 09 = ;.
NB Identification of f; with the minimum of the potential to be proven!
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We can perform fluctuations around the VEV and rewrite the full

Lagrangian in terms of the new field variables 7(x) and o(x) = f; + s(x)
It is convenient to employ the field ¢' = (7,0) = (7, f +5) = ¢y + 7',
with the VEV ¢} = §'*f,. The potential reads then

V= 2@~ 217 = 2 [(0h+ )26k + ) 2k + V8 + 1Y)

™
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We can perform fluctuations around the VEV and rewrite the full
Lagrangian in terms of the new field variables 7(x) and o(x) = f; + s(x)
It is convenient to employ the field ¢' = (7,0) = (7, f +5) = ¢y + 7',
with the VEV ¢} = §'*f,. The potential reads then
i 2_ A i i j j i i
V= 2102 = £2)" = 2 |(6h+ 0 (¢h+ 1) = 200h + 0 62 + £
Constant and linear terms in the fluctuations 1’ vanish and one gets
1 A
V= 5(2)\7;2) 2+ Mys(m2+5%) + Z(Wz + s%)?
Notice that:

@ Pions are massless: m,; = 0 (Goldstone theorem)
@ The o-meson gets a mass: m? = 2)\f?

@ Cubic self-interaction terms among the mesons appear
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We can perform fluctuations around the VEV and rewrite the full
Lagrangian in terms of the new field variables 77(x) and o(x) = f; 4 s(x)
It is convenient to employ the field ¢/ = (7,0) = (7, fr +5) = ¢} + 7',
with the VEV ¢} = §"*f,. The potential reads then

i 2 A i i j j i i
V= 2102 = £2)" = 2 |(6h+ 0 (¢h+ 1) = 200h + 0 62 + £
Constant and linear terms in the fluctuations 1’ vanish and one gets
1 A
V= 5(2)\;;2) 2+ My s(m? + %) + Z(7r2 + s%)?

Notice that:
@ Pions are massless: m,; = 0 (Goldstone theorem)
@ The o-meson gets a mass: m? = 2)\f?
@ Cubic self-interaction terms among the mesons appear

From the coupling with the nucleon field one gets:
£ff;10d + ‘C?fﬁmod = a [I@ — &r fﬂ'] w - gﬂ'a [1757?7?—"_ S] w

The nucleon gets its mass from chiral-symmetry breaking!



Nucleon mass: some comments

ng:rr;od + ‘C?iﬁmod - ’@@Kb - gﬂ'@ [/’)/57_1"7_"—{— U] ¢
= P [i)— gt — g= ¥ [IV°RT+s] 0
O [i — M) Y — gr 00 [iV°R-T+s| v

@ The model allows the nucleon to get a mass in a way consistent
with the chiral-symmetry of the Lagrangian: no explicit symmetry
breaking!

@ Most of the present baryonic mass in the universe got its origin at
the chiral transition, when (o) =0 — (o) #0

@ One gets the Goldberger-Treiman relation g, = My /1., entailing
gr ~ 10 (it will receive positive corrections): chiral symmetry allows
one to get an estimate of the (QCD!) pion-nucleon coupling, just
from the nucleon mass and the pion decay-constant (e.w. process!).
The pion-nucleon coupling is very large!

Chiral symmetry



Linear o-model: the full Lagrangian

Let us collect all the terms and write the full Lagrangian:

1 1 1
2 1 fe 222
Lo _mod 28H7r o'+ 2(%58 s 2mr,s
A — _
= Mrs (7% 45%) = 2(7* 4 872+ 0 [ = Ma] Y — g ¥ [I°7-7 + 5] ¢

with m2 = 2X\7? and My = g, f,
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Linear o-model: the axial current

Starting from the Lagrangian written in terms of the original fields

1 A
Lo—mod = 5 (aﬂﬁa“ﬁ + a#o' 8”‘0—) _ Z [(7—1.'2 + 0_2) B f£]2
+ i) — gr ) [IV°TT 4 0] ¢
and from the transformation law of the fields under SUA(2)
a
¢_”/J—"75%9a¢ T — T+ 00 c—o0—0-7

one gets:

oL , ra

jH = 78((9”(1),.)5(])' — A= Lg’yl,"/s?w — 20,0 + 00,7

Chiral symmetry



Linear o-model: the axial current

Starting from the Lagrangian written in terms of the original fields

»Cafmod = % (8;47?8“7? + a,_LO' aNO') [(71' + O’ 2]
+ IW‘M} g [/75 7ol

and from the transformation law of the fields under SUa(2)
a
w—w—/f%aw Fdtlo o-—o—0-7
one gets:
. 8£ i a 7 ,7_a / arc < a
jH= W&D — A= @“WM"SEW — 70,0+ 00,m

In terms of the shifted fields one has
a
%w — 10,5 + £, 0,717 + s 0,77,

consistently with the pion-decay matrix element
(OIA% ()Im™(q)) = —i frq,0™e™ '™

A/l = 1/;7#75



Explicit symmetry-breaking

Ls—mod Must be supplemented by a small explicit symmetry breaking
term arising from the non-zero quark masses:

,CQCD E(lrfmod

—-gqmqg — =e0

This corresponds to a modification of the potential

V(o, n=0) A
V = 7 [(7r +0 )— vg]z—erf
We require (o) = £, so to satisfy My = g1
ov €
- —| =0 I L p—
- - Oo £ - "o i )\fﬂ

The o-meson and pions receive a positive mass correction

o2V € o2V =
2 2 2

m. = — =24+, mi=——=| =_—#0
O (0,fx) fr Om? fr fr
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The nucleon mass

We have imposed the Golberger-Treiman relation My = g, f; even in the
presence of explicit symmetry breaking. However, we may ask which
fraction of the nucleon mass comes from the spontaneous (vy) and from
the explicit (€) symmetry-breaking. To linear order in € we have:

1 € €
Rfpr— -~ — My =gty =g —
v 202 N=Erlr =8 (V°+2>\f,3>
Hence
€ fom? m? m2
My=griroes = 8t = My——"— ~ My— < M,
OMw gﬂ2)\f7§ & 2)f2 ng—m,/zr ng < M

Experimentally one gets d My ~ 50 MeV

@ only a small fraction of the baryonic mass of our universe is due to
the Higgs mechanism (via m, 4 # 0) at the electro-weak phase
transistion!

@ most of the baryonic mass of our universe got its origin at the chiral
QCD transition at T ~ 150 MeV
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The width of the & meson

From the omm coupling one can calculate the ', decay width:

3 2m,\° m2 — m2 2
ra'—>1'r7r = 1-
32tm, mg fr

getting ', .. ~ 0.3 — 0.6 GeV, depending on the value of the o mass
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Linear o-model and PCAC

From the SUa(2) transformation of the symmetry-breaking term
Li=e0c — L1+0L1=€0—ehn?
and from 9,j# = 6L one gets:
OMA] = —em® = —frm?n?,
consistently with the pion-decay matrix element

(0|0“Ai(x)|ﬂb(q)) = —fq?0%Pe % = _f m2§beiax
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Linear o-model and PCAC

From the SUa(2) transformation of the symmetry-breaking term
Li=e0c — L1+0L1=€0—ehn?

and from 9,j# = 6L one gets:

OMA] = —em® = —frm?n?,
consistently with the pion-decay matrix element

(0|0“Ai(x)|ﬁb(q)) = —f,q?0%beiax = —fwmiéabe_iq'x
Finally, from the link with the QCD Lagrangian
£y = ¢ EfCD = —gmgq

one gets (m, =~ my) the Gell-Mann-Oakes-Renner (GOR) relation:

o) = —mlqq) — f2m? - T

= (Tu+dd)

T

establishing a link between hadronic and partonic quantities.
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GOR relation in lattice-QCD

0.08
(amy, )2 r
0.06 -

my~676 MeV.e+

0.041 484 .

381
0.02- 294

T E S N U S B
00 0.01 0.02 0.03 am

(M. Lischer, hep-lat/0509152)
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The pion-exchange potential

The one-pion exchange potential (OPE) plays the major role in
describing the “long-range” nucleon-nucleon interaction (although not
necessarily in ensuring the binding of large nuclei). It corretly accounts
for many properties of the deuteron, the lighest nuclear bound state. lts
explicit expression can be obtained from the non-relativistic reduction of
the NN scattering amplitude obtained from the pseudoscalar interaction
of the linear sigma-model (the t-channel is considered):

iM=1(1") (g’ T"’)U(l) — (2') (g7 u(2)

™

In order to take the non-relativistic limit it is convenient to work in the
Dirac representation in which

0_]10 k 0 O'k 5_0]1
7‘(0 1) 7 T\ 0) 77 \1 o0

The non-relativistic one-pion exchange potential in momentum space will
be obtained considering for the nucleons the limit p < M and setting the
energy transfer g° — 0
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The pion-exchange potential

The non-relativistic nucleon spinors read

o(p) = “M(%) a5 = ()
= _— g- = y ?
oM\ Thx 2M E+M

where x=(1,0)7 or (0,1)" are two-dimensional Pauli spinors. One gets
then, for p < M,

_ = 8 IR
grr“(ﬁl)’YSTaU(Pl) ~ m 26 (Pr—py) = WT 0-q,

where the matrix elements of the spin and isospin matrices are assumed
to be taken between the final and initial nucleon state. In the static
q° — 0 limit the pion propagator reduces to

1 -1
G2 — m2 =0 G+ m2
One gets then (Viz = —M,y,)
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The pion-exchange potential

It is convenient to decompose the spin structure of the potential into a
central and a tensor part according to

(G1-@)(02-9) 1 & © e Ay s
aQ_,_mgr = 352_’_m3r[3(0-1'q)(0'2'q)_0'1 09 +01 0'2]
S12(4)
One obtains
. 1 g2 mo\ L 32 . .
Vlﬂ(Q):*§4M2 [(1M 01'02+m512(Q) T T2

In going to coordinate space, for the tensor piece one needs to evaluate a
Fourier transform of the kind

/ (2d7r6)3 §ITF(@)36'd - 87] = (377 — 67)A(r)

Contracting the above expression with 77 one gets

A(r) = %/ (;7?)3 ¢IF(G)B(G - P)(a-F) — 1]
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The pion-exchange potential

It is then possible to write the OPE potential in coordinate space

Vi (F) = ViG(7) + VAL (P),

where the central piece reads

g”r 1 —myr - - - o
Ve = ot [T e 50| 272 ()
and, being S12(F) = [3(641 - £)(F2 - F) — &1 - 2], the tensor one
2
g” 1 1 —Myr ~ - —
Vl” = 4M2 3 {47{7 47|'r2 347Tr3} © S12(F) (71 - )

Whether the potential is attractive or repulsive depends on the
spin-isospin state of the nucleon-nucleon pair

0 S=1=0: (G1-62) (71 %) =(-3)(-3)=9
0 S=1=1: (1-3) (7 ) =(1)(1) =1
@ S=1and /=0 (or viceversa): (1 -d2) (71 -75) = (1)(-3) = -3



The OPE potential and the deuteron

The deuteron is the only NN bound state. It occurs in the S=1 and
/=0 channel, in which both the central and the tensor potential provide
an attractive contribution. Notice that [L, ;"] # 0, so that the deuteron
wavefunction cannot be an eigenstate of the orbital momentum. The
latter is a superposition of a s-wave and a d-wave:

D)y=a|lL =0)+p|L=2) with |a|*+|8]*=1.

One finds |a|? ~ 0.96 and |3|? ~ 0.04, which explain both the magnetic
moment (i) ~ 0.857 o (uo = efi/2Mc) and the positive electric
quadrupole moment (Q) = e(3z? — r?) /4 ~ 0.286 e-fm? of the deuteron.
Notice that for a pure s-wave, due to spherical symmetry, one would have
(Q)s = 0. The tensor interaction favours a charge distribution aligned
along the spin axis and explains the positive quadrupole moment, i.e.
(z2) > (x?), (y?). Take the spin configuration |+, +); one has:

(VT (riiy)) ~ =3(+, +|30%0% — &1 - O]+, +) = —3(3—1) = —6
(ViL(riy)) ~ =3(+, +[30503 — &1 - Go|+,+) = =3(~1) =3
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The OPE potential and the virtual NN levels

The OPE potential is attractive also in the S=0 and /=1 channel. However,
in this case, the attraction is weaker since the tensor potential vanishes acting
on a spin-singlet state |S=0) = 1/v/2(|+, —)—|—, +)). Taking 7 along the
z-axis one has

(30703 — 61 )|S = 0) = —3 — (—3) = 0.

The attractive interaction is not sufficient to support a bound state (i.e. with
E < 0). However, low-energy experiments display the existence of a virtual
positive-energy level: the wave-function of E — 07 scattering states is large
close to the origin. Due to isospin symmetry such a state should be present
also in the p-p case. Such a resonant “diproton” state is of strong importance
in the fusion reactions occurring in the stars. Two protons can cross the
Coulomb repulsive barrier through tunneling and come close to each other so
that the attractive nuclear interaction can lead to the formation of a resonant
diproton state, which would decay back very soon into a p-p pair. However, in
a very small faction of cases, the resonant "diproton” can decay weakly into a
bound deuteron while the two protons are close to each other

p+p—=He* 5’H+e" 4 ve
NB: if the diproton were bound, the weak decay would occur each time the

protons cross the Coulomb barrier and the stellar evolution would be different!
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NN scattering: triplet vs singlet

Spin triplet: $=1,1=0 Spin singlet: $=0, 1=1

€ a T a T
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f
V=34 MeV (deuteron
€ a r a r V,=50 MeV

" (barn)

,
is 0

-, o1

,
10
k (MeV)

For k = \/2uE/R2 — 0" (i.e. ka < 1) only the | = 0 term of the partial-wave
expansion of the scattering amplitude matters

1
— 2 ; _
o =4r ,E:O 21+ 1)|a(k)|® with ai(k) = Kcot o,(K) — ik’

parametrized in term of a scattering length v and an effective range ry

1 1
keotdo(k) m ==+ o0k’ +.. — o ~ 4ma’
Q N

One gets as—1 ~ 5.35 fm and a:—9 &~ —23.55 fm, much larger than the range
of the potential due to |¢| < Vo (o™t ~ \/2ulel/h?), leading to the
e—

spin-averaged cross-section 0 = 0.250¢ ; + 0.750¢.; &2 20 barn

Chiral symmetry




If the di-proton were bound...

What would happen if the di-proton were bound? It would be sufficient that the
potential well were just a bit deeper (i.e. stronger coupling) or larger (i.e. lower
pion mass). The consequences were analyzed in a wonderful paper by Dyson

ENERGY IN THE UNIVERSE

The energy flows on the earth are embedded in the energy flows
in the universe. A delicate balance among gravitation, nuclear

reactions and radiation keep the energy from flowing too fast

by Freeman J. Dyson
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If the di-proton were bound...

What would happen if the di-proton were bound? It would be sufficient that the
potential well were just a bit deeper (i.e. stronger coupling) or larger (i.e. lower
pion mass). The consequences were analyzed in a wonderful paper by Dyson

@ + @ - 4 @ + PHOTON
PROTON PROTON HELIUM 2
/ £
@ . - Q) 4+ POSITRON +  NEUTRINO
HELIUM 2 DEUTERON

If the di-proton were bound each time two protons cross the Coulomb barrier
they would form a 2He nucleus, emitting a photon. The 2He would then decay
weakly into deuteron. There would be no deuteron bottleneck in Big Bang and
stellar nucleosynthesis. Stars like the Sun would end very soon their fuel,

because nuclear reactions would occur very fast.
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O(4) model at finite temperature: x-symmetry restoration

We now wish to study the temperature evolution of the order parameter
associated to chiral-symmetry breaking, i.e.

(o)1 (hadron level) or (gq)r (quark level)

It is convenient to consider L, _moq as the N=4 case of the O(N)
model, performing the calculations in the N — oo limit. Hence:

V= % (@2 2%, with ¢ =(7,0)

At finite temperature we can consider the thermal expectation value
<O)f>o (6P — )y =0

We can split the fields as follows:
¢'=(¢")r +n', where (%)7=0, (o)7 =07

One gets ((n')r = (n'n/n*)r = 0):

((6)7)" (&) + i) o)+ 2w 7 (6) 7 — £2(o/)7 =0
—— ——

O(N) o)
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It is now convenient to perform the large-N approximation (N=4
corresponding to the physical case, with 3 pions and one o-mesons)

(&) 1) (&) + () (&) — F2(¢)r =0
(o

We focus on the equation for the (¢")7 = (o)1 = o1. One has:

i ) dk Nk T2
=f2—(n'n)r with (n'n’) g R )
k m;

In the above Ny is a Bose distribution and € =+/k2 + m?.
We can study two different limits:

@ 7 — 0: N—1 massless pions; o-meson (m,>> T) can be neglected

T2 T2
2 _ 21 v L o210
or=fr (1 (v 1)12);2) s (1 4f3)

@ T — T.: pions and o-meson (m, > T) become degenerate and

massless
T2 T2
_ £2 _ ~ f2 _
(v ) (1 5m).

from which one gets the estimate T, ~ \/3f, ~160 MeV.
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The Gross-Neveu model

A nice model of dynamical breaking of chiral symmetry is given by the
Gross-Neveu Lagrangian

Lan = pigy ToN (w $a)?  a=1..N,

where a label some internal degree of freedom. The model is well suited
to perform a 1/N expansion and is usually studied in 2 dimensions, where
it is renormalizable ([¢)] = L~/2) and analytic results can be obtained. In
the 2-dimensional case the Lagrangian has the discrete chiral symmetry

Y=Y, = —y® with 4® =409,

which follows from the usual properties of v°
P =" (°P=1 {PA=0

Under this discrete chiral symmetry 1) — —1), so that the chiral
condensate (11)) can be used as an order parameter for the phase
transition.
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The quark self-energy and propagator

The perturbative expansion of the quark propagator iS(p)™! = p— T or,
in coordinate space,

S(x=y)=Se(x=y) + [, SF(x=2)(=ix(2,2))S(x—y)

g = + + ...

Six-y) = SEey)+ iy [T 0T 05" @0 @0 @0 (@) +

allows one to identify the lowest order contribution to the self-energy

ypert _ ydir + yexch _ %2 [TI“SF(L Z) - SF(Zv Z)] )

where the exchange term (~ %) is subleading by a factor 1/ wrt to the
direct one (~ 676") and can be dropped in the large-N limit. Notice
that P turns out to be momentum-independent (contact interaction!)
and that, for massless quark, it vanishes (Trp=0).
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The quark self-energy and propagator

The perturbative expansion of the quark propagator iS(p)™! = p— T or,
in coordinate space,

S(x=y)=Se(x=y) + [, SF(x=2)(=ix(2,2))S(x—y)

oS Ne

Direct, O(1) Exchange, O(1/N)

2N

allows one to identify the lowest order contribution to the self-energy

SV(-y) = Skxy) +ie [ (TU 0T ()5 ()0 (@0 (@0H() + .

prert =yl geeh = BL2[TrSe(z,2) — Se(z.2)],

where the exchange term (~ %) is subleading by a factor 1/ wrt to the
direct one (~ 676") and can be dropped in the large-N limit. Notice
that P turns out to be momentum-independent (contact interaction!)
and that, for massless quark, it vanishes (Trp=0).
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The self-consistent Hartree approximation

Even starting from massless quarks one can obtain a non-trivial solution
by adopting a self-consistent approach (Hartree approximation)

+
«_ &0 dp im*
vy=2oms = 202N
H=Sp (z,z) — m 2N( )/(27r2p2—m*2+ie

A self-consistent solution for the dynamically-generated quark mass arises
from the gap-equation (after Wick-rotating p° =ip2)

1_o /‘d 1
— ) et m?

The latter looks similar to the gap-equation of the BCS theory of
superconductivity (energies & measured wrt to the Fermi surface):

Vo /"WC 1
1=2 dEN(§) ———u
2 ) EN(€) R



The self-consistent Hartree approximation

Even starting from massless quarks one can obtain a non-trivial solution
by adopting a self-consistent approach (Hartree approximation)

£ - d’p im*
Yp==-2T , — = —
H= 2 Tron(z.2) Y, r)2 p2 — m*2 + e

A self-consistent solution for the dynamically-generated quark mass arises
from the gap-equation (after Wick-rotating p®=ip2)

' dsz 1
1=2 ——
& / (277 pf + m*2
The latter looks similar to the gap-equation of the BCS theory of
superconductivity (energies £ measured wrt to the Fermi surface):

_ ﬁ hwc 1
1= /h N T
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The self-consistent Hartree approximation

Even starting from massless quarks one can obtain a non-trivial solution
by adopting a self-consistent approach (Hartree approximation)

im*
252 2 e
A self-consistent solution for the dynamically-generated quark mass arises
from the gap-equation (after Wick-rotating p° =ip2)
" dp 1
1*2g°/(2~> P+ m?
Notice that the dynamical generation an effective quark mass is
associated to the spontaneous breaking of chiral symmetry:
N

(Yp) = =TrS(z,z7) = ——m"
&o
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Renormalization and running coupling

The integral involved in the gap-equation is UV divergent and needs to
be regularized by a cutoff A

1 N d?%pg 1 11 A2 1. A2
— 5 ol — _— = — |n 5 ~ — |n )
2g0 (27)2 pg + m* & 2« m* 2 m*

Let us now introduced the renormalized coupling at the scale M

L1 1,8
gM) g 27 M?

Substituting the result for go the dependence on A cancels and one gets

1 1 M1 , o
L M o MPep (2o 2
gM) 2 "mit m eXp< g(l\/l))

Notice the non-analytic dependence on the strength of the interaction,
similar to the one in the BCS theory of superconductivity

1
A~ 2h€dc exp (_N,\/)
0
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Renormalization and running coupling

The integral involved in the gap-equation is UV divergent and needs to
be regularized by a cutoff A

1 /A d?pe 1 R 1 1 n (14 A2 1 | A2
- = - — = —|n - ~ — In—
280 (2m)? pZ + m*2 & 27 m*? 21 m*?
Let us now introduced the renormalized coupling at the scale M

1 1 1 N2 1

S PO
g(M) g 27rnM2+7r

Substituting the result for go the dependence on A cancels and one gets

1 1 M2 1 > 2m
g(M) 2n nm*2+7T " exp< g(M)>
The coupling at the scale M’ is related to the one at the scale M by

1 1 1. M2

dM) ~ g(M) 25 " e

The theory is asymptotically free!
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The effective potential (I)

A convenient method to study the Gross-Neveu model in the large-N
limit is to introduce the auxiliary field o

Eaﬁgzgf%(ai%ﬂawa)z

Actually o is not a dynamical field (there is no kinetic term) and from its
equation of motion o = (go/N)¥1) one can see that the modified
Lagrangian in equivalent to the original one. However £, make the study
of the large-N limit easier:

4.4 —a N
Lo =10 ip? + o Y — —0o?
280

In particular the associated partition function can be evaluated exactly:

Zg—/Dwaexp{f/dzx [w(ia+g)¢_2o H

N
_ e’i(N/2g°)fd2X“2(1ct(/'éﬂ+ o) = Zoe~i(N/2g0) [0 | (1 N (;>
I
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The effective potential (II)

We now consider o constant and look for its vacuum expectation-value
from minimizing the effective potential Vg (o)

Z,]Zy = e VertT = e (N/20) LT gy {N Tr In <1 + (jﬂﬂ
i

Expanding the log and taking into account that the trace of an odd
number of Dirac matrices vanishes one gets:

N > 2p [ po \
V. =—0g2—iNY —Tr
w(7) 280" ! ;2n /(27r)2 <p2+ie>

which has the following interpretation in terms of Feynman diagrams
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The effective potential (IlI)

From p>=p? and Tr(I)=2 one can resum the series

o? d?p o?
Ve =N|—+i | —=In|ll——
() [Zgo +'/ (2m)? n( pz)]
After Wick-rotating p® = ipY one gets
02 | d2pE < (T2>:|
Vg(o) = N | 2 n(1+2
(o) {ng / (2m)? PE

Looking for the minimum of the effective potential one revovers the
gap-equation

dvcff

=0
do

— e
oo 2g0 .

1 / d?pr 1
(27)? pz + 75

previously obtained via a self-consistent solution of the Dyson equation
(Hartree approximation) for the quark propagator.
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The Nambu Jona-Lasinio model

A more realistic low-energy model of QCD, expressed in terms of quark degrees
of freedom, is the Nambu Jona-Lasinio model. Its Lagrangian is very similar to
the Gross-Neveu one, but it is written in 4 space-time dimensions. Hence the
model is non-renormalizable and requires the introduction of an UV cutoff,

which will be one of the few parameters of the model. The simplest version of
its Lagrangian is

Ly = G(i9 — mo)q + G[(dq)” + (@7°7q)?],

where 7' (i = 1...N? — 1) are Pauli/Gell-Mann matrices in flavor space.
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The Nambu Jona-Lasinio model

A more realistic low-energy model of QCD, expressed in terms of quark degrees
of freedom, is the Nambu Jona-Lasinio model. Its Lagrangian is very similar to
the Gross-Neveu one, but it is written in 4 space-time dimensions. Hence the
model is non-renormalizable and requires the introduction of an UV cutoff,
which will be one of the few parameters of the model. The simplest version of
its Lagrangian is

Ly = G(i9 — mo)q + G[(dq)” + (@7°7q)?],

where 7' (i = 1...N? — 1) are Pauli/Gell-Mann matrices in flavor space.
The above Lagrangian, in (Hartree) mean-field approximation, immediately
leads to the development of an effective consituent mass of the quarks:

49 = (49) + 05— (9)> = (9)° +2(qq)d5e+... = 2(4q)qq— (Gq)* +...

entailing
LN =G[ip— (mo — 2G(qq))] g — G(qq)?,
allowing one to identify the effective mass

M* = mo —2G(qq)
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The gap-equation

The mean-field approximation leads to a self-consistent gap-equation for the
effective mass of the constituent quarks, which will be found to be around one
third of the proton mass:

M* = mo —2G(gq) = mo 4+ 2G TrS(z,z")

d'p
:mo+2G/(27r[))4e'p0"Tr5(p)

One gets the self-consistent equation
dp M*
@) 5+ M2

A
M* — mg = 4N .N¢G /
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The gap-equation

The mean-field approximation leads to a self-consistent gap-equation for the
effective mass of the constituent quarks, which will be found to be around one
third of the proton mass:

M* = mo —2G(gq) = mo 4+ 2G TrS(z,z")

d'p
:mo+2G/(27r[))4e'p0"Tr5(p)

One gets the self-consistent equation
dp M*
(271')3 A /ﬁ2 + M*z

The development of an effective mass of the consituent quarks corresponds to
the appearance a non-vanishing expectation value of the chiral condensate

M*—mo

(qq) = B Y- #0

A
M* — mg = 4N .N¢G /

and hence to the dynamical breaking of chiral symmetry, since

(99) = (qrqL + q.qr)
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The quark propagator and self-energy

The perturbative expansion of the quark propagator iS(p) 1=p—mo—X
or, in coordinate space,

S(x-)=Sx-y) + [ S 2)(-iE(z 2)S(x-)

» = + + ...

> > >

Si(x-y) = Sj(x-y)+iG / (Tai(x)q;(y)q.(2)T Shan(2)qc(2)T E4q(2)) +-..

z
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The quark propagator and self-energy

The perturbative expansion of the quark propagator iS(p) 1=p—mo—X
or, in coordinate space,

S(x-N=5(x=p)+ [ S x=2)(~iE(z.2)S(x—)

O .90 0O

Direct, O(1) Exchange, O(1/N)

Si(x-y) = Sj(x-y)+iG / (Tai(x)q;(¥)a.(2)T 5has(2)dc(2)T 24 a(2)) + .-
allows one to identify the lowest order contribution to the self-energy

ZPErt Zdlr zoxch —2G [NCNf + 1/2] TI‘DSO(Z, Z+),

oGNG4 1/2] [ LGP gty 50
[ cNf + /] (27T)4e I'p (P)
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The quark propagator and self-energy

The perturbative expansion of the quark propagator iS(p)~=p—my—X
or, in coordinate space,

S(x-y)=Sx-y) + | Sx-2)(-iE(z 2)S(x-)

Si(x—y) = Sjx—y)+iG / (Tai(x)a;(y)q.(2) Nhan(2)q(2)T L4 qa(2)) + -
allows one to identify the lowest order contribution to the self-energy
zpert _ Zdir =+ Zexch —2G [NcNf + 1/2] ’I‘I'DSO(Z, Z+),

= 2G[NcN +1/2] / (‘2’:’)’4

Apparently, starting from massless quarks, within a perturbative

eiponTrDSO(p)

expansion one gets a vanishing self-energy correction to the propagator
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The self-consistent Hartree approximation

Even starting from massless quarks one can obtain a non-trivial solution
by adopting a self-consistent approach (Hartree approximation)

= +

> >

A dﬁ M*
2m) /2 + M+
which is the same result found performing the mean-field approximation.

In the massless limit it looks similar to the gap-equation of the BCS
theory of superconductivity (energies & measured wrt to the Fermi

surface):
B VO hwe 1
=g O

Yy =2GTrSy(z,z7) —» M*—m0:4NCNfG/
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The self-consistent Hartree approximation

Even starting from massless quarks one can obtain a non-trivial solution
by adopting a self-consistent approach (Hartree approximation)

A _

dp M~
ZH = 2GTI‘5H(Z,Z+) — M*—mo = 4N Nf'G/ s
c (271_)3 /ﬁ2+M*2

which is the same result found performing the mean-field approximation.
In the massless limit it looks similar to the gap-equation of the BCS
theory of superconductivity (energies & measured wrt to the Fermi

surface):
Vo /"WC 1
1=— dEN (§) —
> | IO
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The NJL model at finite temperature and density

From the mean-field NJL Lagrangian one derive the thermodynamic

potential (E, = v/ p? + M*?)

_ (M — mo)? /A dp .
Q/V == 2NNy (27T)3Ep

5 —B(E, *fu)) +In(1+ efB(E;‘ﬂt))] }

The in-medium gap-equation is obtained minimizing the thermodynamic
potential, 9Q/0OM* = 0:

A dP M*

M* _mo+4NNfG/ 3E*

[1— F(Ey — 1) = F(E; + )]

One can then explore the phase-diagram of the model
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Numerical results: gap equation

04

— M constituent quark 03 | e 7

031~ 1=0 0251 —
~ S 02 —
3 3 - (stable sol
oz = p bl on
= =

.. E met: e
015 7 -_unstable solution

T=12 MeV

P T SR IS B
ol b 0‘_2 " ‘ E— 85 0341 0342 0343 0,344
T (GeV) M, (GeV)

For high-T and low-}i, the transition is a smooth crossover;

@ For low-T and high-i, the transition becomes a first-order one, with a
discontinuity in the effective mass (order parameter) and the appearance
of metastable (local minimum of Q) and unstable (maximum of Q)
solutions. Notice that at T =0 there is a minimum value for the chemical
potential EF® = M, to have a medium with non-zero quark density.

Chiral symmetry



Numerical results: gap equation

04 T

——
— M constituent quark | 03 \

03 —
1 =0

01 4

P RS Ry R U L L L :
0, ¥ 03 04 85 034 036 038 04
€. (GeV)

@ For high-T and low-/i, the transition is a smooth crossover;

@ For low-T and high-i, the transition becomes a first-order one, with a
discontinuity in the effective mass (order parameter) and the appearance
of metastable (local minimum of Q) and unstable (maximum of Q)
solutions. Notice that at T =0 there is a minimum value for the chemical
potential EF® = M, to have a medium with non-zero quark density.
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Numerical results: phase diagram

NJL model, N':Z

NIJL model, N(=2
phase diagram with isentropic trajectories

phase diagram with isentropic trajectories
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One can draw the phase diagram in the puq— T or ng— T plane, along with the
isentropic trajectories s/nq =const followed by the matter in heavy-ion
collisions. Notice that when the transition becomes of first order

@ There is the possibility of having metastability;
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Numerical results: phase diagram

NIJL model, N(=2
phase diagram with isentropic trajectories

NJL model, N':Z
phase diagram with isentropic trajectories
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One can draw the phase diagram in the puq— T or ng— T plane, along with the
isentropic trajectories s/nq =const followed by the matter in heavy-ion
collisions. Notice that when the transition becomes of first order

@ There is the possibility of having metastability;

@ There is a region of the phase diagram characterized by a mixed phase

Chiral symmetry

(no homogeneous phase).




Numerical results: phase diagram
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One can draw the phase diagram in the uq— T or ng— T plane, along with the
isentropic trajectories s/ng=const followed by the matter in heavy-ion
collisions. Notice that when the transition becomes of first order

@ There is the possibility of having metastability;

@ There is a region of the phase diagram characterized by a mixed phase
(no homogeneous phase).
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Numerical results: the speed of sound
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@ Approaching the relativistic limit ¢2 = 1/3 at high temperature

@ Rapid drop around the transition
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Fluctuations of conserved charges: theory setup (1)

The moments (m") of a PDF P(m) (with >, P(m) = 1) are defined as
= Z m"P(m

and can be derived from the generating function

GO) =S em™P(m) — (m") = :;ﬂ a0

Chiral symmetry



Fluctuations of conserved charges: theory setup (1)

The moments (m") of a PDF P(m) (with >, P(m) = 1) are defined as
= Z m"P(m

and can be derived from the generating function

GO)=> e™P(m) — (m")= G(9)

d0" 9—0

It may be more convenient to characterize a PDF through its cumulants
(m")., derived from the generating function

K@)=InGl) — (m".=
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Fluctuations of conserved charges: theory setup (1)

The moments (m") of a PDF P(m) (with >, P(m) = 1) are defined as
= Z m"P(m

and can be derived from the generating function

" 6(0)

G(H)EZemeP(m) — (m") = d0"

0=0

It may be more convenient to characterize a PDF through its cumulants
(m")., derived from the generating function

dn
0) =InG(8 mM. = 0
KO =) — ()= ZoK®)|
Defining 6m = m — (m) one gets
(Me=(m), (M*)e=0m?, (m®)c=m*), (m*He=(m*) —3(6m?)?

One can get information on how broad, how asymmetric and how
different from a Gaussian a PDF is
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Fluctuations of conserved charges: theory setup (Il)

In statistical mechanics the logarithm of the grand-canonical partition

function o
Z = Tre AH=1N) = ¢=5%

plays the role of cumulant generating function. One has (i = pu/T)
dlnZ  Tx( Ne’ﬂ(ﬁ’“m) o

= = (NY = (N
5 : () = ()
R A . S 2
PInZ  Tr(N?e PH-N) [ Ty(Ne AH-mN) | = W) (2= ()
ojiz 4 Z N n c
From Q = —InZ/B = —PV one gets the general result
. o"(P/T) .
NYe=—"——""—=2-V=¢X,V
e = Gy V=
It is useful to introduce the dimensionless generalized susceptibility
o"(P/T*)
Xn= 77 T/
N/ T)
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Fluctuations of conserved charges: numerical results

T T n T

1000 — T=150 MeV E [ — % T=100 MeV
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@ All susceptibilities display peaks/oscillations around the critical
temperature,

@ Susceptibilities gets more and more peaked for higher-order
susceptibilities and as one approaches the CEP.

In principle the susceptibilities x, are directly connected to the
fluctuations of conserved charges (B, S, Q) measured by the detectors
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Fluctuations of conserved charges: numerical results

— T=150 MeV
1000 — T=150 MeV 3 200{— T=100 MeV |
E — T=100 MeV — ¥=28 mex
— T=80 MeV T 1=00Me
— T=60 MeV T=50 MeV A
T=50 MeV 0 T=40 MeV = i
T=40 MeV
ool i 6000 T
E X 4000 -
00— B
= \ E
&3 2000 - -
\_ wl T N
10 S~ = 2000 [~ -
7 — 4000 - i
Z 600 N
-6000 — | —
031 0.3 0,33 0,34
1 L L L L L 800 | L L L L L 1 L 1 | 1
0 0,05 0.1 0,15 02 025 0.3 024 026 028 03 032 034
K, (GeV) 1, Gev)

@ All susceptibilities display peaks/oscillations around the critical
temperature;

@ Susceptibilities gets more and more peaked for higher-order
susceptibilities and as one approaches the CEP.

In principle the susceptibilities x, are directly connected to the
fluctuations of conserved charges (B, S, Q) measured by the detectors
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Fluctuations of conserved charges: experimental results
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Fluctuations of conserved charges: experimental results
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Resonant gq scattering and the mesons

Quark-antiquark scattering, at the tree-level described by the diagrams

s—channel t—channel

close to the meson mass is actually dominated by the resonant scattering in the
s-channel obtained resumming all the gq loops:

. . 1 .
ITM(C]) = QIGFMTHM((I)FM =Tum ’tM(q)rM
with oG
w(9) = T=56mm(e)

from which one gets the meson mass (in the various channels):

| 1—2GReMy(mu,§ = 0) =0

Chiral symmetry



Resonant gq scattering and the mesons

Quark-antiquark scattering, at the tree-level described by the diagrams

i 1 i 1

J Kk i k

close to the meson mass is actually dominated by the resonant scattering in the
s-channel obtained resumming all the gq loops:

. . 1 .
ITM(C]) = QIGFMTHM((I)FM =Tum ’tM(q)rM
with oG
w(9) = T=56mm(e)

from which one gets the meson mass (in the various channels):

| 1—2GReMy(mu,§ = 0) =0

Chiral symmetry



In-medium pion spectral function

The in-medium pion spectral function can be obtained starting from the
polarization propagator with two PS vertices (z is a complex energy):

. dk 1 L
I_IPP(ZVq_O)__4NC/Wll_znl__(ek)] |:Z_2E;: - Z+2E::| ’

The retarded propagator is obtained setting z=cw+in: M7 (w)=(w+in).
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In-medium pion spectral function

The in-medium pion spectral function can be obtained starting from the
polarization propagator with two PS vertices (z is a complex energy):

. dk 1 L
I_IPP(ZVq_O)__4NC/Wll_znl__(ek)] |:Z_2E;: - Z+2E::| ’

The retarded propagator is obtained setting z=w-+in: M7(w)=(w+i7).
From the latter one gets the pion spectral function as

1 2GImNE, (w)
7 (1 —2GReNB,(w))? + (2GImNEy(w))?

pr(w) = 2Imt, (w+in) =27

When does M7 (w) develop and imaginary part?

ImMBp(w) = 4N, / (2d7rk)3[1 —2ng(e)] [o(w — 2E;) — wo(w + 2E;)]

mNR(w) #0 <= |w|>2M*
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In-medium pion spectral function

What about the behaviour around the pion mass previously defined? It
depends whether

@ w=m, < 2M": in this case Im[15(w) = 0 and the spectral
function reduces to a Dirac delta

|-|R
pr(w) = 276[1 — 2GReNBo(w)] = 27| —2G aRgTPP (w— mﬂ)]
27
8ReI'IPP 5((0 o mﬂ-)

26’

@ w=m, >2M": in this case Im[15,(w) # 0, there is phase-space
available for the m — g decay and the spectral function displays a
broad peak embedded in the gg continuum around the pion mass
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Numerical results: pion mass and spectral function

AN T ; T . —

In-medium pion spectral function
(NJL model)
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@ The pion appears as a zero-width pole of the T-matrix t.(q) up to the
Mott temperature Tu, defined as m.(Tw) = 2M;(Twu), where the decay
channel into two dressed quarks opens up;

@ For T > Ty the pion remains a well defined collective excitation,
identified by a sharp peark in the spectral function 2Imt.(w + in, § = 0)
in the pseudoscalar channel, getting broader as the temperature increases.
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Numerical results: pion mass and spectral function
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In-medium pion spectral function
(NJL model)
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@ The pion appears as a zero-width pole of the T-matrix t.(q) up to the
Mott temperature Tu, defined as m.(Tw) = 2M;(Twu), where the decay
channel into two dressed quarks opens up;

@ For T > Ty the pion remains a well defined collective excitation,
identified by a sharp peark in the spectral function 2Imt.(w + in, § = 0)
in the pseudoscalar channel, getting broader as the temperature increases.
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Numerical results: pion mass
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@ The pion appears as a zero-width pole of the T-matrix t.(q) up to the
Mott temperature Tu, defined as m.(Tw) = 2M;(Twu), where the decay
channel into two dressed quarks opens up;

@ For T > Ty the pion remains a well defined collective excitation,
identified by a sharp peark in the spectral function 2Imt.(w + in, § = 0)
in the pseudoscalar channel, getting broader as the temperature increases.
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Numerical results: pion mass and spectral function
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@ The pion appears as a zero-width pole of the T-matrix t.(q) up to the
Mott temperature Tu, defined as m.(Tw) = 2M;(Twu), where the decay
channel into two dressed quarks opens up;

@ For T > Ty the pion remains a well defined collective excitation,
identified by a sharp peark in the spectral function 2Imt.(w + in, § = 0)
in the pseudoscalar channel, getting broader as the temperature increases.
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Numerical results: pion mass and spectral function
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@ The pion appears as a zero-width pole of the T-matrix t.(q) up to the
Mott temperature Tu, defined as m.(Tw) = 2M;(Twu), where the decay
channel into two dressed quarks opens up;

@ For T > Ty the pion remains a well defined collective excitation,
identified by a sharp peark in the spectral function 2Imt.(w + in, § = 0)
in the pseudoscalar channel, getting broader as the temperature increases.
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Numerical results: pion mass and spectral function
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@ The pion appears as a zero-width pole of the T-matrix t.(q) up to the
Mott temperature Tu, defined as m.(Tw) = 2M;(Twu), where the decay
channel into two dressed quarks opens up;

@ For T > Ty the pion remains a well defined collective excitation,
identified by a sharp peark in the spectral function 2Imt.(w + in, § = 0)
in the pseudoscalar channel, getting broader as the temperature increases.
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x-symmetry restoration: NJL results

MESON_MASSES
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NJL-like models above a critical temperature/density leads to the
degeneracy of chiral partners:

@ Scalar and Pseudoscalar mesons (H. Hansen et al., Phys.Rev.D 75
(2007) 065004);

@ Vector and Axial-Vector mesons, including in Ly, the vector
coupling (V. Bernard and U.G. Meissner, NPA 489 (1988) 647)

AL = —Gy [(§v"7q)* + (v"7°7q)?]
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x-symmetry restoration: NJL results
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NJL-like models above a critical temperature/density leads to the
degeneracy of chiral partners:

@ Scalar and Pseudoscalar mesons (H. Hansen et al., Phys.Rev.D 75
(2007) 065004);

@ Vector and Axial-Vector mesons, including in Ly, the vector
coupling (V. Bernard and U.G. Meissner, NPA 489 (1988) 647)

AL = ~Gy [(§v"79)* + (37"7°7q)’]
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ymmetry restoration: lattice-QCD findings

noer. [GeV] macr. [GeV] s - maer. [GeV] N A

= scalar
T(Gev] B pseudo scalar
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Finite-temperature lattice-QCD calculations do not allow one to get the
pole masses of the mesons. However they can provide the screening
masses defined from the decay of meson correlators along the z-axis*

/deX dy (Ju(, x,y, z)J):/,(O, 0,0,0)) ~ e~ %

@ V-AV and S-PS mesons tend to merge;

@ In the strange sector the degeneracy occurs later
1HotQCD Collaboration, PRD 100 (2019) 094510
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X-Symmetry restoration: experimental studies

Signatures of chiral-symmetry restoration in the hot/dense medium
produced in heavy-ion collisions studied looking at the p-meson spectral
function. In fact

@ SU(2) transformations map p and a; meson into each other
g P+ x &t at — &'+ 60 x g,

so that, if chiral-symmetry were restored, their spectral functions
should merge: py(w, p) = pa(w, p)

@ Decay-width ['~150 MeV — lifetime 7~1.3 fm/c < Thyepan: it
decays inside the medium and its spectral function is affected by
medium-modifications

@ Inthe p— ete™ and p — ;"1 channels, decay products do not
further interact with the medium (no colour-charge!) and carry
direct information on in-medium spectral function. Furthermore,
muons can be easily identified placing an absorber before the
detector
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X-Symmetry restoration: experimental studies
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@ In the vacuum (eTe™ collisions) the p-meson spectral funtion is
characterized by a sharp peak, very different from the a;-meson
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X-Symmetry restoration: experimental studies
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@ In the vacuum (e*e™ collisions) the p-meson spectral funtion is
characterized by a sharp peak, very different from the a;-meson

@ In the meddium (AA collisions) the p-meson spectral funtion is
much broader and its strength above 1 GeV may suggest a mixing
with the a; meson.
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