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Hydrodynamics and heavy-ion collisions

The success of hydrodynamics in describing particle spectra in heavy-ion
collisions measured at RHIC came as a surprise!

The general setup and its implications

The main predictions and what we can learn on the medium

Radial flow
Elliptic flow

Recent developments (fluctuating initial conditions)

Flow in central collisions
Higher flow harmonics
Event-by-event flow measurements

Devolping a causal relativistic dissipative hydrodynamic theory

from the entropy principle (Israel-Stewart theory)
from kinetic theory
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Hydrodynamics: the general setup

Hydrodynamics is applicable in a situation in which λmfp � L

In this limit the behavior of the system is entirely governed by the
conservation laws (5 eqs. for 6 unknowns: P, ε, nB , v

i )

∂µT
µν = 0︸ ︷︷ ︸

four−momentum

, ∂µj
µ
B = 0︸ ︷︷ ︸

baryon number

,

where

Tµν =(ε+P)uµuν−Pgµν , jµB =nBu
µ and uµ=γ(1, ~v)

NB: at rest uµ=(1,~0) and Tµν =diag(ε,P,P,P).

Information on the medium is entirely encoded into the EOS

P = P(ε, nB ) (6th eq.)

The transition from fluid to particles occurs at the freeze-out
hypersuface Σfo (e.g. at T = Tfo)

E (dN/d~p) =
g

(2π)3

∫
Σfo

pµdΣµ exp[−(p · u)/T ]
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Hydro predictions: radial flow (I)
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Tslope(∼ 167MeV) universal in pp collisions;

Tslope growing with m in AA collisions: spectrum gets harder!
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Hydro predictions: radial flow (II)

Physical interpretation:

Thermal emission on top of a collective flow
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Radial flow gets larger going from RHIC to LHC!
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Hydro predictions: elliptic flow

x
φ

y

In non-central collisions particle emission
is not azimuthally-symmetric!

The effect can be quantified through the
Fourier coefficient v2

dN

dφ
=

N0

2π
(1 + 2v2 cos[2(φ− ψRP )] + . . . )

v2 ≡ 〈cos[2(φ− ψRP )]〉

v2(pT ) ∼ 0.2 gives a modulation 1.4 vs
0.6 for in-plane vs out-of-plane particle
emission!
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Hydro predictions: elliptic flow
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Elliptic flow: physical interpretation

x
φ

y

Matter behaves like a fluid whose expansion is driven by pressure
gradients

(ε+ P)
dv i

dt
=

v�c
− ∂P
∂x i

(Euler equation)

Spatial anisotropy is converted into momentum anisotropy;

At freeze-out particles are mostly emitted along the reaction-plane.

It provides information on the EOS of the produced matte (Hadron

Gas vs QGP) through the speed of sound: ~∇P = c2
s
~∇ε
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Elliptic flow: mass ordering

The mass ordering of v2 is a direct consequence of the hydro expansion
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Particles emitted according to a
thermal distribution
∼exp[−p ·u(x)/Tfo] in the local
rest-frame of the fluid-cell;

Parametrizing the fluid velocity and
the particle momentum as

uµ ≡ γ⊥(coshY ,u⊥, sinhY ),

pµ = (m⊥ cosh y ,p⊥,m⊥ sinh y)

one gets (vz≡ tanhY )

p ·u = γ⊥[m⊥ cosh(y−Y )− p⊥ ·u⊥]

Dependence on mT at the basis of
mass ordering at fixed pT
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Classical vs quantum statistics
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Results obtained with the ECHO-QGP code for an ideal hydrodynamic
evolution for Au-Au collisions at b= 7 fm, τ0 =0.5 fm/c and e0 =30
GeV/fm3 and Tfo =140 MeV.

As one can see, also for pions, the effect of quantum corrections to the

particle distributions is negligible, except at very low pT .
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The need for viscous corrections

First data on elliptic flow at low pT were very well reproduced by
hydrodynamic calculations, so that one could conclude that “the
bulk of the fireball matter formed in Au-Au collisions at RHIC
behaves very much like a perfect fluid” (U. Heinz, nucl-th/0512051)

However v2 can get contribution from non-flow effects (resonance
decays, jets, HBT correlations...) which must be subtracted, in
order to leave simply the correlation of the particles with the
reaction plane. This leads to a decrease of v2, which is better
reproduced introducing viscous corrections
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The QGP viscosity

From the comparison with the data one gets values for the shear viscosity
close to the universal lower bound η/s ≈ 1/4π predicted by the
AdS/CFT correspondence.
One can compare this with the values found for all the other known fluids:

fluid P [Pa] T [K] η [Pa·s] η/n [~] η/s [~/kB ]
H2O 0.1·106 370 2.9 · 10−4 85 8.2
4He 0.1·106 2.0 1.2 · 10−6 0.5 1.9
H2O 22.6·106 650 6.0 · 10−5 32 2.0
4He 0.22·106 5.1 1.7 · 10−6 1.7 0.7

6Li (a =∞) 12·10−9 23·10−6 ≤ 1.7 · 10−15 ≤ 1 ≤ 0.5
QGP 88·1033 2·1012 ≤ 5 · 1011 ≤ 0.4

leading to the conclusion that the QGP looks like the most ideal fluid

ever observed
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Event by event fluctuations

Due to event-by-event fluctuations (e.g. of the nucleon positions)
the initial density distribution is not smooth and can display higher
deformations, each one with a different azimuthal orientation.

Higher harmonics (m > 2) contribute to the angular distribution

dN

dφ
=

N

2π

(
1 + 2

∑
m

vm cos[m(φ− ψm)]

)
of the final hadrons, where for each event (verify!),

vm = 〈cos[m(φ− ψm)]〉 and ψm =
1

m
arctan

∑
i wi sin(mφi )∑
i wi cos(mφi )

The choice wi =pi
T for the weights increase the resolution on ψm

(one deals with a finite number of hadrons!)
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Event-by-event fluctuations: experimental consequences

Fluctuating initial conditions give rise toa:

Non-vanishing v2 in central collisions;

Odd harmonics (v3 and v5)

Hydro can reproduce also higher harmonicsb

aALICE, Phys.Rev.Lett. 107 (2011) 032301
bB: Schenke et al., PRC 85, 024901 (2012)
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Hydrodynamic behavior in small systems?
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CMS cumulants analysis: common correlation of all
the particles with the event-plane Ψ2

14 / 83



Hydrodynamic behavior in small systems?

 (GeV/c)
T

p
0.5 1.0 1.5 2.0 2.5 3.0 3.5

2v

0.05

0.10

0.15

0.20

0.25

pion

proton

0-5% d+Au @ 200 GeV (a)

pion
proton

viscous hydro.
)π/s = 1.0/(4η

 (GeV/c)
T

p
0.5 1.0 1.5 2.0 2.5 3.0 3.5

pion

proton

0-20% p+Pb @ 5.02 TeV (b)

ALICE:
(0-20%)-(60-100%)

Long-range rapidity correlations in high-multiplicity p-Pb (and p-p)
events: collectiv flow?

Evidence of non-vanishing elliptic flow v2 (and mass ordering) in
d-Au and p-Pb.

CMS cumulants analysis: common correlation of all
the particles with the event-plane Ψ2

14 / 83



Hydrodynamic behavior in small systems?

 (GeV/c)
T

p
2 4

2v

0.0

0.1

0.2

0.3  = 2.76 TeVNNsCMS PbPb 

 < 150trk
offline N≤120 

|>2}η∆{2, |2v
<20 sub.offline

trk
, N|>2}η∆{2, |2v

{4}2v

 (GeV/c)
T

p
2 4

2v

0.0

0.1

0.2

0.3  = 5.02 TeVNNsCMS pPb 
>80 GeVPb

T EΣATLAS, 
|>2}η∆{2, |2v

{4}2v

|>0.8}η∆{2, |2v
ALICE, 0-20%

 (GeV/c)
T

p
2 4

2v

0.0

0.1

0.2

0.3

 < 185trk
offline N≤150 

 (GeV/c)
T

p
2 4

2v

0.0

0.1

0.2

0.3
 (GeV/c)

T
p
2 4

2v

0.0

0.1

0.2

0.3

 < 220trk
offline N≤185 

 (GeV/c)
T

p
2 4

2v

0.0

0.1

0.2

0.3
 (GeV/c)

T
p
2 4

2v

0.0

0.1

0.2

0.3

 < 260trk
offline N≤220 

 (GeV/c)
T

p
2 4

2v

0.0

0.1

0.2

0.3

 18≥ 
part

 = 4.4 TeV, NNNspPb Hydro 

Long-range rapidity correlations in high-multiplicity p-Pb (and p-p)
events: collectiv flow?

Evidence of non-vanishing elliptic flow v2 (and mass ordering) in
d-Au and p-Pb. CMS cumulants analysis: common correlation of all
the particles with the event-plane Ψ2

14 / 83



Hydrodynamic behavior in small systems?

offline
trkN

0 100 200 300

2v

0.05

0.10

|>2}η∆{2, |2v
{4}2v
{6}2v
{8}2v
{LYZ}2v

| < 2.4η < 3.0 GeV/c; |
T

0.3 < p
 = 2.76 TeV

NN
sCMS PbPb 

offline
trkN

0 100 200 300

2v

0.05

0.10 | < 2.4η < 3.0 GeV/c; |
T

0.3 < p
 = 5.02 TeV

NN
sCMS pPb 

Long-range rapidity correlations in high-multiplicity p-Pb (and p-p)
events: collectiv flow?

Evidence of non-vanishing elliptic flow v2 (and mass ordering) in
d-Au and p-Pb. CMS cumulants analysis: common correlation of all
the particles with the event-plane Ψ2

14 / 83



Hydrodynamic behavior in small systems?

offline
trkN

0 50 100 150

2v

0.05

0.10  = 13 TeVspp 

 < 3.0 GeV/c
T

0.3 < p

| < 2.4η|

PreliminaryCMS 

|>2}η∆{2, |sub
2v
{4}2v
{6}2v
{8}2v
{LYZ}2v

offline
trkN

0 100 200 300

2v

0.05

0.10  = 2.76 TeVNNsPbPb 

 < 3.0 GeV/c
T

0.3 < p

| < 2.4η|

offline
trkN

0 100 200 300

2v

0.05

0.10  = 5 TeVNNspPb 

 < 3.0 GeV/c
T

0.3 < p

| < 2.4η|

Long-range rapidity correlations in high-multiplicity p-Pb (and p-p)
events: collectiv flow?

Evidence of non-vanishing elliptic flow v2 (and mass ordering) in
d-Au and p-Pb. CMS cumulants analysis: common correlation of all
the particles with the event-plane Ψ2

14 / 83



Relativistic hydrodynamics

Macroscopic approach: energy-momentum conservation

Ideal Fluid
Viscous fluid

First order Navier-Stokes theory (causality problem)
Second order (Israel-Stewart) theory

Microscopic approach: kinetic theory
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Relativistic hydrodynamics: the ideal case

In the absence of non-vanishing conserved charges (nB = 0), the
evolution of an ideal fluid is completely described by the conservation of
the ideal energy-momentum tensor:

∂µT
µν = 0, where Tµν = Tµν

eq = (ε+ P)uµuν − Pgµν

It is convenient to project the above equations

along the fluid velocity (uν∂µT
µν = 0)

Dε = −(ε+ P)Θ, (with D ≡ uµ∂µ︸ ︷︷ ︸
comov. derivative

and Θ ≡ ∂µuµ︸ ︷︷ ︸
expansion rate

)

and perpendicularly to it (∆αν∂µT
µν = 0, with ∆αν≡gαν − uαuν︸ ︷︷ ︸

transv. project.

)

(ε+ P)Duα = ∇αP (with ∇α ≡ ∆αµ∂µ),

which is the relativistic version of the Euler equation (fluid
acceleration driven by pressure gradients)

non relativistic limit : (ε+ P)︸ ︷︷ ︸
≈ρ

(∂t + vk∂k )︸ ︷︷ ︸
≡d/dt

~v = −~∇P
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Ideal fluid: energy vs charge evolution

Let us now consider the more general case in which the fluid is
characterized also by some non-vanishing conserved charge, e.g. the
baryon number. In this case

∂µj
µ
B = 0, where jµB = nBu

µ.

The conservation equation can be rewritten as:

DnB = −nB Θ

to be compared with the equation for the energy

Dε = −(ε+ P)Θ

The two quantities follow different evolutions:

the baryon density gets simply diluted due to the expansion of the
system;

the energy density drops more rapidly, since during the expansion
the system does work, i.e. disordered thermal energy is converted
into ordered collective motion driven by pressure gradients
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Isentropic evolution

In the absence of dissipative effects entropy conservation during the fluid
evolution follows naturally. One introduces the entropy current sµ ≡ suµ,
where s in the entropy density in the LRF of the fluid, which obeys the
continuity equation

∂µs
µ = 0 −→ Ds + sΘ = 0

The latter is identically satisfied, since

Ts = ε+ P − µBnB and dε = Tds + µBdnB

Hence

1

T
Dε−µB

T
dnB +

1

T
[ε+P−µBnB ]Θ =

1

T
[Dε+(ε+P)Θ]−µB

T
[DnB +nB Θ] = 0,

due to energy and baryon number conservation.

This entails that, for
each fluid cell, the evolution occurs at constant entropy per baryon s/nB ,
i.e. its comoving derivative vanishes D(s/nB ) = 0. In fact:

D

(
s

nB

)
=

Ds

nB
− s

n2
B

DnB = − sΘ

nB
+

s

n2
B

nB Θ = 0
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Linear perturbations: sound wave

Consider a linear perturbation propagating around a homogenous
background along the x direction

ε = ε0 + δε(t, x), P = P0 + δP(t, x), uµ = (1,~0) + δuµ(t, x)

where δP = (∂P/∂ε)σδε ≡ c2
Sδε, since fluctuations occurs at constant

entropy per baryon σ.

The linearized equations reads

∂tδε=−(ε0 + P0) ∂xv
x

(ε0 + P0) ∂tv
x =−c2

s ∂xδε

(ε0 + P0) ∂tv
y/z = 0

Taking a partial time-derivative of the second equation one gets

(ε0 + P0) ∂2
t v

x + c2
s ∂x (∂tδε) = 0

Exploiting the equation for the energy one obtains(
1

c2
s

∂2

∂t2
− ∂2

∂x2

)
v x (t, x) = 0

which shows the longitudinal nature of the wave.
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An exact model: pure Bjorken expansion

RHD equations can be solved analytically in the case of a pure
longitudinal Bjorken expansion, namely

v x = v y = 0, and v z =
z

t
(Hubble− law)

The model, referring to an omogeneous infinite system in the transverse
plane (no transverse pressure gradients!), is clearly an oversimplification,
however it can be a good guidance to descrive the first instants of the
evolution of a nuclear collisions, since transverse flow (~v⊥ 6=0) takes time
to develop, while from the very beginning v z 6=0.

The model is easily solved introducing the longitudinal proper-time
τ ≡
√
t2 − z2 and one finds (verify!)

θ ≡ ∂µuµ =
1

τ
−→ dε

dτ
= −ε+ P

τ

For a fluid with P =c2
s ε EOS one gets then:

dε

ε
= −(1 + c2

s )
dτ

τ
−→ ε = ε0

(τ0

τ

)1+c2
s

For a P = ε/3 EOS one gets the temporal evolution ε ∼ τ−(4/3), to

compare with the one of the particle density n ∼ τ−1
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Not a bad approximation

1 10
τ(fm/c)

0.1

1

10

100

s(
r=

0
) 

(f
m

-3
)

viscous (1+1)-d hydro

ideal (1+1)-d hydro

viscous (0+1)-d hydro

ideal (0+1)-d hydro 

τ
−1

Cu+Cu, b=0 fmr=0 fm

r=3 fm
X0.5

SM-EOSQ

For the first few fm/c, before the transverse expansion sets in

(perturbations from the border propagate at finite velocity), the Bjorken

model nicely describes the system evolution at the center of the fireball1.

1H. Song and U. Heinz, Phys.Rev. C77 (2008) 064901
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The Riemann problem: rarefaction wave

Another case one can treat exactly is the so-called Riemann problem, i.e.
a flow which starts from an initial condition of the kind εL,PL, u

µ
L for

x < 0 and εR ,PR , u
µ
R for x > 0. It is also very important for numerical

implementations of hydrodynamic equations, which should be able to
capture shocks.

As an initial condition we take ε(0, ~x) = ε0θ(−x) and
vanishing fluid velocity. The ideal idrodynamic equations

Dε = −(ε+ P)Θ and (ε+ P)Duα = ∇αP

depends now only on t and x , with uµ = γ(1, β, 0, 0):

(∂t + β∂x )ε+ γ2(ε+ P)(β∂t + ∂x )β = 0

(β∂t + ∂x )P + γ2(ε+ P)(∂t + β∂x )β = 0.

Actually the solution depends only on the self-similar variable ξ≡x/t

(−ξ + β)ε′ + γ2(ε+ P)(−βξ + 1)β′ = 0

(−βξ + 1)P ′ + γ2(ε+ P)(−ξ + β)β′ = 0,

with P ′ = c2
s ε
′
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The Riemann problem: rarefaction wave

The above system has non-trivial solutions only if its determinant
vanishes. One has then (with our initial condition):

(β − ξ)2

(1− βξ)2
= c2

s −→ β(ξ) =
cs + ξ

1 + ξcs

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ξ=x/t

0

0.2

0.4

0.6

0.8

1
β

β(ξ)

ξ=-c
s

ξ=0

β=c
s

The head of the rarefaction wave propagates backwards with velocity

ξrw = −cs . In the region ξ < −cs the fluid is still unperturbed (ε=ε0 and

β=0), while at the origin β(0) = cs !
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The Riemann problem: rarefaction wave

Substituting back the result into the system one gets:

dε+ γ2(1 + c2
s )ε

1− βξ
β − ξ

dβ = 0 −→ dε

ε
+

1 + c2
s

cs

dβ

1− β2
= 0

With the boundary condition ε=ε0 when β=0 one gets

ε = ε0 exp

[
−1 + c2

s

cs
atanhβ

]
= ε0 exp

[
−1 + c2

s

cs
atanh

(
cs + ξ

1 + ξcs

)]

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

ξ=x/t

0

0,2

0,4

0,6

0,8

1

β(ξ)

ε/ε
0
(ξ)

ξ=-c
s

ξ=0

β=c
s

Black curve: fluid velocity

Red curve: energy density
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Freeze-out hypersurface and particle decoupling

In the case of the above Riemann problem the particle spectrum from a
Cooper-Frye decoupling can be computed exactly. The freeze-out (FO)
hypersurface is defined by the condition:

εFO = ε0 exp

[
−1 + c2

s

cs
atanh

(
cs + ξ

1 + ξcs

)]
,

which fixes also the value of the fluid-velocity at freeze-out

εFO = ε0 exp

[
−1 + c2

s

cs
atanhβFO

]
−→ βFO = tanh

[
ln

(
ε0

εFO

)c2
s /(1+c2

s )
]

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

ξ=z/t

0

0,2

0,4

0,6

0,8

1

β(ξ)

ε/ε
0
(ξ)

ξ=-c
s

ξ=0

β=c
s

ξ
FO-wave

ε
FO

/ε
0

β
FO

From

β =
cs + ξ

1 + ξcs

one gets a left/right-moving “FO-wave”

ξFO =
βFO − cs

1− βFOcs

depending whether βFO < cs or βFO > cs
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Compressed nuclear matter: heavy-ion collisions

Make two infinite slabs of nuclear matter collide, with initial condition

ε(0, x) = ε0 −∞ < x <∞
n(0, x) = n0 −∞ < x <∞

v(0, x < 0) = vCM v(0, x > 0) = −vCM

Assuming complete stopping one has the formation of a compressed

region at rest (b) and of a shock wave propagating backward with

respect to the unperturbed incoming matter (a)
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Shocks in hydrodynamics: general treatment

Hydrodynamic equations express in a differential way global conservation
laws. Their general form is

∂tq(t, x) + ∂x f (t, x) = 0

In the presence of a shock front xs(t) quantities display a discontinuity,
with different values on the left (1) and on the right (2) of the shock.

The differential version of the conservation law is not well defined, but its
integral form it is:∫ xs (t)+ε

xs (t)−ε
∂tq(t, x) dx +

∫ xs (t)+ε

xs (t)−ε
∂x f (t, x) dx = 0

Since the integration domain vanishes one has:

0 =
d

dt

∫ xs (t)+ε

xs (t)−ε
q(t, x)dx = q2ẋs − q1ẋs +

∫ xs (t)+ε

xs (t)−ε
∂tq(t, x)dx

Hence one gets

(q1 − q2)ẋs + (f2 − f1) = 0 −→ ẋs =
f2 − f1
x2 − x1

called Rankine-Hugoniot jump condition
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Shocks in relativistic hydrodynamics

To study shocks in a 1-dimensional flow one starts from the
equations

∂0j
0 + ∂x j

x = 0

∂0T
00 + ∂xT

x0 = 0

∂0T
00 + ∂xT

xx = 0

where

jµ = nuµ , Tµν = (ε+ p)uµuν − Pgµν and uµ = γ(1, ~v)

The Rankine-Hugoniot conditions read then (h ≡ ε+ P)

naγava = nbγbvb ≡ J

haγ
2
ava = hbγ

2
bvb

haγ
2
av

2
a + Pa = hbγ

2
bv

2
b + Pb

where the quantities are evaluated in the rest-frame of the shock
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The Taub adiabatic

Combining the first and third equations one has

Pa−Pb =−J2

(
ha

n2
a

− hb

n2
b

)
−→

(
ha

n2
a

+
hb

n2
b

)
(Pa−Pb)=−γ2

av
2
a

h2
a

n2
a

+γ2
bv

2
b

h2
b

n2
b

Combining the first and second equations one has

haγa

na
=

hbγb

nb
−→ h2

aγ
2
a

n2
a

=
h2

bγ
2
b

n2
b

Hence(
ha

n2
a

+
hb

n2
b

)
(Pa − Pb)=−γ2

av
2
a

h2
a

n2
a

+
h2

aγ
2
a

n2
a

− h2
bγ

2
b

n2
b

+ γ2
bv

2
b

h2
b

n2
b

From which one gets(
ha

n2
a

+
hb

n2
b

)
(Pa − Pb)=

h2
a

n2
a

− h2
b

n2
b

which is know as Taub adiabatic.
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Reference frames

Let us focus on the left-moving shock

Shock frame (shock at rest)

ua
S = γa(1, va) = (coshYa, sinhYa)

ub
S = γb(1, vb) = (coshYb, sinhYb)

us
S = (1, 0)

CM frame (compressed matter at rest)

ua
CM = γCM(1, vCM)

ub
CM = (1, 0)

us
CM = γs

CM(1, v s
CM)

The two reference frames are linked by the boost

uµS =

(
coshYb sinhYb

sinhYb coshYb

)µ
ν

uνCM uµCM =

(
coshYb − sinhYb

− sinhYb coshYb

)µ
ν

uνS

Hence one has

ua
CM = (cosh(Ya−Yb), sinh(Ya−Yb)) , us

CM = (coshYb,− sinhYb)

From which

vCM ≡ tanhYCM =
va − vb

1− vavb
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Compression of nuclear matter (I)

We are left with the problem of evaluating the discontinuity of the
thermodynamic quantities at the shock front knowing the beam velocity
vCM and the equation of state of the matter P = P(ε, n).

We start evaluating the velocities on the left/right of the shock.

haγ
2
ava = hbγ

2
bvb

haγ
2
av

2
a + Pa = hbγ

2
bv

2
b + Pb

It is convenient to write γi = coshYi and vi = tanhYi

h2
a sinh2Ya cosh2Ya = h2

b sinh2Yb cosh2Yb

ha sinh2Ya − hb sinh2Yb = Pb − Pa

Exploiting cosh2 x = 1 + sinh2 x one gets

v2
a ≡ tanh2Ya =

(Pa − Pb)(Pa + εb)

(εa − εb)(εa + Pb)
v2

b ≡ tanh2Yb =
(Pa − Pb)(Pb + εa)

(εa − εb)(εb + Pa)

31 / 83



Compression of nuclear matter (I)

We are left with the problem of evaluating the discontinuity of the
thermodynamic quantities at the shock front knowing the beam velocity
vCM and the equation of state of the matter P = P(ε, n).
We start evaluating the velocities on the left/right of the shock.

haγ
2
ava = hbγ

2
bvb

haγ
2
av

2
a + Pa = hbγ

2
bv

2
b + Pb

It is convenient to write γi = coshYi and vi = tanhYi

h2
a sinh2Ya cosh2Ya = h2

b sinh2Yb cosh2Yb

ha sinh2Ya − hb sinh2Yb = Pb − Pa

Exploiting cosh2 x = 1 + sinh2 x one gets

v2
a ≡ tanh2Ya =

(Pa − Pb)(Pa + εb)

(εa − εb)(εa + Pb)
v2

b ≡ tanh2Yb =
(Pa − Pb)(Pb + εa)

(εa − εb)(εb + Pa)

31 / 83



Compression of nuclear matter (II)

For the velocity of the incoming matter in the CM frame one has

vCM =
va − vb

1− vavb
−→ v2

CM =
(Pb − Pa)(εb − εa)

(εa + Pb)(εb + Pa)

Hence

γ2
CM =

(εa + Pb)(εb + Pa)

ha · hb

which can be rewritten as

γ2
CM =

(εb + Pa)2

h2
a

(εa + Pb)ha

(εb + Pa)hb
=

(εb + Pa)2

h2
a

[(εa + Pa) + (Pb − Pa)]ha

[(εb + Pb)− (Pb − Pa)]hb

Using the Taub equation(
ha

n2
a

+
hb

n2
b

)
(Pa − Pb)=

h2
a

n2
a

− h2
b

n2
b

one gets for Pa = 0, εa = ε0 and na = n0 (nuclear matter at saturation)

γCM =
εb + Pa

ha

na

nb
=

(εb/nb)

(ε0/n0)
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Compression of nuclear matter (III)

Exploiting the Taub equation one gets for the pressure of the compressed
matter

P(ε, n) =

(ε+ P(ε, n))2

n2
− ε2

0

n2
0

ε+ P(ε, n)

n2
+
ε0

n2
0
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Viscous hydrodynamics

Better flow measurements required the introduction of dissipative
corrections (viscosity, heat-flow and charge diffusion):

Tµν = Tµν
eq + Πµν + qµuν + qνuµ (Πµν ≡ πµν − Π∆µν with πµµ = 0)

jµB = jµB(eq) + V µ
B (jµB(eq) ≡ nBu

µ),

One must first of all establish the link with the ordinary thermodynamic
quantities. This can be done imposing the Landau matching condition

uµπ
µν =uµq

µ=0 −→ uµuνT
µν =uµuνT

µν
eq =ε (T

00
=T

00

eq =ε in the LRF)

uµV
µ
B = 0 −→ uµj

µ
B = uµj

µ
B(eq) = nB (j

0
B = j

0
B(eq) = nB in the LRF)

One must define what one means with fluid velocity : whether it refers to
the transport of the conserved charge or of the energy

Eckart frame: V µ
B = 0. In the LRF no charge diffusion (j i

B = 0), but
one can have energy flowing in/out-of the cell (heat conduction)

Landau frame: qµ=0 −→ uµT
µν =εuν . In the LRF no heat-flow

throughout the cell (T 0i =0), but it is possible to have charge
diffusion. The Landau frame is the natural choice in nuclear
collisions, in which nB ≈ 0.
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Tµν = Tµν
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B (jµB(eq) ≡ nBu

µ),
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µν =uµuνT

µν
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00
=T

00

eq =ε in the LRF)

uµV
µ
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µ
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µ
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0
B = j

0
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Viscous hydrodynamics

In the following we will work in the Landau frame (qµ = 0), in which

Tµν = Tµν
eq + πµν − Π∆µν and jµB = jµB(eq) + V µ

B ,

From energy-momentum conservation ∂µT
µν = 0 one gets

Projecting along uν :

Dε+ (ε+ P + Π)Θ− πµν∇<µuν> = 0 ,

after replacing ∇µuν −→ ∇<µuν>≡ 1
2 (∇µuν+∇νuµ)− 1

3 ∆µνΘ

Projecting along ∆αν :

(ε+ P + Π)Duα = ∇α(P + Π)−∆α
ν ∂µπ

µν

From baryon-number conservation ∂µj
µ
B = 0 one has

DnB + nB Θ + ∂µV
µ
B = 0
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Fixing the viscous tensor: first order formalism (nB = 0)

A way to fix the viscous tensor is through the 2nd law of
thermodynamics, imposing ∂µs

µ ≥ 0.

Using the ideal result for the
entropy current sµ = suµ and employing the thermodynamic relations

Ts = ε+ P and T ds = dε

one gets

∂µs
µ = uµ∂µs + s ∂µu

µ =
1

T
[Dε+ (ε+ P)Θ] ≥ 0

Employing
Dε = −(ε+ P + Π)Θ + πµν∇<µuν>,

one gets

∂µs
µ =

1

T
[−ΠΘ + πµν∇<µuν>] ≥ 0

which is identically satisfied if (relativistic Navier Stokes result)

Π = −ζΘ and πµν = 2η∇<µuν>,

where ζ and η are the bulk and shear viscosity coefficients.
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The finite baryon-density case

In the finite-density case one employ for the entropy current the ansatz
sµ = suµ − αV µ together with the thermodynamic relations

Ts = ε+ P − µn and dε = T ds + µdn

The second law of thermodynamics T∂µs
µ ≥ 0 leads to:

Dε+ (ε+ P)Θ− µ(Dn + nΘ)− TV µ∂µα− Tα(∂µV
µ) ≥ 0

Employing the equations for the energy and charge conservation one gets

−ΠΘ + πµν∇<µuν> + (µ− Tα)∂µV
µ − TV µ∂µα ≥ 0,

which entails also α = µ/T (the inequality should hold always,
independently of the sign of ∂µV

µ). Hence (V ν being spacelike)

−TV ν∇ν
( µ
T

)
≥ 0 −→ V ν = λT 2∇ν

( µ
T

)
,

where λ is the baryon-number diffusion constant. In the following, in any

case, we will focus on the nB = 0 case.
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Non-relativistic limit

In the non-relativistic limit one recovers the usual Navier-Stokes equation.
The viscous contribution to the momentum-flux tensor Tij = T id

ij − σ′ij
reads (an euclidean metric is assumed in raising/lowering the indices)

σ′ij = η(∂ivj + ∂jvi − 2/3δij Θ) + ζδij Θ with Θ ≡ ∂kvk .

The combination of velocity-gradients ensures that σ′ij = 0 for a uniform
rotation v = Ω× r . This leads to a correction to the Euler equation

ρ(∂t + v ·∇)vi = −∂iP + ∂kσ
′
ik .

For constant shear and bulk viscosity one gets

ρ(∂t + v ·∇)v = −∇P + η∆v +

(
ζ +

1

3
η

)
∇Θ.

For an incompressible fluid the expansion rate vanishes, Θ = 0, and one
has the Navier-Stokes equation

(∂t + v ·∇)v = −1

ρ
∇P +

η

ρ
∆v ,

where the dissipative corrections depends on the kinematic viscosity η/ρ.

In the relativistic case for the inertial term ρ→ ε+P ≡Ts
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Linear perturbations

We consider linear perturbations around equilibrium depending on (t, x)

ε = ε0 + δε(t, x), P = P0 + δP(t, x), uµ = (1,~0) + δuµ(t, x)

where δP = (∂P/∂ε)δε = c2
Sδε.

For the viscous tensor one has (θ ≡ ∂µuµ = ∂xδu
x )

πxx = 2η0∇<xux> = 2 η0

[
1

2
(−2∂xδu

x )− 1

3
∆xxθ

]
= −4

3
η0∂xδu

x +O(δ2)

πxy = 2η0∇<xuy> = 2 η0

[
1

2
(−∂xδu

y )− 1

3
∆xyθ

]
= −η0∂xδu

y +O(δ2)

Π =−ζ0θ = −ζ0∂xδu
x ,

which are the only non-vanishing components one has to consider. In
fact, from uµπ

µν = 0 and u0 = 1 +O(δ2) one has

u0π
0ν + uiπ

iν = 0 −→ π0ν ≈ −δuiπ
iν = O(δ2)

The perturbations will be expanded in Fourier modes, e.g.

δε(t, x) =

∫
k

e−iωt+ikxδεω,k

finding the dispersion relation ω = ω(k) solution of the eqs.
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Linear perturbations: sound mode

We must then linearize the equations

Dε=−(ε+ P + Π)Θ + πµν∇<µuν>,
(ε+ P + Π)Duα =∇α(P + Π)−∆α

ν ∂µπ
µν

For the longitudinal mode we get

∂tδε=−(ε0 + P0)∂xδu
x

(ε0 + P0)∂tδu
x =−∂xδP − ∂x (Π + πxx )

In Fourier space one has (∂P/∂ε ≡ c2
s ):

−iωδεω,k + ik(ε0 + P0)δux
ω,k = 0

(ε0 + P0)(−iω)δux
ω,k + ik(∂P/∂ε)δεω,k + ik(δΠω,k + δπxx

ω,k) = 0

with δπxx
ω,k = (−ik)(4/3)η0δu

x
ω,k and δΠω,k = (−ik)ζ0δu

x
ω,k

Solving for δux
ω,k or δεω,k one gets

ω2 − c2
s k

2 + iω

[
(4/3)η0 + ζ0

ε0 + P0

]
k2 = 0
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Linear perturbations: sound mode

In order to find the dispersion relation of the mode one has to solve

ω2 + i

[
(4/3)η0 + ζ0

ε0 + P0

]
k2ω − c2

s k
2 = 0

which has two complex solutions, whose long wavelength
expansion is

ω ∼
k→0
±csk − i

[
(4/3)η0 + ζ0

2(ε0 + P0)

]
︸ ︷︷ ︸

≡α

k2 +O(k3)

Leading to
δux (t, x) = δux

ωk ,k
e ik(x∓cs t)e−αk2t

The viscosity is responsible for the damping of the sound! The
damping is stronger for short-wavelength modes.
For the group velocity one has:

vg ≡ (dω/dk) ∼
k→0

cs , with at most cs = 1/
√

3 < c

for an ideal conformal fluid of massless particles. 41 / 83



Linear perturbations: shear-mode

We now consider the propagation of the perturbation

δuy (t, x) with δuy (t = 0, x) ≡ δuy
0 (x) = δu0 δ(x)

The relevant linearized equations read

(ε0 + P0)∂tδu
y + ∂xπ

xy = 0 with πxy = −η0∂xδu
y

leading to the diffusion equation

(ε0 + P0)∂tδu
y − η0∂

2
xxδu

y = 0

In Fourier space one gets the equation

(ε0+P0)(−iω)δuy
ω,k +(ik)2(−η0)δuy

ω,k = 0 −→ ω = ωk ≡ −i
η0

ε0 + P0
k2

leading to

δuy (t, x) =

∫
dk

2π
e−

η0
ε0+P0

k2te ikxδuy
ωk ,k

In order to satisfy the initial condition one must have δuy
ωk ,k

= δu0 so that

δuy (t, x) =

∫
dk

2π
e−

η0
ε0+P0

k2te ikxδu0
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Diffusion of shear perturbations: causality problems

The integral in Eq. (1) can be evaluated completing the square. One gets:

δuy (t, x) =

√
1

4π[η0/(ε0 + P0)]t
exp

[
− x2

4[η0/(ε0 + P0)]t

]

-5 -4 -3 -2 -1 0 1 2 3 4 5

x (arbitrary units)

0

0.2

0.4

0.6

0.8

1

u
y
(t

,x
)

t=t*
t=2t*
t=4t*
t=8t*

In response to the initial perturbation one gets a non-vanishing fluid
velocity even in causally disconnected regions (i.e. x > ct)!
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Relativistic causal theory: second order formalism

The naive relativistic generalization of the Navier Stokes equations
violates causality! This pathology can be cured including viscous
corrections into the entropy current, of second order in the gradients
(Israel-Stewart theory):

sµ = sµeq + Qµ = suµ −
(
β0Π2 + β2παβπ

αβ
) uµ

2T

One gets then (Df ≡ ḟ ):

T∂µs
µ = Π

[
−Θ− β0Π̇− TΠ ∂µ(β0u

µ/2T )
]

+ παβ [∇<αuβ> − β2π̇αβ − Tπαβ ∂µ(β2u
µ/2T )] ≥ 0,

which is satisfied if Π≈ζ[−Θ− β0Π̇] and παβ≈2η[∇<αuβ> − β2π̇αβ].

One has then to evolve also the components of the viscous tensor (6
independent equations, due to uµπ

µν =0 and πµµ =0)

Π̇ ≈ − 1

ζβ0
[Π + ζΘ] and π̇αβ ≈ −

1

2ηβ2
[παβ − 2η∇<αuβ>],

whera τΠ ≡ ζβ0 and τπ ≡ 2ηβ2 play the role of relaxation times.
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Israel Stewart equations for a conformal fluid

For a conformal fluid the only energy scale is the temperature, hence the
evolution of all dimensionful quantities depends on the one of the
temperature. Since ε=3P ∼ T 4 and β2 ∼ T−4 one has

Dε+ (ε+ P)θ ≈ 0 −→ DT

T
+

1

3
θ ≈ 0

Dβ2

β2
= −4

DT

T
−→ Dβ2

β2
=

4

3
θ

Substituing this into

παβ = 2η [∇<αuβ> − β2π̇αβ − Tπαβ ∂µ(β2u
µ/2T )]

and exploiting the definition τπ ≡ 2ηβ2 one gets:

π̇αβ = − 1

τπ

[
παβ − 2η σαβ +

4

3
τππαβθ

]
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Linear perturbations: causality restoration

The equations to solve are now

(ε0 + P0)∂tδu
y + ∂xπ

xy = 0 and τπ∂tπ
xy + πxy = −η0∂xδu

y

which in Fourier space read

(ε0 + P0)(−iω)δuy
ω,k + (ik)δπxy

ω,k = 0

(1− iωτπ)δπxy
ω,k + (ik)η0δu

y
ω,k = 0

Solving for δuy
ω,k one gets ω = −i η0

ε0 + P0

k2

1−iωτπ
The dispersion relation of the shear mode is then

ω =
−i ±

√
−1 + 4[η0/(ε0 + P0)]k2τπ

2τπ

Its short-wavelength limit is given by:

ωk ∼
k→∞

√
η0

ε0 + P0

1

τπ
k =⇒ vT ≡ dωk

dk
∼

k→∞

√
η0

ε0 + P0

1

τπ

For a conformal fluid of massless particles the relaxation time is

τπ=5
(
η0

s0

)
1

T0
=5 η0

ε0+P0
, so that vT < c!
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Ideal vs viscous evolution

As an example, starting from the same initial condition (an ultra-central Au-Au
collisions at

√
sNN = 200GeV ), we display the different evolution of the energy

density in the ideal (upper panels) and viscous (lower panels) case

edens (GeV/fm
3
)  τ=1 fm/c

-15 -10 -5  0  5  10  15

x (fm)

-15

-10

-5

 0

 5

 10

 15

y
 (

fm
)

 0

 50

 100

 150

 200

 250

edens (GeV/fm
3
)  τ=4 fm/c, ideal

-15 -10 -5  0  5  10  15

x (fm)

-15

-10

-5

 0

 5

 10

 15

y
 (

fm
)

 0

 5

 10

 15

 20

 25

 30

 35

edens (GeV/fm
3
)  τ=8 fm/c, ideal

-15 -10 -5  0  5  10  15

x (fm)

-15

-10

-5

 0

 5

 10

 15

y
 (

fm
)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

edens (GeV/fm
3
)  τ=1 fm/c

-15 -10 -5  0  5  10  15

x (fm)

-15

-10

-5

 0

 5

 10

 15

y
 (

fm
)

 0

 50

 100

 150

 200

 250

edens (GeV/fm
3
)  τ=4 fm/c, viscous

-15 -10 -5  0  5  10  15

x (fm)

-15

-10

-5

 0

 5

 10

 15

y
 (

fm
)

 0

 5

 10

 15

 20

 25

 30

 35

edens (GeV/fm
3
)  τ=8 fm/c, viscous

-15 -10 -5  0  5  10  15

x (fm)

-15

-10

-5

 0

 5

 10

 15

y
 (

fm
)

 0

 1

 2

 3

 4

 5

 6

 7

 8

Viscosity damps short-wavelength modes!
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Microspopic approach to hydrodynamics: kinetic theory

The energy-momentum tensor can be written as the following integral
over the on-shell (p0 =Ep) single-particle distribution f (x , p)

Tµν(x) ≡
∫
dχ pµpν f (x , p), where dχ ≡ d~p

(2π)3Ep
.

The evolution of f (x , p) is described by the Boltzmann equation

pµ∂µf (x , p) = −C[f ] where C[f ] ≡ Closs[f ]− Cgain[f ]

Notice that, defining λmfp ≡ 1/(σn), RHS=0 in two opposite regimes

in the free-streaming limit (λmfp/L→∞, not so interesting)

in the ideal fluid limit (λmfp/L→ 0: strongly coupled regime!)

NB1: whether a hydro picture applies depends on the λmfp/L ratio: the
air at room temperature and P = 1 atm can be considered either a
perfect (almost) collisionless gas (λmfp≈68 nm vs d≈3 nm) or as a fluid,
if we are interested at its macroscopic behavior (e.g. weather forecast).

NB2 Kinetic theory is more microscopic, but it relies on a (quasi-)particle

description: excitations in a strongly-coupled many-body system can be

very different!
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Particle and energy-momentum conservation

Let us consider the particle-number current

jµ(x) ≡
∫

dχ pµf (x , p) =

∫
d~p

(2π)3

pµ

Ep
f (x , p)

From the 0th moment of the Boltzmann equation one gets its
conservation law

∂µ

∫
dχ pµf (x , p) =

∫
dχ pµ∂µf (x , p) = −

∫
dχ C[f ]

so that ∂µj
µ=0⇔

∫
dχ C[f ]=0: it is not necessary that the collision

term vanishes, but just its momentum intergral, in order to conserve the
number of particles.

From the 1st moment of the Boltzmann equation one obtains the
conservation of the energy-momentum tensor

∂µ

∫
dχ pµpν f (x , p) =

∫
dχ pνpµ∂µf (x , p) = −

∫
dχ pνC[f ]

implying ∂µT
µν =0⇔

∫
dχ pνC[f ]=0
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Conserved currents in QFT

In ordinary kinetic theory particle number usually refers to atoms and its
is always conserved: the previous continuity equation holds.
In a relativistic system described by Quantum Field Theory the situation
is more complex:

There are particles (e.g. photons, gluons) whose number is not
conserved, since they can be radiated or absorbed without violating
any conservation law;

There are particles (e.g. quarks, electrons...) which obey global
conservation law and for which only their net number is conserved.
In this case the conserved current is given by

jµ ≡
∫

dχ pµ [fq(x , p)− fq̄(x , p)]

NB In the following, even when not written explicitly, in the
equations for current conservation what enters is always the
difference between particle and antiparticle distributions!
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Kinetic theory and ideal hydrodynamics

In the case of an ideal fluid one has f (x , p) = feq(p · u(x)) so that

Tµν
eq =

∫
dχ pµpν feq(p · u)= εuµuν − P∆µν

For classical particles with g internal degrees of freedom feq = ge−p·u/T .

Exploiting uµ∆µν = 0 and ∆µν∆µν =3 one gets:

ε= uµuνT
µν
eq =

∫
dχ (p · u)2feq(p · u)

P =−1

3
∆µνT

µν
eq = −1

3
∆µν

∫
dχ pµpν(gµν − uµuν)feq(p · u) ∼

p2→0

ε

3

where the last equality holds for a fluid of massless particles. In this case
ε and P can be easily evaluated working in the LRF:

ε = g

∫
d~p

(2π)3Ep
E 2

p e−E/T = g
1

2π2

∫ ∞
0

p3 dp e−p/T

= g
T 4

2π2

∫ ∞
0

dx x3 e−x = g
T 4

2π2
Γ(4)= g

3T 4

π2

and P = ε/3 = gT 4/π2.
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Partons in the QGP

The average density of partons (gluons, quarks and antiquarks) in a hot
QGP is given by:

n = g

∫
d~p

(2π)3Ep
Ep e

−E/T = g
T 3

2π2

∫ ∞
0

dx x2 e−x = g
T 3

2π2
Γ(3)= g

T 3

π2

The average energy per parton is given by ε/n = 3T .

The number of
active d.o.f. to sum over when mu,md ,ms � T � mc is given by
(Nc = Nf = 3)

gdof = 2× (N2
c − 1)︸ ︷︷ ︸

gluons

+ 2× 2× Nc × Nf︸ ︷︷ ︸
quarks+antiquarks

= 16 + 36= 52

Partonic cross sections must be of order σ ∼ α2
s/T

2, hence

λmfp =
1

nσ
∼ π2

gdofT 3α2
s/T

2
=

π2

gdofα2
sT

For αs ∼ 0.3 and T ∼ 0.4 GeV one has

λmfp ∼
10

50 · 0.1 · 0.4 GeV
∼ 1 fm� L ∼ 10 fm,

hence hydrodynamic conditions are marginally satisfied
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Kinetic theory and dissipative hydrodynamics

In a non-ideal fluid one gets viscous corrections to the particle distribution
and hence to the energy-momentum tensor and conserved currents

Tµν =

∫
dχ pµpν [feq(p·u)+δf (x , p)]= εuµuν − P∆µν+Πµν + qµuν + qνuµ

jµ =

∫
dχ pµ[feq(p · u) + δf (x , p)] = nuµ + V µ

From the Landau matching conditions uµΠµν = uµq
µ = uµV

µ = 0, i.e.

ε=uµuνT
µν =uµuνT

µν
eq and n = uµj

µ = uµj
µ
eq

allowing one to define an effective temperature and chemical potential
even for an off-equilibrium system one gets∫

dχ (p · u)2 δf (x , p) = 0 and

∫
dχ (p · u) δf (x , p) = 0

Choosing the Landau frame qµ=0←→ uµT
µν =uµT

µν
eq =εuν sets also∫

dχ (p · u)pν δf (x , p) = 0
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δf and dissipative corrections (I)

In the Landau frame, with no heat-conduction, we found

Πµν ≡
∫

dχpµpνδf ,

which can be decomposed as

Πµν = πµν +
1

3
Παα∆µν ≡ πµν −∆µνΠ

One has

Π = −1

3
∆µνΠµν and πµν = ∆µν

αβΠαβ

where ∆µν
αβ ≡

1
2 (∆µ

α∆ν
β + ∆ν

α∆µ
β)− 1

3 ∆µν∆αβ .

Hence

Π = −1

3
∆µν

∫
dχpµpνδf and πµν = ∆µν

αβ

∫
dχpαpβδf

For the QGP one has

Π=−1

3
∆µν

∫
dχpµpν [δfg +δfq +δfq̄] πµν =∆µν

αβ

∫
dχpαpβ[δfg +δfq +δfq̄]
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which can be decomposed as

Πµν = πµν +
1

3
Παα∆µν ≡ πµν −∆µνΠ

One has

Π = −1

3
∆µνΠµν and πµν = ∆µν

αβΠαβ

where ∆µν
αβ ≡

1
2 (∆µ

α∆ν
β + ∆ν

α∆µ
β)− 1

3 ∆µν∆αβ . Hence

Π = −1

3
∆µν

∫
dχpµpνδf and πµν = ∆µν

αβ

∫
dχpαpβδf

For the QGP one has

Π=−1

3
∆µν

∫
dχpµpν [δfg +δfq +δfq̄] πµν =∆µν

αβ

∫
dχpαpβ[δfg +δfq +δfq̄]
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δf and dissipative corrections (II)

The diffusion current was found to be

V µ =

∫
dχpµδf

The Landau matching conditions force it to be transverse to the fluid
four-velocity, uµV

µ = 0, hence

V µ = ∆µ
α

∫
dχpαδf

For the QGP one has

V µ = ∆µ
α

∫
dχpα[δfq − δfq̄]

One is left with the problem of evaluating δf
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The relaxation-time approximation

The Relaxation Time Approximation for the collision integral allows one
to simplify the structure of the BE (δf ≡ f − feq)

pµ∂µf = − (p · u)

τR
δf

Particle conservation

∂µ

∫
dχ pµf = 0 ⇐⇒

∫
dχ

(p · u)

τR
δf = 0

If τR independent of p it is equivalent to Landau matching condition

Energy-momentum conservation

∂µ

∫
dχ pµpν f = 0 ⇐⇒

∫
dχ

(p · u)

τR
pνδf = 0

If τR independent of p it is equivalent to setting the Landau frame,
which is the only consistent choice in the RTA of the BE
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RTA and Chapman-Enskog expansion (I)

Write explicitly the RTA form of the BE for a non-relativistic flow

E

(
∂

∂t
+ ~v · ∂

∂~x

)
f (t, ~x ; ~p) = − E

τR
δf (t, ~x ; ~p)

Rewrite the equation with dimensionless variables, factorizing the typical
macroscopic or intrincic scales at which we explore the medium:

t ′ ≡ t/T , x ′ = x/L, L = UT , v ′ ≡ v/cs ,

where U is the macroscopic collective velocity of the fluid and the speed
of sound cs is the typical particle velocity. One has(

τR

T
∂

∂t ′
+
τRcs

L
~v ′ · ∂

∂~x ′

)
f = −δf

Since τR ≈ λmfp/cs one gets(
λmfp

L
U

cs

∂

∂t ′
+
λmfp

L
~v ′ · ∂

∂~x ′

)
f = −δf
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RTA and Chapman-Enskog expansion (II)

Introducing the Mach number Ma ≡ U/cs and the Knudsen number
Kn ≡ λmfp/L one has(

Ma ·Kn · ∂
∂t ′

+ Kn · ~v ′ · ∂
∂~x ′

)
f = −δf

Expand now the particle distribution around the local thermal equilibrium
solution f0 ≡ feq using the Knudsen number ε ≡ Kn as a small parameter:

f = f0 + ε∆f1 + ε2∆f2 + ...

Substituting the above expansion into the BE one gets(
Ma · ε · ∂

∂t ′
+ ε · ~v ′ · ∂

∂~x ′

)
(f0+ε∆f1+ε2∆f2+...) = −ε∆f1−ε2∆f2+...

It is evident that to get ∆f1 one substitutes f0 in the LHS and, in

general, the ∆fn correction comes from the ∆fn−1 term in the LHS
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RTA and Chapman-Enskog expansion (III)

The Chapman-Enskog expansion arises naturally from an iterative
solution of the BE in RTA

f = f0 −
τR

(p ·u)
(p ·∂) f

One gets

f1 = f0 −
τR

(p ·u)
(p ·∂) f0 ≡ f0 + δf1

f2 = f0 −
τR

(p ·u)
(p ·∂) f1 ≡ f0 + δf1 + δf2

f3 = ...

In particular one has

δf1 = − τR

(p ·u)
(p ·∂) f0 and δf2 =

τR

(p ·u)
(p ·∂)

[
τR

(p ·u)
(p ·∂) f0

]
The Chapman-Enskog approach amounts then to a gradient expansion

around the local thermal equilibrium solution
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First-order results: shear tensor

The first-order result is obtained replacing δf → δf1. For the shear tensor
one has for instance

πµν = ∆µν
αβ

∫
dχpαpβ

(−τR )

(p ·u)
pγ∂γ f0

From f0 =g e−β(p·u) and the decomposition ∂µ = uµD +∇µ one gets

πµν = ∆µν
αβ

∫
dχpαpβ

(−τR )

(p ·u)

[
−β(p ·u)pδDuδ−βpγpδ∇γuδ

−(p ·u)2Dβ − (p ·u)pγ∇γβ
]
f0

Three different kind of terms can be identified

I = ∆µν
αβ

∫
dχpαpβg(p ·u) = ∆µν

αβ[A2,0u
αuβ + A0,2∆αβ] = 0

II = ∆µν
αβ

∫
dχpαpβpγg(p·u) = ∆µν

αβ[A3,0u
αuβuγ+A1,2(uα∆βγ+perm)] = 0

III = ∆µν
αβ

∫
dχpαpβpγpδg(p ·u) 6= 0
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First-order results: shear tensor

Consider in detail the only structure contributing

∆µν
αβ

∫
dχpαpβpγpδg(p·u) = ∆µν

αβ

[
A4,0u

αuβuγuδ + A2,2(uαuβ∆γδ + perm)

+A0,4(∆αβ∆γδ + ∆αγ∆βδ + ∆αδ∆βγ)
]

Only the last two terms, once contracted, contribute. One gets

∆µν
αβ

∫
dχpαpβpγpδg(p·u) = 2A0,4

[
1

2
(∆µγ∆νδ + (∆νγ∆µδ)− 1

3
∆µν∆γδ

]
where

A0,4 =
1

15

∫
dχ∆αγ∆βδp

αpβpγpδ g(p ·u) ∼
m→0

1

15

∫
dχ(p ·u)4 g(p ·u)

and

g(p ·u) =
βτR

(p ·u)
gdof e

−β(p·u)
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First-order results: shear tensor

One obtains then

πµν = 2A0,4

[
1

2
(∆µγ∆νδ + (∆νγ∆µδ)− 1

3
∆µν∆γδ

]
∇γuδ

= 2A0,4

[
1

2
(∇µuν +∇νuµ)− 1

3
∆µνΘ

]
≡ 2ησµν

We have then identitified the physical meaning of A0,4, which represents
the shear viscosity η of the medium, which we can now calculate:

η =
gdof
15

τR

T

∫
dχ(p ·u)3e−p·u/T =

gdof
15

τR

T

1

2π2

∫ ∞
0

dp p5−1e−p/T

=
gdof
15

τR

T

1

2π2
T 5Γ(5) =

1

5
τR gdof

4T 4

π2

For a relativistic fluid of massless particles with ε = 3P one has then

η =
1

5
τR (ε+ P) =

4

5
τRP
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On the η/s ratio

The QGP produced in HIC’s was found to be the “most ideal” fluid in
the universe, with a very small η/s ratio. Let us estimate this ratio in our
approach. From ε+ P = Ts one has

η =
1

5
τR (ε+ P) =

1

5
τRTs −→ η

s
=

T

5
τR =

T

5

1

nσ
,

where in the relativistic limit τR ≈ λmfp. One has

n = gdof
T 3

π2
, σ ∼ α2

s

T 2
−→ η

s
≈ π2

5gdofα2
s

≈ 10

5 · 50 · 0.1
≈ 0.4,

where we employed gdof ≈ 50 and αs ≈ 0.3.

In order to reproduce the experimental data one needs a 2-4 times smaller

value, but this naive estimate is already able to reproduce the correct

order of magnitude. The vary small η/s ratio arises here from the huge

number of relativistic degrees of freedom which are thermally excited
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Comparison with the non-relativistic limit

The result of kinetic theory for a gas of non-relativistic particles is

ηnr = n(KBT )τR

To be compared with the relativistic result (ε = 3nT = 3P, KB =1)

ηrel =
4

5
PτR =

4

5
nT τR

where n is the total density of partons of any kind.

Maxwell showed that in a non-relativistic gas the viscosity is independent
of the density. Since τR ≈ λmfp/v̄ one has

ηnr ≈ n(KBT )
λmfp

v̄
= n

KBT

v̄

1

nσ
∼
√
MKBT

σ

On the contrary, in a ultrarelativistic fluid s = 4n, hence

η

s
≈ π2

5gdofα2
s

−→ η ≈ 4π2

5gdofα2
s

n ,

growing linearly with the particle density, since n ∼ T 3 and σ ∼ T−2.
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Evaluation of δf1

The first-order (in the gradients) dissipative correction to the distribution
funtion is given by

δf1 = − τR

(p ·u)
(p ·∂) f0 = − τR

(p ·u)
pµ [−βpν(uµDuν +∇µuν)

−(p ·u)(uµDβ +∇µβ)] f0

Due to the contraction with pµpν one can substitute

∇µuν −→ σµν +
1

3
∆µνΘ

At first order in the gradients one can express the derivatives of β
through the ideal hydrodynamic equations for a conformal fluid:

Dβ =
1

3
βΘ ∇µβ = −βDuµ

Almost all terms cancel except one, leading to

δf1 = β
pµpν

(p ·u)
τRσµν f0

If the system relaxes infinitely fast (τR → 0) the dissipative correction

vanishes, as expected
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Evaluation of δf1

One can go one step further, exploiting the first-order result

πµν = 2
ε+ P

5
τRσ

µν

leading to

δf1 =
5

2T (p ·u)(ε+ P)
pµpνπµν f0

0 1 2 3
p

T
(GeV)

0

0.1

0.2

0.3

0.4

v
2

viscous hydro

viscous hydro (flow anisotropy only)

ideal hydro

Cu+Cu, b=7 fm, SM-EOSQ, π
−

 initialized by π
mn

=0

initialized by π
mn

=2ησ
mn

The correction δf affects the
distributions of final hadrons
decoupling from the fireballa

aH. Song and U. Heinz, Phys.Rev.C 77 (2008) 064901
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Evolution equation for the shear tensor

In order to get a causal theory one must write an evolution equation for
πµν , whose comoving derivative contains two terms:

Dπµν = ∆µν
αβ

∫
dχpαpβD(δf ) + (D∆µν

αβ)

∫
dχpαpβδf

The last term involves the contraction

(D∆µν
αβ)Παβ = (D∆µν

αβ)παβ − (D∆µν
αβ)∆αβΠ

All the terms contracted with ∆αβ vanish. In fact

(D∆µν
αβ)∆αβ = −1

2
· 2 · (uµDuν + uνDuµ) +

1

3
· 3 · (uµDuν + uνDuµ) = 0

One gets a non-zero contribution from the contraction with παβ

(D∆µν
αβ)παβ = −(πµαuν + πανuµ)Duα

The latter vanishes if contracted with ∆ρσ
µν . Hence, after defining

π̇〈µν〉 ≡ ∆µν
ρσ π̇

ρσ one has π̇〈µν〉 = ∆µν
αβ

∫
dχpαpβ δ̇f
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Evolution equation for the shear tensor

From the BE in RTA

δf = − τR

(p ·u)
pµ∂µf and ∂µ = uµD +∇µ

one gets

δf

τR
= −Df − (p ·∇)

(p ·u)
f = −Df0 − Dδf − (p ·∇)

(p ·u)
f

Hence one has

δ̇f = −ḟ0 −
(p ·∇)

(p ·u)
f − δf

τR

which can be substituted into the previous equation, getting

π̇〈µν〉 = −∆µν
αβ

∫
dχpαpβ

[
ḟ0 +

(p ·∇)

(p ·u)
f +

δf

τR

]
leading to

π̇〈µν〉 +
πµν

τR
= −∆µν

αβ

∫
dχpαpβ

[
ḟ0 +

(p ·∇)

(p ·u)
f

]
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Evolution equation for the shear tensor

In first approximation one can substitute in the RHS f → f0 getting

π̇〈µν〉 +
πµν

τR
≈ −∆µν

αβ

∫
dχpαpβ

[
ḟ0 +

(p ·∇)

(p ·u)
f0

]
In this form the RHS was already calculated when considered the
first-order theory, getting

∆µν
αβ

∫
dχpαpβ(−τR )

[
ḟ0 +

(p ·∇)

(p ·u)
f0

]
= 2ησµν ,

with η = (ε+ P)τR/5. Hence one finds:

π̇〈µν〉 +
πµν

τR
=

2ησµν

τR
+ ...

which allows one to restore causality. For τR → 0 the system

immediately approach the Navier-Stokes result πµνNS = 2ησµν
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Evolution equation for πµν: full 2nd-order result

The full 2nd-order result is obtained substituting f → f0 + δf1 in the
RHS, obtaining

π̇〈µν〉 +
πµν

τR
≈ −∆µν

αβ

∫
dχpαpβ

[
ḟ0 +

(p ·∇)

(p ·u)
f0 +

(p ·∇)

(p ·u)
δf1

]
,

where

δf1 =
5

2T (p ·u)(ε+ P)
pµpνπµν f0

Exploiting the hydrodynamic equations to express the derivatives of the
temperature in terms of derivatives of the four-velocity one gets the
complete second-order result for a fluid of massless particles

π̇〈µν〉+
πµν

τR
= 2

(
ε+ P

5

)
σµν− 4

3
πµνΘ− 10

7
π〈µρ σ

ν〉ρ + 2π〈µρ ω
ν〉ρ

where we have introduced the vorticity ωµν ≡ (∇µuν−∇νuµ)/2 and we

have defined A〈µBν〉 ≡ ∆µν
αβA

αBβ .
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Why does hydro work so well?

Let us consider, for simplicity, the case of a pure Bjorken expansion

uµ = (t/τ, 0, 0, z/τ) = (cosh ηs , 0, 0, sinh ηs)

From uµπ
µν = 0, πµµ = 0, u⊥ = 0 and SO(2) invariance in the transverse

plane one has, in the LRF:

Tµν
LRF =


ε 0 0 0
0 P + π/2 0 0
0 0 P + π/2 0
0 0 0 P − π

 ≡

ε 0 0 0
0 PT 0 0
0 0 PT 0
0 0 0 PL


The viscous hydrodynamic equations reduce to (τ ≡

√
t2 − z2)

dε

dτ
=−ε+ P − π

τ
dπ

dτ
=− 1

τR

(
π − 4

3

η

τ

)
− λπ

τ
,

where IS → λ = 4/3, CE2 → λ = 38/21 and π ∼
τR→0

πNS ≡ 4η/3τ
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Why does hydro work so well?

In the case of a pure Bjorken expansion it is possible to obtain an exact
solution of the Boltzmann equation

df

dτ
= − f − feq

τR
.

Introducing the dimensionless variable w ≡ tpz − zE one gets:

f (τ, pT ,w) = D(τ, τ0)f0(pT ,w) +

∫ τ

τ0

dτ ′

τR (τ ′)
D(τ, τ ′)feq(τ ′, pT ,w) ,

where

τR (τ) =
5(η/s)

T (τ)
and D(τ2, τ1) ≡ exp

[
−
∫ τ2

τ1

dτ ′

τR (τ ′)

]
is a sort of Sudakov factor representing the no-interaction probability
from τ1 to τ2. The solution can then be inserted into

Tµν =

∫
dχpµpν f (x , p)
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Why does hydro work so well?

As an initial condition we take a distorted thermal distribution

f0(pT ,w) = gdof exp

[
−
√

(1 + ξ0)w2 + p2
T τ

2
0

Λ0τ0

]
,

where Λ0 sets the typical transverse-momentum scale and ξ0 quantifies
the anisotropy:

ξ0 =
〈p2

T 〉0
2〈p2

z 〉0
− 1 .

Due to the initial huge expansion rate along the z−axis, θ = 1/τ , one

must have 〈p2
z 〉 � 〈p2

T 〉. Hence physical initial conditions must

correspond to ξ0 > 0 (oblate momentum-space distribution)
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Why does hydro work so well?
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ξ
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ξ
0
=0,  η/s=1/4π,   CE2 vHydro

ξ
0
=0,  η/s=3/4π,   CE2 vHydro

ξ
0
=0,  η/s=1/4π,   IS vHydro

ξ
0
=0,  η/s=3/4π,   IS vHydro

T
0
=0.6 GeV,   τ

0
=0.15 fm/c

2nd-order Chapmam-Enskog much better approximation of exact result
than Israel-Stewart

Differences from kinetic theory increase with η/s: expansion in Kn

Curves as functions of τ/τR (τ) approach a universal result before
isotropization is reached (attractor)

Independently from ξ0, CE2 curves approach first Navier-Stokes and then
kinetic-theory solution

74 / 83



Why does hydro work so well?

0 1 2 3 4 5 6 7 8 9 10

τ (fm/c)

0

0,2

0,4

0,6

0,8

1

P
L
/P

T

ξ
0
=0,  η/s=1/4π,   kinetic theory

ξ
0
=0,  η/s=2/4π,   kinetic theory

ξ
0
=0,  η/s=3/4π,   kinetic theory

ξ
0
=0,  η/s=1/4π,   CE2 vHydro

ξ
0
=0,  η/s=2/4π,   CE2 vHydro

ξ
0
=0,  η/s=3/4π,   CE2 vHydro

T
0
=0.6 GeV,   τ

0
=0.15 fm/c

2nd-order Chapmam-Enskog much better approximation of exact result
than Israel-Stewart

Differences from kinetic theory increase with η/s: expansion in Kn

Curves as functions of τ/τR (τ) approach a universal result before
isotropization is reached (attractor)

Independently from ξ0, CE2 curves approach first Navier-Stokes and then
kinetic-theory solution
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Late and early-time attractor in kinetic theory
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Once initialized at τ0 the system approaches a universal curve,
indendently from initial anisotropy and specific viscosity (late-time
attractor);

By taking τ0 smaller and smaller → early-time attractor,
characterized by infinite initial anisotropy at τ0 = 0+
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Attractors in viscous hydrodynamics
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Both IS and CE2 approximations to viscous hydrodynamics display
an attractor, however CE2 solution in much better agreement with
kinetic theory;

vHydro attractor unphysical at very early time (PL < 0)
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Where does vHydro attractor come from?

It is useful to introduce the dimensionless variables

w̄ ≡ τ

τR (τ)
, φ ≡ ∂ ln w̄

∂ ln τ
=
τ∂τ w̄

w̄

For a conformal fluid the only physical scale is the temperature, hence:

w̄ ∼ τ · T ∼ τ · ε1/4

so that

φ =
τε1/4 + τ 2(1/4)ε−3/4∂τ ε

τε1/4
−→ φ = 1 +

1

4

∂ ln ε

∂ ln τ
.

From the energy-conservation law for a conformal fluid (P = ε/3) one has

∂ε

∂τ
= −4

3

ε

τ
+
π

τ
−→ ∂ ln ε

∂ ln τ
= −4

3
+
π

ε
,

leading to

π

ε
= 4

(
φ− 2

3

)
−→ lim

w̄→∞
φ =

2

3
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Where does vHydro attractor come from?

One has then (φ′ ≡ ∂φ/∂w̄):

τ∂τ

(π
ε

)
= 4τ∂τφ = 4τφ′∂τ w̄ = 4w̄φ′

∂ ln w̄

∂ ln τ
= 4w̄φφ′

The LHS of the above equation can be written as:

τ∂τ

(π
ε

)
= τ

π̇

ε
− π

ε

∂ ln ε

∂τ

Hence one gets:

4w̄φφ′ = τ
π̇

ε
− 4

(
φ− 2

3

)
4(φ− 1) .

One can now exploit the evolution equation for the viscous contribution:

τR
dπ

dτ
+π+λ

τR

τ
π− 4

3

4

15

ε

(τ/τR )
= 0 −→ τ

π̇

ε
+
π

ε
w̄ +λ

π

ε
− 16

45
= 0 ,
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Where does vHydro attractor come from?

One gets:

4w̄φφ′ + 16

(
φ− 2

3

)
(φ− 1) =

16

45
− 4

(
φ− 2

3

)
(w̄ + λ)

Hence the differential equation to solve is:

w̄φφ′ = −4φ2 +

(
20

3
− λ− w̄

)
φ−

(
116

45
− 2

3
(λ+ w̄)

)
In order to have a regular solution for w̄ → 0 one must have

4φ2
0 −

(
20

3
− λ
)
φ0 +

(
116

45
− 2

3
λ

)
= 0 ,

whose stable solutions are:

φIS0 =
1

15
(10 +

√
5) , φCE2

0 =
1

140
(85 +

√
505) .
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Attractor for the pressure anisotropy

PL

PT
=

P − π
P + π/2

=
1− 3

π

ε

1 +
3

2

π

ε

=
3− 4φ

2φ− 1

Requiring both PL > 0 and PT > 0 one gets φ < 3/4 and φ > 1/2. Only

when these conditions are satisfied the attractor solution is physically

acceptable
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vHydro attractor: numerical solutions
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For w̄<∼0.43 the CE2 vHdydro attractor solution is unphysical, since it

would correspond to negative longitudinal pressure
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Entropy production
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dχ(p · u)f (τ, pT ,w)[ln(f (τ, pT ,w))− 1] .

When large anisotropy −→ entropy lower than seq ≡ (ε+ P)/T

Most entropy produced before hydrodynamization, τ/τR<∼3

Initially, lower entropy production for large η/s (free-streaming)
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