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Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the order
parameters

@ Polyakov loop (L) ~ e BAFe:
energy cost to add an isolated color
charge

@ Chiral condensate (gq) ~ effective
mass of a “dressed” quark in a
hadron
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Heavy-lon Collision (HIC) experiments performed to study the transition
@ From QGP (color deconfinement, chiral symmetry restored)

@ to hadronic phase (confined, chiral symmetry broken)

NB (gq)#0 responsible for most of the baryonic mass of the universe: only ~35 MeV of the
proton mass from m, ;4 #0
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Heavy-ion collisions: exploring the QCD phase-diagram

NJL model, Nf=2
phase diagram with isentropic trajectories
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@ Region explored at the LHC and highest RHIC energy: high-T /low-density (early universe,

ng/n,~1079)

@ Higher baryon-density region accessible at lower \/syn (Beam-Energy Scan at RHIC)
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Heavy-ion collisions: exploring the QCD phase-diagram

NJL model, Nf=2

phase diagram with isentropic trajectories
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@ Region explored at the LHC and highest RHIC energy: high-T /low-density (early universe,

ng/n,~1079)
@ Higher baryon-density region accessible at lower \/syn (Beam-Energy Scan at RHIC)
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QCD at high temperature: expectations

Based on asymptotic freedom, for T > Agcp hot-QCD matter should behave like a
non-interacting plasma of massless quarks (the ones for which my < T) and gluons. In such a
regime T is the only scale p at which evaluating the gauge coupling, for which one has

lim g(pu~T)=0

T//\QCD*)QC

Hence one expects the asymptotic Stefan-Boltzmann behaviour
2

T30

7
€ |:ggluon + 8gquark:| T47

where

8gluon = 2 X (Ng - 1) and Bquark = 2x2X Nc X Nf
2

pol. x col. q/q % spin X col. x flav.

4/16



QCD at high temperature: lattice results

Continuum-extrapolated (a — 0) lattice-QCD simulations with realistic quark masses now
available (\W.B. Collab. [JHEP 1011 (2010) 077])
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Rapid rise in the energy density suggesting a change in the number of active degrees of
freedom (hadrons — partons):
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QCD at high temperature: lattice results

Continuum-extrapolated (a — 0) lattice-QCD simulations with realistic quark masses now
available (\W.B. Collab. [JHEP 1011 (2010) 077])
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Rapid rise in the energy density suggesting a change in the number of active degrees of
freedom (hadrons — partons):
the most dramatic drop experienced by the early universe in which
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Heavy-ion collisions: a cartoon of space-time evolution

Freeze-Out T{o Ten Te

T,= 1 fm/c

N J

@ Soft probes (low-pr hadrons): collective behavior of the medium;

@ Hard probes (high-pr particles, heavy quarks, quarkonia): produced in hard pQCD
processes in the initial stage, allow to perform a tomography of the medium
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A medium displaying a collective behavior

Pressure-driven hydrodynamic expansion

dv' B _OP
dt v<c Oxf

(e+ P)
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A medium displaying a collective behavior

Pressure-driven hydrodynamic expansion

dv' B _OP
dt v<c Oxf

(e+ P)
NB picture relying on the condition ¢, < L

7/16



A medium displaying a collective behavior

Pb-Pb events at 5, = 2.76 TeV

0.35F Centrality 20-40%
0.3+ : E ] i
0.25F H f f
020
0.15] VISH2+1

(MCKLN, /s=0.20) @
n 3

Anisotropic azimuthal distribution of hadrons as a response to pressure gradients quantified by
the Fourier coefficients v,
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vy = (cos[n(¢p — n)])
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inducing energy-loss to colored probes

Run: 169045
Event: 1914004

Date: 2010-11-12
Time: 04:11:44 CET

&0 P [GeV]

Strong unbalance of di-jet events,

visible at the level of the event-display itself, without
any analysis: jet-quenching

9/16



A medium inducing energy-loss to colored probes
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Medium-induced suppression of high-momentum hadrons and jets quantified through
the nuclear modification factor
Raa = (th/de)AA
n <N(:()ll> (th/de)p,D
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A medium inducing energy-loss to colored probes

Medium-induced suppression of high-momentum hadrons and jets quantified through
the nuclear modification factor

(dN*?/dpr )™

N(:()ll> (th/de)PP

RAA =
{

interpreted as energy carried away by radiated gluons
10/16



A medium screening the QQ interaction
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Suppression of T production in Pb-Pb collisions at the LHC, in particular its excited
(weaker binding, larger radius!) states.

1T, Matsui and H. Satz, Phys.Lett. B178 (1986) 416-422
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A medium screening the QQ interaction
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Suppression of T production in Pb-Pb collisions at the LHC, in particular its excited
(weaker binding, larger radius!) states.
In first approximation, Debye screening of the Q@ interaction?:

(6% as
Voa(r):—CFT — —CFTG mor

1T, Matsui and H. Satz, Phys.Lett. B178 (1986) 416-422
11/16



Little Bang vs Big Bang

Nuclear collisions and the QGP expansion HISTORY OF THE UNIVERSE

collision evolution particle
‘expansion and cooling detectors

Kinetic .
freeze-out

hadronization d distributions and
cnorgy denty plioiely
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Which differences between the Little-Bang created in the lab and the Big-Bang from which our
universe was born?

12/16



Little Bang vs Big Bang

Nuclear collisions and the QGP expansion HISTORY OF THE UNIVERSE

collision evolution particle
‘expansion and cooling detectors
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Which differences between the Little-Bang created in the lab and the Big-Bang from which our
universe was born?

@ Expansion of the universe governed by the equations of the gravitational field. In nuclear
collisions gravity does not play any role, expansion of the fireball driven by pressure gradients;
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Little Bang vs Big Bang

Nuclear collisions and the QGP expansion
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HISTORY OF THE UNIVERSE

Which differences between the Little-Bang created in the lab and the Big-Bang from which our

universe was born?

@ Expansion of the universe governed by the equations of the gravitational field. In nuclear
collisions gravity does not play any role, expansion of the fireball driven by pressure gradients;

@ QGP produced in nuclear collisions has a much shorter lifetime (10 25 vs 10 6s) and a much

more violent expansion (with deep consequences!).
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Little Bang vs Big Bang

Nuclear collisions and the QGP expansion HISTORY OF THE UNIVERSE

collision evolution particle
‘expansion and cooling detectors
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To be more precise, compare the expansion rates:
@ Radiation-dominated universe

.1 ) .
a~mt’? s s~ a2 H=22 1 100!
2 a
@ QGP in HIC's undergoing longitudinal expansion vZ = z/t
0=0,u" ~ 1o 102571

—0 t

13/16



Matter vs Antimatter in Little and Big Bang
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In high-energy HIC's equal amount of particles and antiparticles produced, in our universe no
track of primordial antimatter.
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Matter vs Antimatter in Little and Big Bang
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In high-energy HIC's equal amount of particles and antiparticles produced, in our universe no

track of primordial antimatter.
Remember the very different expansion rates! Inelastic reactions like

p + p < Fpions,

with ai,% ~ Tr, ~ 30 mb, do not have time to occur in HIC's.
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Matter vs Antimatter in Little and Big Bang
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In high-energy HIC's equal amount of particles and antiparticles produced, in our universe no

track of primordial antimatter.
Remember the very different expansion rates! Inelastic reactions like

p + p < Fpions,

with ot ~ 7r, &~ 30 mb, do not have time to occur in HIC's.One has
1 A ,
mip = — With n~ 107%fm™%  — AP~ 30fm > L

P pp
Protons and antiprotons decouple immediately after the QCD transition 14716



Little-Bang vs Big-Bang nucleosynthesis
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@ LBN: yields of light nuclei (and antinuclei!) decreaseas as A increases (fig. from STAR
Coll., Nature 473, 353-356(2011));

@ BBN: “He is by far the most abundant nucleus,
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Little-Bang vs Big-Bang nucleosynthesis
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@ LBN: yields of light nuclei (and antinuclei!) decreaseas as A increases (fig. from STAR
Coll., Nature 473, 353-356(2011));

@ BBN: “He is by far the most abundant nucleus, no antinucleus
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Little-Bang vs Big-Bang nucleosynthesis
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Expansion rate plays again the major role!

@ LBN: light-nucleus yields effectively frozen at the same chemical freeze-out temperature
T =~ 155 MeV as the other hadrons;
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Little-Bang vs Big-Bang nucleosynthesis

Baryon density Qyh?
001

%
)

0005

-l g PD-Pb |5=2.76 TeV ot N

Z 10°¢ Bk ok 3 026 N\
g i 4'-".-“-..--.'- .
1 -, 3
101E - 2

10° 2
E -
104F Tae O 109
F Data, ALICE, 0-10% .
— Statistical model fit (x2/N ,=29.1/18) E ", s
- - - N
T=156.5 MeV, /i = 0.7 MeV, V=5280 fm e o §
T KKK gp p ARZZ QO d dHeHeH AT ' 2 RN
Baryon-to-photon ratio 1 x 10'¢

Expansion rate plays again the major role!
@ LBN: light-nucleus yields effectively frozen at the same chemical freeze-out temperature
T =~ 155 MeV as the other hadrons;

@ BBN: photons remain in thermal equilibrium with the plasma and continuously destroy
deuteron as soos as it is formed (deuteron bottleneck)
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