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Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the order
parameters

Polyakov loop 〈L〉 ∼ e−β∆FQ : energy
cost to add an isolated color charge

Chiral condensate 〈qq〉 ∼ effective
mass of a “dressed” quark in a hadron

Region explored at LHC: high-T/low-density (early universe, nB/nγ∼10−9)

From QGP (color deconfinement, chiral symmetry restored)

to hadronic phase (confined, chiral symmetry breaking1)

NB 〈qq〉 6=0 responsible for most of the baryonic mass of the universe: only

∼35 MeV of the proton mass from mu/d 6=0

1V. Koch, Aspects of chiral symmetry, Int.J.Mod.Phys. E6 (1997)
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Virtual experiments: lattice-QCD simulations

The best (unique?) tool to study QCD in the
non-perturbative regime

Limited to the study of equilibrium quantities
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QCD on the lattice

Expectation values of operators are evaluated on a discretized euclidean
lattice (1/T =Nτa) starting from the QCD partition function

Z =

∫
[dU] exp [−βSg (U)]

∏
q

det [M(U,mq)]

through a MC sampling of the field configurations, where2

β = 6/g 2

Sg is the gauge action, weighting the different field configurations;

U ∈ SU(3) is the link variable connecting two lattice sites;

M ≡ γµDµ + mq is the Dirac operator

2See M. Panero lattice-QCD lectures
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QCD at high-temperature: expectations

Based on asymptotic freedom, for T � ΛQCD hot-QCD matter should
behave like a non-interacting plasma of massless quarks (the ones for
which mq � T ) and gluons. In such a regime T is the only scale µ at
which evaluating the gauge coupling, for which one has

lim
T/ΛQCD→∞

g(µ∼T ) = 0

Hence one expects the asymptotic Stefan-Boltzmann behaviour

ε =
π2

30

[
ggluon +

7

8
gquark

]
T 4,

where

ggluon = 2× (N2
c − 1)︸ ︷︷ ︸

pol. × col.

and gquark = 2× 2× Nc × Nf︸ ︷︷ ︸
q/q × spin × col. × flav.
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QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

Data by the W.B. Collaboration
[JHEP 1011 (2010) 077]

Pressure: P =(T/V ) lnZ;

Entropy density: s = ∂P/∂T ;

Energy density: ε = Ts − P;

Rapid rise in thermodynamical quantities suggesting a change in the
number of active degrees of freedom (hadrons → partons):
the most dramatic drop experienced by the early universe in which

H2 =
8πG

3
εrel =

8πG

3

π2

30
g∗T

4

One observes a systematic ∼20% deviation from the
Stephan-Boltzmann limit even at large T: how to interpret it?
In the last part of this lecture we will attempt an explanation

6 / 32



QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

Data by the W.B. Collaboration
[JHEP 1011 (2010) 077]

Pressure: P =(T/V ) lnZ;

Entropy density: s = ∂P/∂T ;

Energy density: ε = Ts − P;

Rapid rise in thermodynamical quantities suggesting a change in the
number of active degrees of freedom (hadrons → partons):
the most dramatic drop experienced by the early universe in which

H2 =
8πG

3
εrel =

8πG

3

π2

30
g∗T

4

One observes a systematic ∼20% deviation from the
Stephan-Boltzmann limit even at large T: how to interpret it?
In the last part of this lecture we will attempt an explanation

6 / 32



QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

Data by the W.B. Collaboration
[JHEP 1011 (2010) 077]

Pressure: P =(T/V ) lnZ;

Entropy density: s = ∂P/∂T ;

Energy density: ε = Ts − P;

Rapid rise in thermodynamical quantities suggesting a change in the
number of active degrees of freedom (hadrons → partons):
the most dramatic drop experienced by the early universe in which

H2 =
8πG

3
εrel =

8πG

3

π2

30
g∗T

4

One observes a systematic ∼20% deviation from the
Stephan-Boltzmann limit even at large T: how to interpret it?
In the last part of this lecture we will attempt an explanation 6 / 32



From final hadrons back to initial conditions

Au-Au collision at
√

sNN =200 GeV: tracks left by charged
particles in the Time Projection Chamber of the STAR detector.
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From final hadrons back to initial conditions

Invariant single-particle spectra

E
d3N

d~p
=

d3N

d2pTdy

are generally expressed via the transverse momentum and the rapidity

pT ≡
√

p2
x + p2

y and y ≡ 1

2
ln

E + pz

E − pz

Since y requires the knowledge of m (hence Particle IDentification,
involving a longer analysis), one more often uses the pseudorapidity

η ≡ 1

2
ln

p + pz

p − pz
=

1

2
ln

1 + pz/p

1− pz/p
=

1

2
ln

1 + cos θ

1− cos θ

Of course for relativistic particles y≈η! In such a way one can simply

perform two geometrical measurements from the tracks: pT from the

curvature in the B-field (pT = |q|B r) and η from the polar angle. One of

the first observables one can get is then the rapidity density of charged

particles dNch/dη
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Bjorken coordinates in heavy-ion collisions

While a possible transverse expansion takes time to develop, the fluid produced
in HICs is characterized by an initial Hubble-like longitudinal expansion
vfluid
z = z/t: since the collision take place at z = 0, a fluid-cell found at z at a

later time t is there because its constituens share a common average velocity vz .
The strong longitudinal expansion makes convenient to define the longitudinal
proper-time and the spatial rapidity

τ ≡
√

t2 − z2 and ηs ≡
1

2
ln

t + z

t − z
=

1

2
ln

1 + z/t

1− z/t

and, accordingly,
t = τ cosh ηs and z = τ sinh ηs

Microscopic dynamics within a fluid cell depends on the time measured in its
local rest frame. At large z , this “proper”-time would be boosted by a large
γ-factor, requiring to follow the evolution of the system up to very large values
of time t =

√
τ 2 + z2 measured in the lab-frame.

It is also convenient to introduce the fluid-rapidity

Y ≡ 1

2
ln

1 + vfluid
z

1− vfluid
z

so that uµ = γ⊥(cosh Y , u⊥, sinh Y ) with γ⊥ ≡ (1−u2
⊥)−1/2

If the longitudinal dynamics follows a Bjorken expansion with vfluid
z = z/t

fluid-rapidity and spatial rapidity coincide: ηs = Y
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Initial conditions: “Bjorken” estimate

It is useful to describe the evolution in term of the variables

τ ≡
√

t2 − z2 and ηs ≡
1

2
ln

t + z

t − z

Independence of the initial conditions on ηs entails vfluid
z =z/t

throughout the fluid evolution;

For a purely longitudinal Hubble-like expansion entropy conservation
implies:

s τ = s0 τ0 −→ s0 = (s τ)/τ0

Entropy density is defined in the local fluid rest-frame:

s≡ dS

dx⊥dz

∣∣∣∣
z=0

=
1

τ

dS

dx⊥dηs
−→ sτ =

dS

dx⊥dηs

Entropy is related to the final multiplicity of charged particles
(S∼3.6 N for pions), so that (at decoupling η ≈ ηs):

s0 ≈
1

τ0

3.6

πR2
A

dNch

dη

3

2
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“Bjorken” estimate: results

s0 ≈
1

τ0

3.6

πR2
A

dNch

dη

3

2

From dNch/dη ≈ 1600 measured by
ALICE at LHC and RPb ≈ 6 fm one gets:

s0 ≈ (80 fm−2)/τ0

τ0 is found to be quite small (v2 must
develop early!):

0.1<∼τ0<∼1 fm −→ 80<∼s0<∼800 fm−3

This should be compared with l-QCD

s(T =200MeV) ≈ 10 fm−3
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Quantum harmonic oscillator at finite temperature

Its is possible to study the quantum statistical mechanics of a single
harmonic oscillator coupled to a thermal bath. The generalization to
finite temperature QFT will be straightforward.

H =
p2

2
+

1

2
ω2
kq2

Introducing the raising/lowering operators a†/a one gets:

H = ωk

(
a†a +

1

2

)
, with q =

1√
2ωk

(
a + a†

)
and [a, a†] = 1

The partition function is easily evaluated:

Z = Tre−βH =
∞∑
n=0

e−βωk (n+1/2) = e−βωk/2
∞∑
n=0

e−βωkn = e−βωk/2 1

1− e−βωk

One gets then for the thermodynamical potential Ω

Z = e−βΩ −→ Ω = Ωvac + ΩT =
ωk

2
+ ln

(
1− e−βωk

)
,

where we have separated the contribution of vacuum (responsible for UV

divergences in QFT) and thermal fluctuations.
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The vacuum and thermal fluctuations of the displacement are given by

〈q2〉 =
1

2ωk
〈aa† + a†a︸ ︷︷ ︸

[a,a†]+2a†a

〉 =
1 + 2Nk

2ωk
,

involving the Bose-Einstein distribution 〈a†a〉=Nk≡1/(eβωk − 1).
From the h.o. algebra

[H, a] = −ωka [H, a†] = ωka†

one gets the time-evolution of the raising/lowering operators

a(t) = a e−iωk t a†(t) = a†e iωk t

Dim:

a(t) = e iHt a e−iHt −→ da

dt
= i e iHt [H, a] e−iHt = −iωka(t)

In thermal field theory one often works with imaginary times t = −iτ

a(τ) = a e−ωkτ a†(τ) = a†eωkτ with τ ∈ [0, β]
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Temporal propagators

The propagator along the real-time axis is defined as:

D(t1 − t2) = θ(t1 − t2)D>(t1 − t2) + θ(t2 − t1)D<(t1 − t2),

where (from the algebra of the raising/lowering oprators):

D>(t1 − t2)≡ 〈q(t1)q(t2)〉 =
1

2ωk

[
(1 + Nk)e−iωk (t1−t2) + Nke iωk (t1−t2)

]
D<(t1 − t2) ≡ 〈q(t2)q(t1)〉 =

1

2ωk

[
(1 + Nk)e iωk (t1−t2) + Nke−iωk (t1−t2)

]
For the imaginary-time propagator D(τ)≡D(t =−iτ) one has:

D(τ) =
1

2ωk

[
(1 + Nk)e−ωk |τ | + Nkeωk |τ |

]
, with τ ∈ [−β, β]

for which the symmetry property D(τ−β)=D(τ) (with 0≤τ≤β) holds.
The propagator can then be expanded in Matsubara frequencies

D(τ) =
1

β

∞∑
n=−∞

e−iωnτ∆(iωn) with ωn≡(2π/β)n
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Path integrals in statistical QM

We wish to provide a path-integral representation for the partition
function of a quantum system in equilibrium with a thermal bath

Z ≡ Tre−βH =

∫
dx 〈x |e−βH |x〉

here written in the basis of position-eigenstates {|x〉}.
The starting point is the transition amplitude H〈xf , tf |xi , ti 〉H

〈xf |e−iH(tf−ti )|xi 〉 =

∫
x(ti )=xi ,x(tf )=xf

[Dx(t)] e i
∫ tf
ti

dt[1/2(dx/dt)2−V (x)]

Moving to imaginary times t = −iτ one has

〈xf |e−H(τf−τi )|xi 〉 =

∫
x(τi )=xi ,x(τf )=xf

[Dx(τ)] e
−

∫ τf
τi

dτ [1/2(dx/dτ)2+V (x)]

Hence, setting τi = 0 and τf = β and periodic boundary conditions,

Z =

∫
x(0)=x(β)

[Dx(τ)] e−
∫ β

0
dτ [1/2(dx/dτ)2+V (x)]
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Harmonic Oscillator partition function: path-integral

The h.o. partition function reads then (after integration by parts)

Z =

∫
q(0)=q(β)

[Dq(τ)] e−
∫ β

0
dτ(1/2)q(τ)[−∂2

τ +ω2
k ]q(τ)

Such a representation turns out to be convenient

for the evaluation of correlation functions

as a starting point for a perturbative expansion in the presence of
interactions (i.e. non-gaussian terms in the action)

It is convenient to introduce a source term j(τ)

Z [j ] =

∫
q(0)=q(β)

[Dq(τ)] e−
∫ β

0
dτ [(1/2)q(τ)(−∂2

τ +ω2
k )q(τ)−j(τ)q(τ)] (1)

Let us now introduce the Green function of the differential operator

(−∂2
τ + ω2

k)D(τ − τ ′) = δ(τ − τ ′)

We will show that it actually coincides with the previously introduced

thermal propagator
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Performing the change of variables

q(τ) = q′(τ) +

∫
dτ ′D(τ − τ ′)j(τ ′)

the generating functional Z [j ] can be written as

Z [j ] = Z [0]× exp

[
1

2

∫
dτ dτ ′j(τ)D(τ − τ ′)j(τ ′)

]
(2)

Combining Eqs. (1) and (2) one gets

δ2 ln Z [j ]

δj(τ1)δj(τ2)

∣∣∣∣
j=0

= D(τ1 − τ2) = 〈Tτ q(τ1)q(τ2)〉

The equivalence can be verified also decomposing the Green function
D(τ − τ ′) in its Matsubara modes ∆(iωn)

(−∂2
τ + ω2

k)
1

β

∞∑
n=−∞

e−iωn(τ−τ ′)∆(iωn) =
1

β

∞∑
n=−∞

e−iωn(τ−τ ′)

One gets then

∆(iωn) =
1

ω2
n + ω2

k
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The sum over Matsubara frequencies

Im z

Re z

C

The function to integrate has simple poles

at z = iωn (n = 0,±1,±2...)

at z = ±ωk

The Matsubara sum can be expressed as (for 0≤τ≤β)

1

β

∑
n

e−iωnτ∆(iωn) =

∮
dz

2πi

e−zτ

1− e−βz
−1

(z − ωk)(z + ωk)

as can be verified expanding (1− e−βz) around z = iωn.
The integral can be also evaluated taking the residues of the poles
outside the C contour at z = ±ωk . One gets:

D(τ > 0) =
1

2ωk

[
(1 + Nk)e−ωkτ + Nkeωkτ

]
which coincides with what previously found!
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Thermodynamics of the free scalar field

Let us now promote the displacement operator to a scalar field function
of space and time:

q(t) −→ φ(t,~x)

The free Lagrangian/Hamiltonian involves also spatial gradients:

L0 =
1

2
∂µφ∂

µφ− 1

2
m2φ2, H0 =

π2

2
+

1

2
(~∇φ)2 +

1

2
m2φ2

The raising/lowering operators now create/destroy particles with

momentum ~k and energy ωk≡
√
~k2 + m2 and one has

H0 =
∑
~k

ωk

(
a†~ka~k +

1

2

)
−→ Ω0 =

∑
~k

ωk

2
+
∑
~k

ln
(
1− e−βωk

)
The (UV divergent!) contribution of vacuum-fluctuations does not
depend on T and can be dropped (if we are not interested in gravity,
cosmological constant....). In the infinite-volume limit one gets:∑
~k

→ V

∫
d~k

(2π)3
=⇒ P0 =−Ω0

V
=− 1

β

∫
d~k

(2π)3
ln
(
1− e−βωk

)
=
π2

90
T 4
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From the “box-quantization” of the field

φ(~x) =
1√
V

∑
~k

1√
2ωk

[
a~ke i~k·~x + a†~ke−i

~k·~x
]

with [a~k , a
†
~k′

] = δ~k,~k′

one can estimate its fluctuations (〈a†~ka~k′〉 = δ~k,~k′Nk)

〈φ2(~x)〉 =
1

V

∑
~k

1 + 2Nk

2ωk
−→

inf. volume

∫
d~k

(2π)3

1 + 2Nk

2ωk

where one can isolate the (UV divergent!) vacuum fluctuations

〈φ2〉vac. ∼
∫ Λ k2dk

k
∼ Λ2

From the commutation relations

[H, a~k ] = −ωka~k [H, a†~k ] = ωka†~k

one gets that the evolution of the a~k/a†~k operators is

a~k(τ) = a~k e−ωkτ a†~k(τ) = a†~keωkτ with τ ∈ [0, β]

The propagator is then a generalization of the harmonic oscillator result

D0(τ,~k) =
1

2ωk

[
(1 + Nk)e−ωk |τ | + Nkeωk |τ |

]
, with τ ∈ [−β, β]
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Free scalar field: path-integral

The partition function of the free scalar field is given by

Z0 =

∫
φ(0,x)=φ(β,x)

[Dφ(τ, x)] e−
∫ β

0
dτdx (1/2)[(∂τφ)2+(∇φ)2+m2φ2]

After partial integration...

Z0 =

∫
φ(0,x)=φ(β,x)

[Dφ(τ, x)] e−
∫ β

0
dτdx (1/2)φ[−∂2

τ−∇
2+m2]φ︸ ︷︷ ︸

≡e−S0
E

[φ]

The euclidean propagator can then be view as the Green function

[−∂2
τ −∇2 + m2]D0(τ − τ ′) = δ(τ − τ ′)δ(x− x′)

whose Matsubara-Fourier components are given by

∆0(iωn, ~k) =
1

ω2
n + ~k2 + m2

≡ 1

ω2
n + ω2

k

,

as in the case of the harmonic oscillator.
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The interacting scalar field: thermodynamics

In order to illustrate the effects of the interaction on the thermodynamics
we will consider the usual case of λφ4 theory

L = L0 + LI =
1

2
∂µφ∂

µφ− 1

2
m2φ2− λ

4!
φ4

whose partition function reads

Z =

∫
φ(0,x)=φ(β,x)

[Dφ(τ, x)] e−
∫ β

0
dτdx [ 1

2 (∂τφ)2+ 1
2 (∇φ)2+ 1

2 m
2φ2+ λ

4!φ
4]

One can attempt a perturbative expansion around the free result

Z =

∫
φ(0,x)=φ(β,x)

[Dφ(τ, x)] e−S
0
E[φ]×

[
1− (λ/4!)

∫ β

0

dτdxφ4(τ, x) +O(λ2)

]
Using the free action to evaluate the thermal averages one gets

Z = Z0 − Z0(λ/4!)βV 〈φ4〉0 + · · · = Z0

[
1− (λ/4!)βV 〈φ4〉0 + . . .

]
One gets then for the pressure P ≡ ln(Z )/βV

P ≡ P0 + P1 + . . .= P0 + ln
[
1− (λ/4!)βV 〈φ4〉0 + . . .

]
/βV

= P0−(λ/4!)〈φ4〉0 + . . .
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The pressure: the first perturbative correction

Before addressing its exact evaluation we see that the first perturbative
correction to the pressure P1 =−(λ/4!)〈φ4〉0 is negative: we expect the
interacting result to stay below the Stefan-Boltzmann limit.
The correction can be computed through Wick’s theorem:

P1 = −(λ/4!) 3 (〈φ2〉0)2 = −(λ/4!) 3 [D0(τ = 0, x = 0)]2

= −λ
8

[∫
d~k

(2π)3

1 + 2Nk

2ωk

]2

The calculation is plagued by UV divergences due to vacuum
fluctuations. However, the UV divergent term in the integral does not
depend on T and, for the moment, one can simply subtract it.
The final result, including the first perturbative correction is

P0 + P1 = − 1

β

∫
d~k

(2π)3
ln
(
1− e−βωk

)
− λ

8

[∫
d~k

(2π)3

Nk

ωk

]2

=

(
π2

90
− λ

1152

)
T 4

Naively one expects higher order corrections to be O(λ2)
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A closer look at the UV divergences

The perturbative correction P1 to the pressure arises from the above
diagram an can be recast as

P1 = −λ
8

[∫
d~k

(2π)3

1

2ωk

]2

−λ
8

[∫
d~k

(2π)3

Nk

ωk

]2

−λ
4

[∫
d~k

(2π)3

1

2ωk

][∫
d~k ′

(2π)3

Nk′

ωk′

]

If the first term can be simply dropped, being T-independent, the third

term is in principle more subtle, since vacuum (UV divergent!) and

thermal fluctuations look apparently coupled.
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A closer look at the UV divergences

The source of the UV divergence is in the self-energy correction to the
single-particle propagator

∆−1 = ∆−1
0 + Σ = ω2

n + ω2
k +

λ

2

∫
d~k

(2π)3

1 + 2Nk

2ωk
,

where the statistical factor in the self-energy arises from the 12 different
possible contractions from the Wick’s theorem (

∫
d4z≡

∫
dτzd~z)∫

[Dφ]φ(x)φ(y)

(
− λ

4!

)∫ β

0

d4zφ(z)φ(z)φ(z)φ(z) e−S
0
E[φ]

∼ −λ
2

∫ β

0

d4zD0(x − z)D0(z − y)D0(τ = 0,~x = 0)
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A closer look at the UV divergences

The UV divergence can be cured adding a mass counterterm to L

L = L0 + LI + Lct =
1

2
∂µφ∂

µφ− 1

2
m2φ2− λ

4!
φ4−1

2
δm2φ2 + ...

so that the self-energy reads now

Σ = Σvac + ΣT =
λ

2

∫
d~k

(2π)3

1 + 2Nk

2ωk
+ δm2

One can now impose the renormalization condition

Σvac =
λ

2

∫
d~k

(2π)3

1

2ωk
+ δm2= 0 −→ δm2 = −λ

2

∫
d~k

(2π)3

1

2ωk

The self-energy is now finite and can be identified with a thermal mass

ΣT =
λ

2

∫
d~k

(2π)3

Nk

ωk
=

m→0

λT 2

24
≡ m2

T
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A closer look at the UV divergences

This suffices to cure also the UV divergence in the pressure. In fact now

Z =

∫
[Dφ(τ, x)] e−S

0
E[φ]×

[
1−
∫ β

0

dτdx

(
λ

4!
φ4(τ, x) +

1

2
δm2φ2(τ, x)

)
+ . . .

]
so that

P1 =−λ
8

[D0(τ = x = 0)]2 − 1

2
δm2D0(τ = x = 0)

=−λ
8

[∫
d~k

(2π)3

1 + 2Nk

2ωk

]2

− 1

2

[
−λ

2

∫
d~k

(2π)3

1

2ωk

][∫
d~k

(2π)3

1 + 2Nk

2ωk

]
where the dangerous “vacuum × thermal” term cancels.
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Higher order corrections

Higher order corrections to the pressure arise from diagrams like

involving the evaluation of∫
[Dφ(x)] e−S

0
E [φ]

∫ β

0

d4z d4z ′
1

2

(
λ

4!

)2

φ4(z)φ4(z ′)

From PV ≡ (1/β) ln Z and the Wick’s contractions one gets

Pring
2 =

λ2

16
[D0(0, 0)]2 1

βV

∫ β

0

d4z d4z ′[D0(τz − τ ′z , z− z′)]2

Since

(1/β)

∫ β

0

dτe−i(ωn−ωn′ )τ = δn,n′ and

∫
dxe i(k−k′)·x = (2π)3δ(3)(k−k′)

one gets Pring
2 =

λ2

16

[∫
d~k

(2π)3

Nk

ωk

]2
1

β

∞∑
n=−∞

∫
d~k

(2π)3

1

(ω2
n + ω2

k)2
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IR divergences

The expression we got for the “ring” diagram

Pring
2 =

λ2

16

[∫
d~k

(2π)3

Nk

ωk

]2
1

β

∞∑
n=−∞

∫
d~k

(2π)3

1

(ω2
n + ω2

k)2

in the massless limit ωk =k is plagued by an IR divergence ∼
∫

dk/k2

arising from the ωn =0 Matsubara mode.
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Resummation of ring diagrams

The situation is even worse for higher-order similar diagrams, with a
behaviour of the zero Matsubara mode ∼

∫
dk/k2(n−1). However the

whole set of ring diagrams can be resummed (check!):

Pring =
−1

2β

∞∑
n=−∞

∫
d~k

(2π)3

[
ln(1 + Σ∆0(iωn, ~k))− Σ∆0(iωn, ~k)

]
In the above Σ=λT 2/24≡m2

T (analogous of Debye screening mass in
QED/QCD) and the dominant contribution come from the n =0 mode

Pring
n=0 =

−1

2β

∫
d~k

(2π)3

[
ln

(
1 +

m2
T

k2

)
− m2

T

k2

]
=

m3
TT

12π
∼ λ3/2T 4

Notice the non-analytic behaviour in the coupling with an expansion

P ∼ P0 + P1 + P3/2 + ...arising from the resummation of an infinite set

of diagrams 30 / 32



Numerical results: scalar field theory

With proper resummations the expansion can be pushed to higher

orders3. Notice that, if the coupling is not sufficiently weak, the

convergence is poor

3J.O. Andersen and M. Strickland, Annals Phys. 317 (2005) 281-353
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Numerical results: scalar field theory

The situation looks even worse in QCD4 and one has to develop more

clever and powerful resummation schemes.

4J.O. Andersen and M. Strickland, Annals Phys. 317 (2005) 281-353
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