Quark Gluon Plasma thermodynamics

Andrea Beraudo

INFN - Sezione di Torino

Ph.D. Lectures,
AA 2015-16 Torino

/32



Heavy-ion collisions: exploring the QCD phase-diagram

Temperature T [MeV]
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QCD phases identified through the order
parameters

@ Polyakov loop (L) ~ e™#2Fe: energy
cost to add an isolated color charge

@ Chiral condensate (gq) ~ effective
mass of a “dressed” quark in a hadron

Region explored at LHC: high-T/low-density (early universe, ng/n, ~107°)

@ From QGP (color deconfinement, chiral symmetry restored)

@ to hadronic phase (confined, chiral symmetry breaking®)

NB (gq)#0 responsible for most of the baryonic mass of the universe: only

~35 MeV of the proton mass from my ;4 #0

V. Koch, Aspects of chiral symmetry, Int.J.Mod.Phys. E6 (1997)



Virtual experiments: lattice-QCD simulations

@ The best (unique?) tool to study QCD in the
non-perturbative regime

o Limited to the study of equilibrium quantities
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QCD on the lattice

Expectation values of operators are evaluated on a discretized euclidean
lattice (1/ T = N, a) starting from the QCD partition function

2 = [1dU)exp -55,(U)) ] det (M(U. m)

through a MC sampling of the field configurations, where?
° 3=6/g’
@ S, is the gauge action, weighting the different field configurations;
@ U € SU(3) is the link variable connecting two lattice sites;

@ M =~,D, + mq is the Dirac operator

2See M. Panero lattice-QCD lectures



QCD at high-temperature: expectations

Based on asymptotic freedom, for T > Agcp hot-QCD matter should
behave like a non-interacting plasma of massless quarks (the ones for
which mg < T) and gluons. In such a regime T is the only scale 1 at
which evaluating the gauge coupling, for which one has

lim  g(u~T)=0

T//\QCD*NX)
Hence one expects the asymptotic Stefan-Boltzmann behaviour
2

T30

7
€ |:ggluon + 8gquark:| T47

where

8Bgluon = 2 X (Ng - 1) and Bquark = 2 X 2X Nc X Nf
—— ~—

pol. x col. q/q X spin X col. x flav.



QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

Data by the W.B. Collaboration
[JHEP 1011 (2010) 077]

@ Pressure: P=(T/V)InZ;

p(T)/T*
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QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

Data by the W.B. Collaboration
[JHEP 1011 (2010) 077]

@ Pressure: P=(T/V)InZ;
@ Entropy density: s = 9P/0T;

s(T)/T3
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QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

_ S B B és;:: 15 Data by the W.B. Collaboration
i [JHEP 1011 (2010) 077]

@ Pressure: P=(T/V)InZ;
@ Entropy density: s = 9P/0T;

€(T)/T+

oo e om0 @ Energy density: e = Ts — P;
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@ Rapid rise in thermodynamical quantities suggesting a change in the
number of active degrees of freedom (hadrons — partons):
the most dramatic drop experienced by the early universe in which

2 87TG(H\1 _ 831G ﬁg* T4
3 3 30
@ One observes a systematic ~20% deviation from the
Stephan-Boltzmann limit even at large T: how to interpret it?

In the last part of this lecture we will attempt an explanation 6/32



From final hadrons back to initial conditions

Au-Au collision at /sy =200 GeV: tracks left by charged
particles in the Time Projection Chamber of the STAR detector.



From final hadrons back to initial conditions

Invariant single-particle spectra
d®N B d*N
dp  d’prdy

are generally expressed via the transverse momentum and the rapidity

_ / _1 E+p;
pr = /P2 +p2 and y:EInE_pZ

Since y requires the knowledge of m (hence Particle IDentification,
involving a longer analysis), one more often uses the pseudorapidity

1 p+p, 1 1+p;/p 1 1+cost
n==In =-Ih—=="In———

2 p—-p, 2 1l-p/p 2 1-—cosh

Of course for relativistic particles y~n! In such a way one can simply
perform two geometrical measurements from the tracks: pr from the
curvature in the B-field (pr=|qg|B r) and 1 from the polar angle. One of
the first observables one can get is then the rapidity density of charged
particles dN.y, /dn



Bjorken coordinates in heavy-ion collisions

While a possible transverse expansion takes time to develop, the fluid produced
in HICs is characterized by an initial Hubble-like longitudinal expansion

fluid — 7/t since the collision take place at z = 0, a fluid-cell found at z at a
later time t is there because its constituens share a common average velocity v;.
The strong longitudinal expansion makes convenient to define the longitudinal
proper-time and the spatial rapidity

llnt+z71|n1+z/t
2 t—z 2 1—2z/t

T=Vt?—2z2 and ns =

and, accordingly,
t =7coshns and =z = Tsinhn;s

Microscopic dynamics within a fluid cell depends on the time measured in its
local rest frame. At large z, this “proper”-time would be boosted by a large
~-factor, requiring to follow the evolution of the system up to very large values
of time t = v/72 + z2 measured in the lab-frame.
It is also convenient to introduce the fluid-rapidity

fluid
y=lpitve
21— yfluid

If the longitudinal dynamics follows a Bjorken expansion with viud = z/t

sothat " =~ (cosh Y,u,,sinhY) with ~, = (1—u%)"*/?

fluid-rapidity and spatial rapidity coincide: 7s = Y



Initial conditions: “Bjorken” estimate

@ It is useful to describe the evolution in term of the variables
1 t+z
and =—-In
s 2 t—z
Independence of the initial conditions on 7 entails v =z /¢
throughout the fluid evolution;

2

T=Vt2 -z

@ For a purely longitudinal Hubble-like expansion entropy conservation
implies:
ST = S0 To — 50:(57')/7'0

@ Entropy density is defined in the local fluid rest-frame:

ds 1 ds e ds
= dx dns

S=

dx dz|._, 7 dx_dns

@ Entropy is related to the final multiplicity of charged particles
(5~3.6 N for pions), so that (at decoupling n =~ n;):

1 3.6 dNg, 3

10/32



“Bjorken” estimate: results

1 3.6 dNey, 3

%TT)WRE\ dn 2

@ From dN.,/dn = 1600 measured by
ALICE at LHC and Rpy, =~ 6 fm one gets:

N so ~ (80 fm™2) /7o

— 20

115 @ 7p is found to be quite small (v, must
] develop early!):

s(T)/T3

1s 0.1<7<1 fm — 80<5,<800 fm >

@ This should be compared with I-QCD

s(T=200MeV) ~ 10 fm >

11/32



Quantum harmonic oscillator at finite temperature

Its is possible to study the quantum statistical mechanics of a single
harmonic oscillator coupled to a thermal bath. The generalization to
finite temperature QFT will be straightforward.

2
1
H= "5+ jutd’

Introducing the raising/lowering operators af /a one gets:

(a+ aT) and [a,a'] =1

1 1
H= fay 2 ith q=
wk<a a+2>, w1 q m

The partition function is easily evaluated:

oo oo
7 — Tre—BH — Z e—Bwk(n+1/2) _ g—Bwi/2 Z e—Buwkn _ o=Buwi/2 : 1 -
pa— e_
n=0 n=0

One gets then for the thermodynamical potential Q
Z=eP2 _, Q=0 +0;= %k Fln (1 — e ),

where we have separated the contribution of vacuum (responsible for UV

divergences in QFT) and thermal fluctuations.
12 /32



The and thermal fluctuations of the displacement are given by

1
() = - taal +313) =
[a,af]42ata

+ 2N
2wk

I

involving the Bose-Einstein distribution (a'a) =N, =1/(e’*x — 1).
From the h.o. algebra

[H,a] = —wga [H,a"] = wia'

one gets the time-evolution of the raising/lowering operators

a(t) =ae ™t al(t) = ale™t
Dim:
a(t) =eMae M — % =ieM[H, ale ™ = —jwya(t)
In thermal field theory one often works with imaginary times t = —i7

3(7—) — ge WKkT aT(T) = aTewkT with 7€ [O, 6]

13 /32



Temporal propagators

The propagator along the real-time axis is defined as:
D(ti — o) =0(t1 — )D7(t1 — t) + 0(t2 — t1) D= (t1 — 1),

where (from the algebra of the raising/lowering oprators):

D~ (t — o) = (q(t1)a(t2)) = [(1 + Ny )emiwltimta) 4 Nke"“k(tl_tZ)}

2wk

1
D=(t — o) = {a(t2)a(tr)) = 5 - [(1+N Jelnltime) e inlt fz)}

For the imaginary-time propagator D(7)=D(t=—iT) one has:

1
ka

D(r) = [(1+Nk)e*“k‘7‘ +Nkewk\ﬂ, with 7 €[5, 4]

for which the symmetry property D(7— ) =D(7) (with 0< 7<) holds.
The propagator can then be expanded in Matsubara frequencies

Z e T A(iw,)  with  w,=(27/3)n

n=—oo

14/32



Path integrals in statistical QM

We wish to provide a path-integral representation for the partition
function of a quantum system in equilibrium with a thermal bath

Z="Tre PH = /dx (x|e™PH|x)

here written in the basis of position-eigenstates {|x)}.
The starting point is the transition amplitude p(xs, tr|X;, t;j)y

(g |e= M=) ) — / [Dx(t)] & Ji dtli/2Aax/aey = V()
X(t,'):X[,X(tf):Xf

Moving to imaginary times t = —i7 one has
(x| HOT=m) ) = / [Dx(r)] e 4 9711/2(@x/ a7+ V()
x(1i)=xi,x(T¢)=xf

Hence, setting 7; = 0 and 7+ = [ and periodic boundary conditions,

4 :/ [Dx(7)] e~ J) drlL/2(dx/dr)+V/(x)]
x(0)=x(8)

15/32



Harmonic Oscillator partition function: path-integral

The h.o. partition function reads then (after integration by parts)
4 I/ [Dq(1)] e~ J$ dr(1/2)q(r)[—0%+wila(T)
a(0)=q(h)

Such a representation turns out to be convenient
@ for the evaluation of correlation functions

@ as a starting point for a perturbative expansion in the presence of
interactions (i.e. non-gaussian terms in the action)

It is convenient to introduce a source term j(7)
Z[j] :/ [Dq(7)] e~ S drl(1/2)q(r)(= 0% +wi)a(r)—i(r)a(7)] (1)
q(0)=a(B)

Let us now introduce the Green function of the differential operator
(=02 +wi)D(r —7') = o(7 — 7')

We will show that it actually coincides with the previously introduced

thermal propagator
16 /32



Performing the change of variables
ar) = q'(1)+ [ 4D = ()

the generating functional Z[j] can be written as

Z[j] = Z[0] x exp | = [dr dr'j(r)D(r — 7)j(+') )
2
Combining Egs. (1) and (2) one gets
521n Z[j] Dl ) Nalr
(5_].(’7'1)5_1.(7'2) o - D( 1 2) - <T7' q( 1)q( 2)>

The equivalence can be verified also decomposing the Green function
D(r — 7') in its Matsubara modes A(iwp)

oo

(_aﬁ +w Z e—lwn r—7' /w,, _ 1 Z e—lw,,(‘r 7!
n=—00 B n=—0o0
One gets then
. 1
A(iw,) = o Wi

17 /32



The sum over Matsubara frequencies

Imz

The function to integrate has simple poles

Re @ at z = iw, (n=0,%£1,42...)

@ at z = twy

C

The Matsubara sum can be expressed as (for 0<7<f3)

1 ; dz e %7 -1
. —iwnT A () .) = —
B zn:e (tn) ]{ZW 1—e 87 (z — wi)(z + wk)

as can be verified expanding (1 — e~#%) around z = iw,,
The integral can be also evaluated taking the residues of the poles
outside the C contour at z = +wy. One gets:

1
D(’T > 0) = T {(1 + Nk)eiwkT + Nke“’”]
Wk

which coincides with what previously found! 8



Thermodynamics of the free scalar field

Let us now promote the displacement operator to a scalar field function
of space and time:

q(t) —  o(t,X)
The free Lagrangian/HamiItonian involves also spatial gradients:

Lo = 20,00°6 — TmP6P, Ho= T+ H(VoP + 2me?

The raising/lowering operators now create/destroy particles with
momentum k and energy wx =V k2 + m? and one has

1 w

— T _ k —Bw

HOZwk<aFa;+2) — 90—27"’-2'“(1—6’6“)
Kk K K

The (UV divergent!) contribution of vacuum-fluctuations does not

depend on T and can be dropped (if we are not interested in gravity,
cosmological constant....). In the infinite-volume limit one gets:

dk Q1 dk oy T 4

19/32



From the "box-quantization” of the field

ik-% —ik- : T
[ ! X+a e’ X} with [a;,aE,]—5,—;;,

R 1 1
X) = —
oF) =75 ij e
one can estimate its fluctuations ((a:r?a,;,> = 0z o Nk

)
1+ 2N, " dk 142N,
V Z 2w 1nf.:h>1me / (27T)3 2wy

where one can isolate the (UV divergent!)

/A k2dk
k

From the commutation relations

[H, a,;] = —Wkag [H, a}] = wkaTE

one gets that the evolution of the a;/ai operators is

ap(1) = ape ™7 32(7) = aT e " with 7 €10, 0]

The propagator is then a generalization of the harmonic oscillator result

- 1 w w .
Do(r, k) = oo (14 Ne)e ™l Ne! ™1 cwith - 7 € [-8, 8]

P

20 /32



Free scalar field: path-integral

The partition function of the free scalar field is given by
Zo= / (Di(r.x)] & I (/2@ P+ (T e
(0,x) (B,x)

After partial integration...

Bdrdx 2 724 m?
zoz/ [Do(r, x)] ¢ Jdrex /2ol o- v+ mlo
#(0,x)=¢(5,x)

—eSRlel
The euclidean propagator can then be view as the Green function
[-02 — V2 + mA]Do(r — ') = 6(r — 7")d(x — X')
whose Matsubara-Fourier components are given by

- 1 1
Do(iwn, k) = - - ,
! W24 k24 m? witw

as in the case of the harmonic oscillator.
21/32



The interacting scalar field: thermodynamics

In order to illustrate the effects of the interaction on the thermodynamics
we will consider the usual case of A¢* theory

1 1 A
_ _ - wpoo - 242 7t 4
£7£0+£172#¢8¢ 2m¢ 2?
whose partition function reads

4 :/ [D(7, x)] e Jo dTdx [3(0r0)+5 (Vo) +3m e+ 36']
#(0,x)=¢(8,x)

One can attempt a perturbative expansion around the free result

-3

V4 :/ [D(r,x)] e Bl [1 —(A/41) / drdx ¢*(7,x) + O(\2)
#(0,x)=¢(8,x) Jo

Using the free action to evaluate the thermal averages one gets
Z =2y — Zo(\/A)BV Yo+ = Zo [1— (A /4)BV(d*)o + ... ]
One gets then for the pressure P =In(Z)/8V
P=Py+Pi+...=Py+In[1—(A/4)BV ("o +...] /BV
= Po—(\/4) (") + o

22 /32



The pressure: the first perturbative correction

Before addressing its exact evaluation we see that the first perturbative
correction to the pressure P;=—(\/41)(¢*)q is negative: we expect the
interacting result to stay below the Stefan-Boltzmann limit.

The correction can be computed through Wick's theorem:

Pr=—(A/41)3((¢%)0)* = —(7/4!)3[Do(7 = 0,x = 0)?

- 2
e / dk 142N,
-8 (2m)3 2wy

The calculation is plagued by UV divergences due to vacuum
fluctuations. However, the UV divergent term in the integral does not
depend on T and, for the moment, one can simply subtract it.

The final result, including the first perturbative correction is

1 dk A dk N,
P0+P1_/|n(1e5wk)[/ k

2

3) (2r)3 8 |/ (27)3 wi

2 A 4
- (90 B 1152) T

Naively one expects higher order corrections to be O(\?) s



A closer look at the UV divergences

The perturbative correction P; to the pressure arises from the above
diagram an can be recast as

p_ A /’dlzlz_/\/dl?l\lk
T8 on)ow | 8 |) (21)3 we

2

A / dk 1 / dk' Ny
4 i (27)3 2»‘;( (27T)3 Wi
If the first term can be simply dropped, being T-independent, the third

term is in principle more subtle, since vacuum (UV divergent!) and
thermal fluctuations look apparently coupled.

_
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A closer look at the UV divergences

The source of the UV divergence is in the self-energy correction to the
single-particle propagator

A*1:A51+Z:w§+w§+§

(1) 2w

where the statistical factor in the self-energy arises from the 12 different
possible contractions from the Wick’s theorem ( [d*z= [d7,dZ)

)\/‘ dk 142N,

/ [Do] 6(x)¢(y) (—jl) /0 6d4zq/>(z)¢(z)¢(z)¢(z) e Skle]

A [P
~ s / d*zDo(x — 2z)Do(z — y)Do(T = 0,X = 0)
0

25/32



A closer look at the UV divergences

The UV divergence can be cured adding a mass counterterm to L
1 1 A 1
L=Lo+Li+ L= Ea;@a“(ﬁ - §m2¢2—ﬂ¢4—§5m2q’>2 + ..

so that the self-energy reads now

+ om?

A\ [ dk 142N,
Y =Yt X7 =2
TET TS / (27)3 2wy

One can now impose the renormalization condition
A [ dk 1 X[ dk 1
Zv‘u'zf A N2 A 1) 2:0 1) 2:—7/77
T / @y 2w, O M =75 | ) 20k
The self-energy is now finite and can be identified with a thermal mass

A [ dk N AT2
== AN = T =MT
2) (2m)3 wx m—0 24 2632



A closer look at the UV divergences

O O

This suffices to cure also the UV divergence in the pressure. In fact now

B
7= /[D¢(T, x)] e el?l x [1 —/O drdx <j!¢4(¢, x) + %5m2¢2(7, x)> + ...

so that

P, = 7%[’D0(7‘ =x=0)] - %5m2D0(T =x=0)

- 2 - -
A /dk 1+ 2Ny _5/ dk 1 /dk 1+ 2N
8|/ (273 2wy 2 ) (27)3 2wy (27)3 2wy

where the dangerous “vacuum x thermal” term cancels.

1

2
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Higher order corrections

Higher order corrections to the pressure arise from diagrams like

involving the evaluation of
o [° 1 /A
Jpsenesit [ azaty (1) o)
0 .
From PV = (1/ﬂ) In Z and the Wick's contractions one gets
pyne — [Do (0,0) / d*z d*Z'[Do(r, — 7,2 — 2')]?
Since

B ) _ )
(1/5) / dre~/r=wn)T =5, and / dxe’ ) = (27)350) (k—K')
0

g N[ [ dK N 1
one gets Py = T [/( ,6 Z /271')3 w2—|—w2)2

28 /32



IR divergences

The expression we got for the “ring” diagram

ng A2 dk Nk 1
Prmg —
2 16 [/(2@3 W Z /( 3 (w2 +wk)

in the massless limit wyx =k is plagued by an IR divergence ~ fdk/k2
arising from the w, =0 Matsubara mode.

29 /32



Resummation of ring diagrams

oo 42

The situation is even worse for higher-order similar diagrams, with a
behaviour of the zero Matsubara mode ~ [ dk/k*("~1). However the
whole set of ring diagrams can be resummed (check!):

pring _ 25 Z /( [In(1+ EAo(iton, K)) = ZAo(icwn, K)

In the above ¥ =\T?2/24=m? (analogous of Debye screening mass in
QED/QCD) and the dominant contribution come from the n=0 mode

dk m2 m? m3T
rlng T _ T — T ~ /\3 2T4
Pn=o 25/ { ( i k2) k2} 127

Notice the non—ana/ytlc behaviour in the coupling with an expansion

P ~ Py + Py + P3/; + ...arising from the resummation of an infinite set
of diagrams 30/32



Numerical results: scalar field theory

PIR..

g(2nT)

With proper resummations the expansion can be pushed to higher
orders®. Notice that, if the coupling is not sufficiently weak, the
convergence is poor

3J.0. Andersen and M. Strickland, Annals Phys. 317 (2005) 281-353
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Numerical results: scalar field theory

P/ Pyea

Ll e

“l e W

0 0.5 1

g(2nT)

The situation looks even worse in QCD* and one has to develop more
clever and powerful resummation schemes.

#J.0. Andersen and M. Strickland, Annals Phys. 317 (2005) 281-353
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