Quark Gluon Plasma thermodynamics

Andrea Beraudo

INFN - Sezione di Torino

Ph.D. Lectures,
AA 2015-16 Torino
QCD phases identified through the order parameters

- Polyakov loop $\langle L \rangle \sim e^{-\beta \Delta F_Q}$: energy cost to add an isolated color charge
- Chiral condensate $\langle \bar{q}q \rangle \sim$ effective mass of a “dressed” quark in a hadron

Region explored at LHC: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$)

- From QGP (color deconfinement, chiral symmetry restored)
- to hadronic phase (confined, chiral symmetry breaking1)

NB $\langle \bar{q}q \rangle \neq 0$ responsible for most of the baryonic mass of the universe: only ~ 35 MeV of the proton mass from $m_u/d \neq 0$

Virtual experiments: lattice-QCD simulations

- The best (unique?) tool to study QCD in the non-perturbative regime
- Limited to the study of equilibrium quantities
The QCD partition function

\[Z = \int [dU] \exp[-\beta S_g(U)] \prod_q \det[M(U, m_q)] \]

is evaluated on the lattice through a MC sampling of the field configurations, where\(^2\)

- \(\beta = 6/g^2 \)
- \(S_g \) is the gauge action, weighting the different field configurations;
- \(U \in SU(3) \) is the link variable connecting two lattice sites;
- \(M \equiv \gamma_\mu D_\mu + m_q \) is the Dirac operator

\(^2\)See M. Panero lattice-QCD lectures
QCD at high-temperature: expectations

Based on *asymptotic freedom*, for \(T \gg \Lambda_{QCD} \) hot-QCD matter should behave like a non-interacting plasma of massless quarks (the ones for which \(m_q \ll T \)) and gluons. In such a regime \(T \) is the only scale \(\mu \) at which evaluating the gauge coupling, for which one has

\[
\lim_{T/\Lambda_{QCD} \to \infty} g(\mu \sim T) = 0
\]

Hence one expects the *asymptotic Stefan-Boltzmann* behaviour

\[
\epsilon = \frac{\pi^2}{30} \left[g_{\text{gluon}} + \frac{7}{8} g_{\text{quark}} \right] T^4,
\]

where

\[
g_{\text{gluon}} = 2 \times (N_c^2 - 1) \quad \text{pol.} \times \text{col.}
\quad \text{and} \quad g_{\text{quark}} = 2 \times 2 \times N_c \times N_f \quad q/\bar{q} \times \text{spin} \times \text{col.} \times \text{flav.}
\]
QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

\[
\begin{align*}
\text{Pressure: } & \quad P = \left(\frac{T}{V} \right) \ln Z; \\
\text{Entropy density: } & \quad s = \frac{\partial P}{\partial T}; \\
\text{Energy density: } & \quad \epsilon = Ts - P;
\end{align*}
\]

The rapid rise in thermodynamical quantities suggests a change in the number of active degrees of freedom (hadrons \(\rightarrow\) partons):

\[
H_2 = 8\pi G_3 \epsilon_{\text{rel}} = 8\pi G_3 \pi^2 30 g^* T^4
\]

One observes a systematic \(\sim 20\%\) deviation from the Stephan-Boltzmann limit even at large \(T\): how to interpret it?

In the last part of this lecture we will attempt an explanation.
From the partition function on gets all the thermodynamical quantities:

Data by the W.B. Collaboration
[JHEP 1011 (2010) 077]

- Pressure: \(P = \left(\frac{T}{V} \right) \ln Z \);
- Entropy density: \(s = \frac{\partial P}{\partial T} \);

Rapid rise in thermodynamical quantities suggesting a change in the number of active degrees of freedom (hadrons → partons):

The most dramatic drop experienced by the early universe in which

\[H_\text{2} = 8 \pi G_3 \epsilon_{\text{rel}} \sim 8 \pi G_3 \pi^2 \frac{30}{g^*} T^4 \]

One observes a systematic \(\sim 20\% \) deviation from the Stephan-Boltzmann limit even at large \(T \): how to interpret it?

In the last part of this lecture we will attempt an explanation.
QCD on the lattice: results

From the partition function on gets all the thermodynamical quantities:

\[P = \left(\frac{T}{V} \right) \ln Z; \]
\[s = \partial P / \partial T; \]
\[\epsilon = Ts - P; \]

- Rapid rise in thermodynamical quantities suggesting a change in the number of active degrees of freedom (hadrons → partons):
 - the most dramatic drop experienced by the early universe in which the Hubble parameter is
 \[H^2 = \frac{8\pi G}{3} \frac{\epsilon_{\text{rel}}}{3} = \frac{8\pi G}{3} \frac{\pi^2}{30} g_\ast T^4 \]

- One observes a systematic \(\sim 20\% \) deviation from the Stephan-Boltzmann limit even at large \(T \): how to interpret it?

In the last part of this lecture we will attempt an explanation...
From final hadrons back to initial conditions

Au-Au collision at $\sqrt{s_{NN}} = 200$ GeV: tracks left by *charged particles* in the Time Projection Chamber of the STAR detector.
Invariant single-particle spectra

\[E \frac{d^3 N}{d^3 \vec{p}} = E \frac{d^3 N}{d^2 p_T dy} \]

are generally expressed via the *transverse momentum* and the *rapidity*

\[p_T \equiv \sqrt{p_x^2 + p_y^2} \quad \text{and} \quad y \equiv \frac{1}{2} \ln \frac{E + p_z}{E - p_z} \]

Since \(y \) requires the knowledge of \(m \) (hence Particle IDentification, involving a longer analysis), one more often uses the *pseudorapidity*

\[\eta \equiv \frac{1}{2} \ln \frac{p + p_z}{p - p_z} = \frac{1}{2} \ln \frac{1 + p_z/p}{1 - p_z/p} = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} \]

Of course for relativistic particles \(y \approx \eta \)! In such a way one can simply perform two *geometrical* measurements from the tracks: \(p_T \) from the curvature in the B-field (\(p_T = |q| B r \)) and \(\eta \) from the polar angle. One of the first observables one can get is then the *rapidity density of charged particles* \(dN_{ch}/d\eta \)
Bjorken coordinates in heavy-ion collisions

While a possible transverse expansion takes time to develop, the fluid produced in HICs is characterized by an initial Hubble-like longitudinal expansion $v_{\text{fluid}}^z = z/t$: since the collision take place at $z = 0$, a fluid-cell found at z at a later time t is there because its constituents share a common average velocity v_z. The strong longitudinal expansion makes convenient to define the longitudinal proper-time and the spatial rapidity

$$\tau \equiv \sqrt{t^2 - z^2} \quad \text{and} \quad \eta_s \equiv \frac{1}{2} \ln \frac{t + z}{t - z} = \frac{1}{2} \ln \frac{1 + z/t}{1 - z/t}$$

and, accordingly,

$$t = \tau \cosh \eta_s \quad \text{and} \quad z = \tau \sinh \eta_s$$

Microscopic dynamics within a fluid cell depends on the time measured in its local rest frame. At large z, this “proper”-time would be boosted by a large γ-factor, requiring to follow the evolution of the system up to very large values of time $t = \sqrt{\tau^2 + z^2}$ measured in the lab-frame.

It is also convenient to introduce the fluid-rapidity

$$Y \equiv \frac{1}{2} \ln \frac{1 + v_{\text{fluid}}^z}{1 - v_{\text{fluid}}^z} \quad \text{so that} \quad u^\mu = \gamma_\perp (\cosh Y, u_\perp, \sinh Y) \quad \text{with} \quad \gamma_\perp \equiv (1 - u_\perp^2)^{-1/2}$$

If the longitudinal dynamics follows a Bjorken expansion with $v_{\text{fluid}}^z = z/t$

fluid-rapidity and spatial rapidity coincide: $\eta_s = Y$
Initial conditions: “Bjorken” estimate

- It is useful to describe the evolution in term of the variables
 \[\tau \equiv \sqrt{t^2 - z^2} \quad \text{and} \quad \eta_s \equiv \frac{1}{2} \ln \frac{t + z}{t - z} \]

 Independence of the initial conditions on \(\eta_s \) entails \(v_{z, \text{fluid}} = z/t \) throughout the fluid evolution;

- For a \textit{purely longitudinal} Hubble-like expansion, entropy conservation implies:
 \[s \tau = s_0 \tau_0 \quad \rightarrow \quad s_0 = (s \tau)/\tau_0 \]

- Entropy density is defined in the \textit{local fluid rest-frame}:
 \[s \equiv \frac{dS}{dx_{\perp} dz} \bigg|_{z=0} = \frac{1}{\tau} \frac{dS}{dx_{\perp} d\eta_s} \quad \rightarrow \quad s \tau = \frac{dS}{dx_{\perp} d\eta_s} \]

- Entropy is related to the \textit{final multiplicity of charged particles} \((S \sim 3.6 N \text{ for pions})\), so that (at decoupling \(\eta \approx \eta_s \)):
 \[s_0 \approx \frac{1}{\tau_0} \frac{3.6}{\pi R_A^2} \frac{dN_{\text{ch}}}{d\eta} \frac{3}{2} \]
"Bjorken" estimate: results

\[s_0 \approx \frac{1}{\tau_0} \times \frac{3.6}{\pi R_A^2} \times \frac{dN_{\text{ch}}}{d\eta} \times \frac{3}{2} \]

- From \(dN_{\text{ch}}/d\eta \approx 1600 \) measured by ALICE at LHC and \(R_{\text{Pb}} \approx 6 \text{ fm} \) one gets:
 \[s_0 \approx (80 \text{ fm}^{-2})/\tau_0 \]

- \(\tau_0 \) is found to be quite small (\(v_2 \) must develop early!):
 \[0.1 \lesssim \tau_0 \lesssim 1 \text{ fm} \rightarrow 80 \lesssim s_0 \lesssim 800 \text{ fm}^{-3} \]

- This should be compared with l-QCD
 \[s(T = 200 \text{ MeV}) \approx 10 \text{ fm}^{-3} \]
Quantum harmonic oscillator at finite temperature

It is possible to study the quantum statistical mechanics of a single harmonic oscillator coupled to a thermal bath. The generalization to finite temperature QFT will be straightforward.

\[H = \frac{p^2}{2} + \frac{1}{2} \omega_k^2 q^2 \]

Introducing the raising/lowering operators \(a^\dagger/a\) one gets:

\[H = \omega_k \left(a^\dagger a + \frac{1}{2} \right), \quad \text{with} \quad q = \frac{1}{\sqrt{2\omega_k}} (a + a^\dagger) \quad \text{and} \quad [a, a^\dagger] = 1 \]

The partition function is easily evaluated:

\[Z = \text{Tr} e^{-\beta H} = \sum_{n=0}^{\infty} e^{-\beta \omega_k (n+1/2)} = e^{-\beta \omega_k / 2} \sum_{n=0}^{\infty} e^{-\beta \omega_k n} = e^{-\beta \omega_k / 2} \frac{1}{1 - e^{-\beta \omega_k}} \]

One gets then for the thermodynamical potential \(\Omega \)

\[Z = e^{-\beta \Omega} \quad \rightarrow \quad \Omega = \Omega_{\text{vac}} + \Omega_T = \frac{\omega_k}{2} + \ln \left(1 - e^{-\beta \omega_k}\right), \]

where we have separated the contribution of vacuum (responsible for UV divergences in QFT) and thermal fluctuations.
The vacuum and thermal fluctuations of the displacement are given by

\[\langle q^2 \rangle = \frac{1}{2 \omega_k} \langle aa^\dagger + a^\dagger a \rangle = \frac{1 + 2N_k}{2 \omega_k}, \]

involving the Bose-Einstein distribution \(\langle a^\dagger a \rangle = N_k \equiv 1/(e^{\beta \omega_k} - 1) \).

From the h.o. algebra

\[[H, a] = -\omega_k a \quad [H, a^\dagger] = \omega_k a^\dagger \]

one gets the time-evolution of the raising/lowering operators

\[a(t) = a \ e^{-i \omega_k t} \quad a^\dagger(t) = a^\dagger \ e^{i \omega_k t} \]

Dim:

\[a(t) = e^{iHt} \ a \ e^{-iHt} \quad \frac{da}{dt} = i \ e^{iHt} \ [H, a] \ e^{-iHt} = -i \omega_k a(t) \]

In thermal field theory one often works with imaginary times \(t = -i \tau \)

\[a(\tau) = a \ e^{-\omega_k \tau} \quad a^\dagger(\tau) = a^\dagger \ e^{\omega_k \tau} \quad \text{with} \quad \tau \in [0, \beta] \]
Temporal propagators

The propagator along the real-time axis is defined as:

\[D(t_1 - t_2) = \theta(t_1 - t_2)D^>(t_1 - t_2) + \theta(t_2 - t_1)D^<(t_1 - t_2), \]

where (from the algebra of the raising/lowering operators):

\[D^>(t_1 - t_2) \equiv \langle q(t_1)q(t_2) \rangle = \frac{1}{2\omega_k} \left[(1 + N_k)e^{-i\omega_k(t_1-t_2)} + N_k e^{i\omega_k(t_1-t_2)} \right] \]
\[D^<(t_1 - t_2) \equiv \langle q(t_2)q(t_1) \rangle = \frac{1}{2\omega_k} \left[(1 + N_k)e^{i\omega_k(t_1-t_2)} + N_k e^{-i\omega_k(t_1-t_2)} \right] \]

For the imaginary-time propagator \(\mathcal{D}(\tau) \equiv D(t=-i\tau) \) one has:

\[\mathcal{D}(\tau) = \frac{1}{2\omega_k} \left[(1 + N_k)e^{-\omega_k|\tau|} + N_k e^{\omega_k|\tau|} \right], \quad \text{with} \quad \tau \in [-\beta, \beta] \]

for which the symmetry property \(\mathcal{D}(\tau - \beta) = \mathcal{D}(\tau) \) (with \(0 \leq \tau \leq \beta \)) holds.

The propagator can then be expanded in Matsubara frequencies

\[\mathcal{D}(\tau) = \frac{1}{\beta} \sum_{n=-\infty}^{\infty} e^{-i\omega_n\tau} \Delta(i\omega_n) \quad \text{with} \quad \omega_n \equiv (2\pi/\beta)n \]
Path integrals in statistical QM

We wish to provide a path-integral representation for the partition function of a quantum system in equilibrium with a thermal bath

\[Z \equiv \text{Tr} e^{-\beta H} = \int dx \langle x | e^{-\beta H} | x \rangle \]

here written in the basis of position-eigenstates \(\{|x\rangle\} \).

The starting point is the transition amplitude \(H \langle x_f, t_f | x_i, t_i \rangle \)

\[\langle x_f | e^{-iH(t_f-t_i)} | x_i \rangle = \int_{x(t_i)=x_i, x(t_f)=x_f} [\mathcal{D}x(t)] e^{i \int_{t_i}^{t_f} dt [1/2(dx/dt)^2-V(x)]} \]

Moving to imaginary times \(t = -i\tau \) one has

\[\langle x_f | e^{-H(\tau_f-\tau_i)} | x_i \rangle = \int_{x(\tau_i)=x_i, x(\tau_f)=x_f} [\mathcal{D}x(\tau)] e^{- \int_{\tau_i}^{\tau_f} d\tau [1/2(dx/d\tau)^2+V(x)]} \]

Hence, setting \(\tau_i = 0 \) and \(\tau_f = \beta \) and periodic boundary conditions,

\[Z = \int_{x(0)=x(\beta)} [\mathcal{D}x(\tau)] e^{- \int_{0}^{\beta} d\tau [1/2(dx/d\tau)^2+V(x)]} \]
Harmonic Oscillator partition function: path-integral

The h.o. partition function reads then (after integration by parts)

\[
Z = \int_{q(0)=q(\beta)} [Dq(\tau)] e^{-\int_0^\beta d\tau (1/2)q(\tau)(-\partial_\tau^2 + \omega_k^2)q(\tau)}
\]

Such a representation turns out to be convenient

- for the evaluation of correlation functions
- as a starting point for a perturbative expansion in the presence of interactions (i.e. non-gaussian terms in the action)

It is convenient to introduce a source term \(j(\tau) \)

\[
Z[j] = \int_{q(0)=q(\beta)} [Dq(\tau)] e^{-\int_0^\beta d\tau [(1/2)q(\tau)(-\partial_\tau^2 + \omega_k^2)q(\tau) - j(\tau)q(\tau)]}
\]

Let us now introduce the Green function of the differential operator

\[
(-\partial_\tau^2 + \omega_k^2)D(\tau - \tau') = \delta(\tau - \tau')
\]

We will show that it actually coincides with the previously introduced thermal propagator.
Performing the change of variables

\[q(\tau) = q'(\tau) + \int d\tau' D(\tau - \tau') j(\tau') \]

the generating functional \(Z[j] \) can be written as

\[Z[j] = Z[0] \times \exp \left[\frac{1}{2} \int d\tau \int d\tau' j(\tau) D(\tau - \tau') j(\tau') \right] \tag{2} \]

Combining Eqs. (1) and (2) one gets

\[\frac{\delta^2 \ln Z[j]}{\delta j(\tau_1) \delta j(\tau_2)} \bigg|_{j=0} = D(\tau_1 - \tau_2) = \langle T_\tau q(\tau_1)q(\tau_2) \rangle \]

The equivalence can be verified also decomposing the Green function \(D(\tau - \tau') \) in its Matsubara modes \(\Delta(i\omega_n) \)

\[(-\partial^2 + \omega_k^2) \frac{1}{\beta} \sum_{n=-\infty}^{\infty} e^{-i\omega_n(\tau-\tau')} \Delta(i\omega_n) = \frac{1}{\beta} \sum_{n=-\infty}^{\infty} e^{-i\omega_n(\tau-\tau')} \]

One gets then

\[\Delta(i\omega_n) = \frac{1}{\omega_n^2 + \omega_k^2} \]
The sum over Matsubara frequencies

The function to integrate has simple poles

- at $z = i\omega_n \ (n = 0, \pm 1, \pm 2...)$
- at $z = \pm \omega_k$

The Matsubara sum can be expressed as (for $0 \leq \tau \leq \beta$)

$$\frac{1}{\beta} \sum_n e^{-i\omega_n \tau} \Delta(i\omega_n) = \int e^{-z\tau} \frac{dz}{2\pi i} \frac{e^{-z\tau}}{1 - e^{-\beta z}} \frac{-1}{(z - \omega_k)(z + \omega_k)}$$

as can be verified expanding $(1 - e^{-\beta z})$ around $z = i\omega_n$.

The integral can be also evaluated taking the residues of the poles outside the C contour at $z = \pm \omega_k$. One gets:

$$\mathcal{D}(\tau > 0) = \frac{1}{2\omega_k} \left[(1 + N_k)e^{-\omega_k \tau} + N_k e^{\omega_k \tau}\right]$$

which coincides with what previously found!
Thermodynamics of the free scalar field

Let us now promote the displacement operator to a *scalar field* function of space and time:

\[q(t) \longrightarrow \phi(t, \vec{x}) \]

The free Lagrangian/Hamiltonian involves also spatial gradients:

\[
L_0 = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2, \quad H_0 = \frac{\pi^2}{2} + \frac{1}{2} (\vec{\nabla} \phi)^2 + \frac{1}{2} m^2 \phi^2
\]

The raising/lowering operators now create/destroy particles with momentum \(\vec{k} \) and energy \(\omega_k \equiv \sqrt{k^2 + m^2} \) and one has

\[
H_0 = \sum_{\vec{k}} \omega_k \left(a_{\vec{k}}^\dagger a_{\vec{k}} + \frac{1}{2} \right) \longrightarrow \Omega_0 = \sum_{\vec{k}} \frac{\omega_k}{2} + \sum_{\vec{k}} \ln \left(1 - e^{-\beta \omega_k} \right)
\]

The (UV divergent!) contribution of *vacuum-fluctuations* does not depend on \(T \) and can be dropped (if we are not interested in gravity, cosmological constant....). In the infinite-volume limit one gets:

\[
\sum_{\vec{k}} \longrightarrow \sqrt{\int \frac{d\vec{k}}{(2\pi)^3}} \quad \Rightarrow \quad P_0 = -\frac{\Omega_0}{V} = -\frac{1}{\beta} \int \frac{d\vec{k}}{(2\pi)^3} \ln \left(1 - e^{-\beta \omega_k} \right) = \frac{\pi^2}{90} T^4
\]
From the “box-quantization” of the field
\[
\phi(\vec{x}) = \frac{1}{\sqrt{V}} \sum_{\vec{k}} \frac{1}{\sqrt{2\omega_k}} \left[a_{\vec{k}} e^{i\vec{k} \cdot \vec{x}} + a_{\vec{k}}^\dagger e^{-i\vec{k} \cdot \vec{x}} \right]
\]
with \([a_{\vec{k}}, a_{\vec{k}}^\dagger] = \delta_{\vec{k},\vec{k}'}\),

one can estimate its fluctuations (\(\langle a_{\vec{k}}^\dagger a_{\vec{k}'} \rangle = \delta_{\vec{k},\vec{k}'} N_k\))

\[
\langle \phi^2(\vec{x}) \rangle = \frac{1}{V} \sum_{\vec{k}} \frac{1 + 2N_k}{2\omega_k} \xrightarrow{\text{inf. volume}} \int \frac{d\vec{k}}{(2\pi)^3} \frac{1 + 2N_k}{2\omega_k}
\]

where one can isolate the (UV divergent!) vacuum fluctuations

\[
\langle \phi^2 \rangle_{\text{vac.}} \sim \int^{\Lambda} k^2 dk \sim \Lambda^2
\]

From the commutation relations

\[
[H, a_{\vec{k}}] = -\omega_k a_{\vec{k}} \quad [H, a_{\vec{k}}^\dagger] = \omega_k a_{\vec{k}}^\dagger
\]

one gets that the evolution of the \(a_{\vec{k}} / a_{\vec{k}}^\dagger\) operators is

\[
a_{\vec{k}}(\tau) = a_{\vec{k}} e^{-\omega_k \tau} \quad a_{\vec{k}}^\dagger(\tau) = a_{\vec{k}}^\dagger e^{\omega_k \tau} \quad \text{with} \quad \tau \in [0, \beta]
\]

The propagator is then a generalization of the harmonic oscillator result

\[
D_0(\tau, \vec{k}) = \frac{1}{2\omega_k} \left[(1 + N_k)e^{-\omega_k |\tau|} + N_k e^{\omega_k |\tau|}\right]\text{, with} \quad \tau \in [-\beta, \beta]
\]
The partition function of the free scalar field is given by

$$Z_0 = \int_{\phi(0, x) = \phi(\beta, x)} [\mathcal{D}\phi(\tau, x)] e^{-\int_0^\beta d\tau dx \left(\frac{1}{2}[\frac{\partial^2 \phi}{\partial \tau^2} + (\nabla \phi)^2 + m^2 \phi]^2\right)}$$

After partial integration...

$$Z_0 = \int_{\phi(0, x) = \phi(\beta, x)} [\mathcal{D}\phi(\tau, x)] e^{-\int_0^\beta d\tau dx \left(\frac{1}{2}\phi[-\frac{\partial^2}{\partial \tau^2} - \nabla^2 + m^2]\right)} \equiv e^{-S_E^0[\phi]}$$

The euclidean propagator can then be viewed as the Green function

$$\left[-\frac{\partial^2}{\partial \tau^2} - \nabla^2 + m^2\right]D_0(\tau - \tau') = \delta(\tau - \tau')\delta(x - x')$$

whose Matsubara-Fourier components are given by

$$\Delta_0(i\omega_n, \vec{k}) = \frac{1}{\omega_n^2 + \vec{k}^2 + m^2} \equiv \frac{1}{\omega_n^2 + \omega_k^2},$$

as in the case of the harmonic oscillator.
The interacting scalar field: thermodynamics

In order to illustrate the effects of the interaction on the thermodynamics we will consider the usual case of $\lambda \phi^4$ theory

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$

whose partition function reads

$$Z = \int_{\phi(0,x)=\phi(\beta,x)} [\mathcal{D}\phi(\tau,x)] e^{-\int_0^\beta d\tau d\mathbf{x} \left[\frac{1}{2} (\partial_\tau \phi)^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]}$$

One can attempt a *perturbative expansion* around the free result

$$Z = \int_{\phi(0,x)=\phi(\beta,x)} [\mathcal{D}\phi(\tau,x)] e^{-\mathcal{S}_0^0[\phi]} \times \left[1 - \left(\frac{\lambda}{4!} \right) \beta V \langle \phi^4 \rangle_0 + \cdots \right]$$

Using the free action to evaluate the thermal averages one gets

$$Z = Z_0 - Z_0 \left(\frac{\lambda}{4!} \right) \beta V \langle \phi^4 \rangle_0 + \cdots = Z_0 \left[1 - \left(\frac{\lambda}{4!} \right) \beta V \langle \phi^4 \rangle_0 + \cdots \right]$$

One gets then for the pressure $P \equiv \ln(Z)/\beta V$

$$P = P_0 + P_1 + \ldots = P_0 + \ln \left[1 - \left(\frac{\lambda}{4!} \right) \beta V \langle \phi^4 \rangle_0 + \ldots \right] / \beta V$$

$$= P_0 - \left(\frac{\lambda}{4!} \right) \langle \phi^4 \rangle_0 + \ldots.$$
The pressure: the first perturbative correction

Before addressing its exact evaluation we see that the first perturbative correction to the pressure $P_1 = -\left(\frac{\lambda}{4!}\right)\langle \phi^4 \rangle_0$ is negative: we expect the interacting result to stay below the Stefan-Boltzmann limit. The correction can be computed through Wick’s theorem:

$$P_1 = -\left(\frac{\lambda}{4!}\right) 3 \left(\langle \phi^2 \rangle_0\right)^2 = -\left(\frac{\lambda}{4!}\right) 3 \left[D_0(\tau = 0, x = 0) \right]^2$$

$$= -\frac{\lambda}{8} \left[\int \frac{d\vec{k}}{(2\pi)^3} \frac{1 + 2N_k}{2\omega_k} \right]^2$$

The calculation is plagued by UV divergences due to vacuum fluctuations. However, the UV divergent term in the integral does not depend on T and, for the moment, one can simply subtract it. The final result, including the first perturbative correction is

$$P_0 + P_1 = -\frac{1}{\beta} \int \frac{d\vec{k}}{(2\pi)^3} \ln \left(1 - e^{-\beta\omega_k}\right) - \frac{\lambda}{8} \left[\int \frac{d\vec{k}}{(2\pi)^3} \frac{N_k}{\omega_k} \right]^2$$

$$= \left(\frac{\pi^2}{90} - \frac{\lambda}{1152}\right) T^4$$

Naively one expects higher order corrections to be $O(\lambda^2)$.
A closer look at the UV divergences

The perturbative correction P_1 to the pressure arises from the above diagram and can be recast as

$$P_1 = -\frac{\lambda}{8} \left[\int \frac{d\vec{k}}{(2\pi)^3} \frac{1}{2\omega_k} \right]^2 - \frac{\lambda}{8} \left[\int \frac{d\vec{k}}{(2\pi)^3} \frac{N_k}{\omega_k} \right]^2 - \frac{\lambda}{4} \left[\int \frac{d\vec{k}}{(2\pi)^3} \frac{1}{2\omega_k} \right] \left[\int \frac{d\vec{k}'}{(2\pi)^3} \frac{N_{k'}}{\omega_{k'}} \right]$$

If the first term can be simply dropped, being T-independent, the third term is in principle more subtle, since vacuum (UV divergent!) and thermal fluctuations look apparently coupled.
A closer look at the UV divergences

The source of the **UV divergence** is in the **self-energy** correction to the single-particle propagator

\[
\Delta^{-1} = \Delta_0^{-1} + \Sigma = \omega_n^2 + \omega_k^2 + \frac{\lambda}{2} \int \frac{d\vec{k}}{(2\pi)^3} \frac{1 + 2N_k}{2\omega_k},
\]

where the statistical factor in the self-energy arises from the 12 different possible contractions from the Wick’s theorem \((\int d^4z \equiv \int d\tau z d\vec{z})\)

\[
\int [\mathcal{D}\phi] \phi(x)\phi(y) \left(-\frac{\lambda}{4!} \right) \int_0^\beta d^4z \phi(z)\phi(z)\phi(z)\phi(z) e^{-S_E[\phi]}
\]

\[
\sim -\frac{\lambda}{2} \int_0^\beta d^4z \mathcal{D}_0(x - z)\mathcal{D}_0(z - y)\mathcal{D}_0(\tau = 0, \vec{x} = 0)
\]
The UV divergence can be cured adding a *mass counterterm* to \mathcal{L}

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_I + \mathcal{L}_{ct} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 - \frac{1}{2} \delta m^2 \phi^2 + \ldots$$

so that the self-energy reads now

$$\Sigma = \Sigma_{\text{vac}} + \Sigma_T = \frac{\lambda}{2} \int \frac{d\vec{k}}{(2\pi)^3} \frac{1 + 2N_k}{2\omega_k} + \delta m^2$$

One can now impose the *renormalization condition*

$$\Sigma_{\text{vac}} = \frac{\lambda}{2} \int \frac{d\vec{k}}{(2\pi)^3} \frac{1}{2\omega_k} + \delta m^2 = 0 \quad \rightarrow \quad \delta m^2 = -\frac{\lambda}{2} \int \frac{d\vec{k}}{(2\pi)^3} \frac{1}{2\omega_k}$$

The self-energy is now finite and can be identified with a *thermal mass*

$$\Sigma_T = \frac{\lambda}{2} \int \frac{d\vec{k}}{(2\pi)^3} \frac{N_k}{\omega_k} \quad m \to 0 \quad \equiv m_T^2 \quad \equiv m_T^2$$
A closer look at the UV divergences

This suffices to cure also the UV divergence in the pressure. In fact now

\[Z = \int [\mathcal{D}\phi(\tau, x)] \ e^{-S^0_\Box[\phi]} \times \left[1 - \int_0^\beta d\tau d\mathbf{x} \left(\frac{\lambda}{4!} \phi^4(\tau, \mathbf{x}) + \frac{1}{2} \delta m^2 \phi^2(\tau, \mathbf{x}) \right) + \ldots \right] \]

so that

\[P_1 = -\frac{\lambda}{8} [\mathcal{D}_0(\tau = x = 0)]^2 - \frac{1}{2} \delta m^2 \mathcal{D}_0(\tau = x = 0) \]

\[= -\frac{\lambda}{8} \left[\int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1 + 2N_k}{2\omega_k} \right]^2 - \frac{1}{2} \left[-\frac{\lambda}{2} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{2\omega_k} \right] \left[\int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1 + 2N_k}{2\omega_k} \right] \]

where the dangerous “vacuum × thermal” term cancels.
Higher order corrections to the pressure arise from diagrams like

\[
\int [\mathcal{D} \phi(x)] e^{-S^0_E[\phi]} \int_0^\beta d^4 z \, d^4 z' \frac{1}{2} \left(\frac{\lambda}{4!} \right)^2 \phi^4(z) \phi^4(z')
\]

From \(PV \equiv (1/\beta) \ln Z \) and the Wick’s contractions one gets

\[
P^\text{ring}_2 = \frac{\lambda^2}{16} [\mathcal{D}_0(0, 0)]^2 \frac{1}{\beta V} \int_0^\beta d^4 z \, d^4 z' [\mathcal{D}_0(\tau_z - \tau'_{z'}, z - z')]^2
\]

Since

\[
(1/\beta) \int_0^\beta d\tau e^{-i(\omega_n - \omega_{n'})\tau} = \delta_{n,n'} \quad \text{and} \quad \int d\vec{x} e^{i(\vec{k} - \vec{k}') \cdot \vec{x}} = (2\pi)^3 \delta^{(3)}(\vec{k} - \vec{k}')
\]

one gets

\[
P^\text{ring}_2 = \frac{\lambda^2}{16} \left[\int \frac{d\vec{k}}{(2\pi)^3} \frac{N_k}{\omega_k} \right]^2 \frac{1}{\beta} \sum_{n=-\infty}^\infty \int \frac{d\vec{k}}{(2\pi)^3} \frac{1}{(\omega_n^2 + \omega_k^2)^2}
\]
The expression we got for the “ring” diagram

\[P^\text{ring} = \frac{\lambda^2}{16} \left[\int \frac{d\vec{k}}{(2\pi)^3} \frac{N_k}{\omega_k} \right]^2 \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d\vec{k}}{(2\pi)^3} \frac{1}{(\omega_n^2 + \omega_k^2)^2} \]

in the massless limit \(\omega_k = k \) is plagued by an IR divergence \(\sim \int \frac{dk}{k^2} \) arising from the \(\omega_n = 0 \) Matsubara mode.
Resummation of ring diagrams

The situation is even worse for higher-order similar diagrams, with a behaviour of the zero Matsubara mode $\sim \int \frac{dk}{k^{2(n-1)}}$. However the whole set of ring diagrams can be resummed (check!):

$$P_{\text{ring}} = -\frac{1}{2\beta} \sum_{n=-\infty}^{\infty} \int \frac{d\vec{k}}{(2\pi)^3} \left[\ln(1 + \Sigma \Delta_0(i\omega_n, \vec{k})) - \Sigma \Delta_0(i\omega_n, \vec{k}) \right]$$

In the above $\Sigma = \lambda T^2/24 \equiv m_T^2$ (analogous of Debye screening mass in QED/QCD) and the dominant contribution come from the $n=0$ mode

$$P_{\text{ring}}^{n=0} = -\frac{1}{2\beta} \int \frac{d\vec{k}}{(2\pi)^3} \left[\ln \left(1 + \frac{m_T^2}{k^2} \right) - \frac{m_T^2}{k^2} \right] = \frac{m_T^3 T}{12\pi} \sim \lambda^{3/2} T^4$$

Notice the non-analytic behaviour in the coupling with an expansion $P \sim P_0 + P_1 + P_{3/2} + ...$ arising from the resummation of an infinite set of diagrams.
With proper resummations the expansion can be pushed to higher orders3. Notice that, if the coupling is not sufficiently weak, the convergence is poor.

Numerical results: scalar field theory

The situation looks even worse in QCD\(^4\) and one has to develop more clever and powerful resummation schemes.