

What nuclearites are?

Nuggets of Strange Quark Matter (SQM), composed of approximately the same numbers of up, down and strange quarks.

Strange matter is non-luminous and did not partecipate in primordial nucleosynthesis \rightarrow dark matter

Nuggets appeared shortly after the Big Bang in the QCD transition from a quasi-free quark plasma to a cooler state in which quark are confined.

They are producted by collision of neutron stars and supernovae
\rightarrow strangelets : core
\rightarrow nuclearites : core + electron cloud
neutrality ensured by an electron cloud which surrounds the nuclearite core, forming a sort of atom.

E. Witten Phys Rev D30(1984) 272 De Rujula Glashow Nature 312

Rate of energy loss

$$
\frac{d E}{d x}=-A p w^{2}
$$

The principal energy-loss mechanism for a nuclearite passing through matter is by atomic collision.
r : density of traversed medium $\quad v$: nuclearites velocity A : effective cross-sectional area

Nuclearites having galactic velocity ($250 \mathrm{~km} / \mathbf{s}$) and mass heavier than $10^{-14} \mathrm{~g}$ penetrate the atmosphere (those lighter than 0.3 ng will stop in the crust) while those heavier than 0.1 g pass throught an Earth diameter.

Cross-sectional area as a function of mass m

$$
A= \begin{cases}\pi \cdot 10^{-16} \mathrm{~cm}^{2} & \text { for } m<1.5 \mathrm{ng} \\ \pi\left(\frac{3 m}{4 \pi \rho_{N}}\right)^{2 / 3} & \text { for } m>1.5 \mathrm{ng}\end{cases}
$$

For a small nuclearite of mass less than 1.5 ng the area is controlled by its electronic atmosphere ever smaller than $10^{-8} \mathrm{~cm}$

$$
\rho_{\mathrm{N}}=3.5 \cdot \mathbf{1 0 ^ { 1 4 }} \mathrm{~g} / \mathrm{cm}^{\mathbf{3}}: \text { strange matter density } \mathrm{m}: \text { nuclearite mass }
$$

E. Witten Phys Rev D30(1984) 272

Some experiments

Technique	Location	Experiment	Observ. Area (m²)	Mass $_{\text {thr }}(\mathrm{g})$	Mass $_{\text {thr }}$ $($ Gev/c$)$
Thermo- acoustic	Sea level	Explorer	~ 1	10^{-13}	$>6 \cdot 10^{16}$
Damage	Mountain 5230 m a.s.I.	SLIM	427	$5 \cdot 10^{-14}$	$>3 \cdot 10^{10}$
Light in oil	Underground 3700 hg cm-2	MACRO	~ 700	$2 \cdot 10^{-10}$	$>10^{14}$
Light in water	Underwater 2500 hg cm-2	ANTARES	$\sim 10^{5}$	$2 \cdot 10^{-10}$	$>10^{14}$
Earth or moon-quakes	Earth/moon inner	seismometers	10^{11}	$\sim 10^{4}$	$>6 \cdot 10^{25}$

Fraction of dissipated energy as light is called the luminous efficiency $h(w, r) \rightarrow 4 \%$
Does not depend upon radius or velocity.

Absolute magnitude

$$
M=15.8-1.67 \cdot \log _{10}(m / 1 \mu g)
$$

From h we deduce an expression for their luminosity as a function of mass and we compute the visual magnitude.

The absolute magnitude of a meteor (or nuclerite) computed as if viewed from a distance of 100 km .

Visual apparent magnitude : 20 g nuclearite at 400 km distance from observer $\rightarrow M=6$
Absolute magnitude : 20 g nuclearite $\rightarrow M=3.6$

Maximum height

$$
h_{\max }=2.7 \ln \left(\mathrm{~m} / 1.2 \times 10^{-5} \mathrm{~g}\right) \mathrm{km}
$$

Nuclearites are essentially a phenomenon of lower atmosphere.
$10^{-4} \mathrm{~g}$ nuclearite $\rightarrow 6 \mathrm{~km} \quad 10^{4} \mathrm{~g}$ nuclearite $\rightarrow 60 \mathrm{~km}$
E. Witten Phys Rev D30(1984) 272

De Rujula Glashow Nature 312

Difference from METEORS

There are three important differences that can help to discriminate between nuclearites and meteors

- The absolute value of the nuclearites velocity is higher (nuclearite max value $\rightarrow 570 \mathrm{~km} / \mathrm{s} \quad$ meteor max value $\rightarrow 72 \mathrm{~km} / \mathrm{s}$)
- The light emitted by nuclearites is constant at $h \leq h_{\text {max }}$
- A nuclearite of mass bigger than 0.1 g can move upward

Components

Fresnel lenses

Gate Time Unit $(G T U)=2.5 \mu \mathrm{~s}$

Working modes:

DIGITAL (MAPMT pixel)

$$
1-30 \text { phe/pix/GTU }
$$

ANALOG (charge integration)
KI pixels $=4 \times 2$ MAPMT pixels $10-10^{6}$ phe/pix/GTU

Apparent motion

Down going nuclearites
$v=250 \mathrm{~km} / \mathrm{s} \mathrm{m}=100 \mathrm{~g} \mathrm{~h}=300 \mathrm{~km}$

$\mathrm{f}=0^{\circ}, 45^{\circ}, 90^{\circ} \mathrm{m}=100 \mathrm{~g} \quad \mathrm{~h}=0-300 \mathrm{~km}$ without $h_{\text {max }}$

Apparent motion

Down going nuclearites (dotted)

$$
\mathrm{m}=20 \mathrm{~g} \quad \mathrm{~h}=0-50 \mathrm{~km} \quad \mathrm{~h}_{\max }=39 \mathrm{~km}
$$

Up going nuclearites
$\mathrm{m}=0.1 \mathrm{~g} \mathrm{~h}_{\text {max }}=29 \mathrm{~km} \mathrm{~h}=30 \mathrm{~km}$

Comparison between nuclearite and meteor

Nuclearite
\[\begin{gathered} \mathrm{h}=50 \mathrm{~km} \quad \mathrm{~h}_{\max }=\mathrm{h}
\mathrm{a}=60^{\circ} \mathrm{f}=45^{\circ}
\mathrm{v}=250 \mathrm{~km} / \mathrm{s}
\mathrm{~m}=50 \mathrm{~g} \end{gathered} \]

Horizontal nuclearites light curves

First example of nuclearites light curves who begin to light up at different height.

Changing hbeg the light curve becomes shorter or longer.
$h_{\text {beg }}=20 \mathrm{~km}$

Light curves

$\mathrm{m}=100 \mathrm{~g} \rightarrow \mathrm{~h}_{\max }=43 \mathrm{~km}$

Nuclearites and meteors comparison

$f=0^{\circ}$
$\mathrm{a}=45^{\circ}$

Nuclearites

$\mathrm{v}=250 \mathrm{~km} / \mathrm{s}$
$\mathrm{m}=20 \mathrm{~g} \rightarrow \mathrm{~h}_{\text {max }}=39 \mathrm{~km}$
$\mathrm{h}=40 \mathrm{~km}, 0.0001 \mathrm{~km}$
Meteor (dotted)
$v=70 \mathrm{~km} / \mathrm{s} \mathrm{h}=100 \mathrm{~km}$
Abs mag $=1.7$
Abs mag sec burst =-1
Instant of beginning sec burst $=0.9 \mathrm{~s}$
Duration $=1.2 \mathrm{~s}$

Nuclearites and meteors comparison

NUCLEARITE
$\mathrm{m}=50 \mathrm{~g}$
$v=250 \mathrm{~km} / \mathrm{s}$
$\mathrm{hmax}=41 \mathrm{~km}$
$\mathrm{h}=10 \mathrm{~km}$
METEOR
$\mathrm{h}=120 \mathrm{~km}$
$\mathrm{v}=72 \mathrm{~km} / \mathrm{s}$
$\mathrm{mag}=2.2$

16

Detector results

Meteor limits on flux

$\begin{gathered} \hline \text { magnitude } \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} \text { U-band flux } \\ \left(\mathrm{erg} / \mathrm{s}_{\mathrm{sm}}{ }^{2} / \mathrm{A}\right) \end{gathered}$	$\begin{gathered} \text { photons } \\ \left(\mathrm{s}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { photo-electrons } \\ & (\mathrm{GTU}=2.5 \mu \mathrm{~s})^{-1} \end{aligned}$	$\begin{gathered} \hline \text { mass } \\ (\mathrm{g}) \\ \hline \end{gathered}$	$\begin{gathered} \text { collisions in } \\ \text { JEM-EUSO FoV } \end{gathered}$
(7)	$6.7 \cdot 10^{-1 / 2}$	$4.3 \cdot 10^{T}$	4	$2 \cdot 10^{-3}$	1/s
5	$4.2 \cdot 10^{-11}$	2.7.10 ${ }^{8}$	23	10^{-2}	$6 / \mathrm{min}$
0	$4.2 \cdot 10^{-9}$	2.7.10 ${ }^{10}$	2300	1	0.27/orbit
-5	4.2. 10^{-7}	2.7.10 ${ }^{12}$	$2.3 \cdot 10^{5}$	100	6.3/year
\downarrow					
$m>3 \mathrm{~g}$			$m>0.1 \mathrm{~g}$		

$$
M=15.8-1.67 \cdot \log _{10}(m / 1 \mu g) .
$$

$1 \mathrm{eV}=1.6 \cdot 10^{-19} \mathrm{~J}$
$0.1 \mathrm{~g}=1 \cdot 10^{-4} \mathrm{Kg}=10^{22} \mathrm{GeV} / \mathrm{c}^{2}$

$v_{\text {proj }}^{\text {miin }}$ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$\mathrm{a}_{\text {min }}$ $($ deg. $)$	$R_{\text {acc }}$ $(\%)$
100	23.6	84
130	31.3	73
160	39.8	59
190	49.5	42
220	61.6	23

$P\left(\lambda \leq \lambda_{0}\right) \int_{0}^{\lambda_{0}} T \exp (-\lambda T) d \lambda=1-\exp \left(-\lambda_{0} T\right)$

I_{0} : flux limit $\quad \rightarrow \quad \lambda_{0}=-\frac{1}{T} \ln (1-\mathrm{CL}) \quad \rightarrow \sim 1 \cdot 10^{-20} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \cdot \mathrm{sr}^{-1}$
$\mathrm{T}:$ geometrical factor $T=S \cdot \mathrm{t} \cdot \mathrm{sr} \rightarrow 5.4 \cdot 10^{20} \mathrm{~cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{sr} \longrightarrow \mathrm{T}=\mathbf{2 . 2 7} \cdot \mathbf{1 0}{ }^{20} \mathrm{~cm}^{2} \cdot \mathbf{s} \cdot \mathbf{s r}$ S : surface $=\mathbf{2} \cdot \mathbf{1 0}{ }^{15} \mathrm{~cm}^{2}$
t : acquisition time $=\mathbf{8 6 0 0 0} \mathbf{s}$
CL : confidence level $\rightarrow 0.9$ sr : solid angle = p

Conclusions

Nuclearites are noticeable from meteors (ligth curves, $\theta(t)$)

JEM-EUSO will be sensitive to nuclearites with mass higher than a few 1022 $\mathrm{GeV} / \mathrm{c}^{2}$ and will be able, after a run time of only 24 h , to provide limits on nuclearite flux lower by one order of magnitude with respect to the limits of the experiments carried out so far, and lower than the dark matter limit.

Limits on flux will be improved by one or two orders of magnitude after a run time of one or two years.

Bibliography

Nuclearite observation with JEM-EUSO NUCLEARITES : A novel form of cosmic radiation Search for Nuclearites with the Antares detector JEM-EUSO : Meteor and nuclearite observation Cosmic separation phase.
M.Bertaina, A.Cellino, F.Ronga
A. De Rujula, S. L. Glashow

Gabriela Emilia Pavalas
M.Bertaina, A.Cellino, F.Ronga
E. Witten

