Università degli Studi di Torino

 Scuola di Scienze della NaturaDipartimento di Fisica

Tesi di Laurea Magistrale

Measurement of the energy spectrum of cosmic rays between 0.3 EeV and 30 EeV with data of the Infill array of the Pierre Auger Observatory

Aprile 2017

Relatore: Prof. Mario Bertaina
Co-relatore: Dott.ssa Antonella Castellina
Candidata: Eleonora Guido

Outline

- Introduction about cosmic rays (CRs) and the energy spectrum
, The Pierre Auger Observatory (PAO) detectors
> SD event: energy reconstruction steps using Infill data of the PAO
\int • Estimation of the shower size
$\{$ - Correction for attenuation in atmosphere
- Energy Calibration
, Measurement of the energy spectrum

```
{. Exposure computation
. Unfolding procedure \(\rightarrow\) Unfolded spectrum
```

- Evaluation of systematic uncertainties
- Combination of vertical spectra measured with the PAO
\rightarrow spectrum in the energy region of transition from galactic to extra-galactic CRs

$$
\left(\sim 10^{17} \mathrm{eV}-\sim 10^{19} \mathrm{eV}\right)
$$

Cosmic rays

Cosmic rays are particles that reach the Earth's upper atmosphere from outside

Primary cosmic rays:

> $\mathrm{p}, \mathrm{e}^{-}, \mathrm{H}^{+}, \mathrm{He}^{++}$and heavier elements, γ, ν

- Accelerated at astrophysical sources
- Energies up to $\sim 10^{20} \mathrm{eV}$
- Interaction with atmospheric nuclei and production of secondary cosmic rays
\rightarrow Extensive Air Showers (EAS)

Cosmic rays

Cosmic rays are particles that reach the Earth's upper atmosphere from outside

Primary cosmic rays:

> $\mathrm{p}, \mathrm{e}^{-}, \mathrm{H}^{+}, \mathrm{He}^{++}$and heavier elements, γ, ν

- Accelerated at astrophysical sources
, Energies up to $\sim 10^{20} \mathrm{eV}$
- Interaction with atmospheric nuclei and production of secondary cosmic rays
\longrightarrow Extensive Air Showers (EAS)

Secondary cosmic rays:

, Electromagnetic component: electrons, positrons and photons from decays of charged and neutral mesons.
, Muonic component: muons and muonic neutrinos from decays of $K^{ \pm}$and $\pi^{ \pm}$
> Hadronic component : fragments like p, n, π, K (remnants of the primary CR).

Physical quantities

Information about sources and propagation of CRs obtained from 3 physical quantities

1) Arrival direction : The flux is isotropic: charged CRs \rightarrow deflected by
magnetic fields in the interstellar medium (expecially at low energies)
2) Mass composition : Different abundances of light and heavy components at different energies
3) Energy: Energy spectrum reconstruction

The flux vs energy follows a steep power law : $\sim E^{-\gamma} \quad(\gamma \sim 3)$

Decreasing with increasing energy

Some features in the spectrum:

- Knee \rightarrow steepening
- Ankle \rightarrow hardening
- Suppression
\rightarrow Hints about CRs origin
Slope changes

The energy spectrum

- Transition region between galactic and extra-galactic origin
- Onset of the extra-galactic (EG) component
- Theoretical models: different predicted transition energies \rightarrow open astrophysical problem

The energy spectrum

- Transition region between galactic and extra-galactic origin
- Onset of the extra-galactic (EG) component
- Theoretical models: different predicted transition energies \rightarrow open astrophysical problem

Dip model

- EG component : mainly protons (< 10-15\% of heavier nuclei allowed)
- Transition at $\sim 7 \cdot 10^{17} \mathrm{eV}$

Mixed composition model

- EG component : mixed composition (similar to the galactic one)
- Transition at $\sim 3 \cdot 10^{18} \mathrm{eV}$

The Pierre Auger Observatory

The Pierre Auger Observatory

Hybrid detector located in Argentina, near Malargue, studying ultra-high energy cosmic rays (UHECR)

Surface detector (SD) + Fluorescence detector (FD)

Energy range: $\sim 10^{17} \mathrm{eV}-\sim 10^{20} \mathrm{eV}$
> SD: Water-Cherenkov tanks 1600 in a 1.5 km grid ($3000 \mathrm{~km}^{2}$) 61 in 0.75 km infill grid ($\sim 30 \mathrm{~km}^{2}$)

FD: Fluorescence Telescopes 24 in 4 buildings overlooking SD 3 in 1 building overlooking the Infill
> Underground Muon detectors engineering array phase in the Infill array
> AERA radio antennas 153 in $17 \mathrm{~km}^{2}$
> Atmospheric monitoring stations

The Pierre Auger Observatory

Surface detector (SD) + Fluorescence detector (FD)

$$
\text { duty cycle } \sim 100 \% \quad \text { duty cycle } \sim 15 \%
$$

Observables in a hybrid detector:

Hybrid events : those observed by both detectors

SD event reconstruction

» EAS triggering the Infill array \rightarrow stations register sizes (S [VEM]) and times of signals

- Reconstruction of the Lateral Distribution Function (S vs radial distance from the core)

$$
\left.S(r)=S_{450} \frac{r}{450 m}\right)^{\beta}\left(\frac{r+r_{1}}{450 m+r_{1}}\right)^{\beta \oplus+}
$$

signal at the optimal distance of $\mathrm{r}_{\mathrm{opt}}=\mathbf{4 5 0} \mathbf{m}$

SD event reconstruction

- EAS triggering the Infill array \rightarrow stations register sizes (S [VEM]) and times of signals

- Correction for attenuation in atmosphere:

Costant Intensity Cut $\mathrm{S}_{450}(\mathrm{E}, \theta) \longrightarrow$ estimator $\mathrm{S}_{35}(\mathrm{E})$

- Energy calibration: $\mathrm{S}_{35} \longrightarrow$ energy E

$$
E\left(S_{35}\right)=A \cdot\left(\frac{S_{35}}{V E M}\right)^{B}
$$

$$
\begin{aligned}
& A=12.87 \cdot 10^{15} \mathrm{eV} \\
& B=1.0128
\end{aligned}
$$

- Reconstruction of the Lateral Distribution Function (S vs radial distance from the core)

$$
S(r)=S_{450}\left(\frac{r}{450 m}\right)^{\beta}\left(\frac{r+r_{1}}{450 m+r_{1}}\right)^{\beta \oplus+}
$$

signal at the optimal distance of $\mathrm{r}_{\text {opt }}=\mathbf{4 5 0} \mathrm{m}$

Event selection

Data used for this analysis: Events collected with SD-750 from 01/08/2008 to 29/02/2016

Criteria of data section:

- Good reconstruction level
\rightarrow well reconstructed lateral distribution function
-6T5 trigger
\rightarrow detector with the highest signal sourrounded by a working hexagon.

U

Cuts	N. of events after cuts
-	2983081
RecLevel=3	2976894
T4	2976472
T5	1814083
$\theta<55^{\circ}$	1771158
Bad Periods	$\mathbf{1 6 9 5 3 6 3}$

- Zenith angle θ lower than 55°
\rightarrow full efficiency above the $\mathrm{E}_{\mathrm{thr}}=3 \cdot 10^{17} \mathrm{eV}$
- Rejection of events in bad periods

1695363 events for the updated Infill spectrum

Correction for attenuation in atmosphere

Attenuation of showers in atmosphere

Isotropy of cosmic ray flux \longrightarrow Above the full efficiency threshold $\mathrm{E}_{\mathrm{thr}}: \frac{d I}{d \cos ^{2} \theta}=$ const
S_{450} is the shower size estimator from the LDF fit

Non-uniform distribution for any cut

Particles with larger θ interact more times in atmosphere

The shower size estimator \mathbf{S}_{450} depends on both E and θ

The Constant Intensity Cut Method factorizes the zenith angle dependence through the attenuation function $\operatorname{CIC}(\theta)$

$$
S_{450}(E, \theta)=S_{35}(E) \cdot C I C(\theta)
$$

Constant Intensity Cut method

The attenuation function $\operatorname{CIC}(\theta)$ is defined as third degree polynomial :

$$
\operatorname{CIC}(\theta)=1+a \cdot x(\theta)+b \cdot x^{2}(\theta) c \cdot x^{3}(\theta) \quad x=\cos (\theta)^{2}-\cos \left(\theta_{r e f}\right)^{2} \quad \theta_{r e f}=35^{\circ}
$$

- Events divided in $10 \boldsymbol{\operatorname { c o s }}^{2} \boldsymbol{\theta}$ bins of equal size
- A cut at 1500 events is chosen $\longrightarrow S_{450}^{\text {cut }}: 1500$ events with $S_{450}>S_{450}^{\text {cut }}$ in that bin

Integral event distributions:

$10 \cos ^{2} \theta$ bins
$S_{450}^{\text {cut }}$ for each angular bin is given by the intersection with the black line
(cut at 1500 events)

Constant Intensity Cut method

The attenuation function $\operatorname{CIC}(\theta)$ is defined as third degree polynomial :

$$
\operatorname{CIC}(\theta)=1+a \cdot x(\theta)+b \cdot x^{2}(\theta) c \cdot x^{3}(\theta) \quad x=\cos (\theta)^{2}-\cos \left(\theta_{r e f}\right)^{2} \quad \theta_{r e f}=35^{\circ}
$$

- Events divided in $10 \boldsymbol{\operatorname { c o s }}^{2} \boldsymbol{\theta}$ bins of equal size
- A cut at 1500 events is chosen $\longrightarrow S_{450}^{\text {cut }}: 1500$ events with $S_{450}>S_{450}^{\text {cut }}$ in that bin

- Errors on $S_{450}^{\text {cut }}$ in each bin obtained with the bootstrap method
- The CIC fit is performed to estimate the parameters:

$$
\begin{gathered}
S_{450}^{\text {cut }}(\theta)=S_{35}^{\text {cut }} \cdot C I C(\theta) \\
S_{35}^{\text {cut }}, a, b, c
\end{gathered}
$$

- 1σ uncertainty band from the fit covariance matrix
- $\operatorname{CIC}(\theta)$ from the fit $\rightarrow \mathbf{S}_{35}$ estimated for each event

Constant Intensity Cut method

Estimated parameters:

\mathbf{a}	1.62 ± 0.04
\mathbf{b}	-1.486 ± 0.103
\mathbf{c}	-2.0 ± 0.5
$\mathbf{S}_{35}{ }^{\text {cut }}$	$(45.2 \pm 0.2) \mathrm{VEM}$
χ^{2} / ν	0.69

$$
S_{450}^{c u t}
$$

Superimposed curves \rightarrow no θ dependence

Measurement of the energy spectrum

Geometrical exposure

Above the energy threshold of full trigger efficiency ($3 \cdot 10^{17} \mathrm{eV}$):

- Hexagonal cell area $(\mathrm{d}=750 \mathrm{~m}): \quad A=\frac{\sqrt{3}}{2} d^{2}$
- Selection of events with zenith angle between 0° and 55° :

SD station

$$
\Omega=\int_{0}^{2 \pi} d \phi \int_{0^{\circ}}^{55^{\circ}} d \theta \cos (\theta) \sin (\theta)
$$

- Effective cell area:

$$
A_{6 T 5}=A \cdot \Omega=1.02375 \mathrm{~km}^{2} \cdot \mathrm{sr}
$$

- Integrating over time :

$$
\Sigma=\int d t A_{6 T 5} \cdot N(t)
$$

\rightarrow Total exposure:

$$
(192 \pm 6) \mathrm{km}^{2} \cdot \mathrm{sr} \cdot \mathrm{yr}
$$

Observed energy spectrum

- Calibration: $\mathrm{S}_{35} \longrightarrow$ energy

$$
\begin{aligned}
& A=12.87 \cdot 10^{15} \mathrm{eV} \\
& B=1.0128
\end{aligned}
$$

[The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)]

$$
J_{\text {raw }}(E)=\frac{d N}{\Sigma \cdot d \log _{10}(E)}
$$

Observed energy spectrum

- Calibration: $\mathrm{S}_{35} \longrightarrow$ energy

$$
\begin{aligned}
& A=12.87 \cdot 10^{15} \mathrm{eV} \\
& B=1.0128
\end{aligned}
$$

[The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)]

- Theoretical function: Broken power law
- Finite energy resolution $\sigma(E)$
- Steep power law

More events migrate from lower to higher energies than viceversa

Measured (raw) flux larger than true one

Unfolding procedure to obtain the unfolded flux

$$
\begin{array}{ll}
J_{\text {unfol }}^{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{1}} & E<E_{a} \\
J_{\text {unfol }}^{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{2}} & E>E_{a}
\end{array}
$$

Unfolding procedure

Unfolding procedure to obtain the unfolded flux

$$
J_{\text {raw }}\left(E^{\prime}\right) \xrightarrow{\text { fit }} J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right) \xrightarrow{\mathrm{K}} J_{\text {unfol }}^{\text {theo }}(E) \xrightarrow{\mathrm{C}(\mathrm{E})} J_{\text {unfol }}(E)
$$

Unfolding procedure

Unfolding procedure to obtain the unfolded flux

$$
J_{\text {raw }}\left(E^{\prime}\right) \xrightarrow{\text { fit }} J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right) \xrightarrow{\mathrm{K}} J_{\text {unfol }}^{\text {theo }}(E) \xrightarrow{\mathrm{C}(\mathrm{E})} J_{\text {unfol }}(E)
$$

Migration matrix : $\quad K\left(E, E^{\prime}, \sigma(E), \epsilon(E)\right)=\frac{1}{\sqrt{2 \pi} \sigma(E)} \cdot \exp \left(-\frac{1}{2}\left(\frac{E^{\prime}-E}{\sigma(E)}\right)^{2}\right) \cdot \epsilon(E)$

$$
J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right)=\int d E K\left(E, E^{\prime}, \sigma(E), \epsilon(E), \text { bias }(E)\right) \cdot J_{\text {unfol }}^{\text {theo }}(E)
$$

Unfolding procedure

Unfolding procedure to obtain the unfolded flux

$$
J_{\text {raw }}\left(E^{\prime}\right) \xrightarrow[\text { fit }]{\longrightarrow} J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right) \xrightarrow{\mathrm{K}} J_{\text {unfol }}^{\text {theo }}(E) \xrightarrow{\mathrm{C}(\mathrm{E})} J_{\text {unfol }}(E)
$$

Migration matrix : $\quad K\left(E, E^{\prime}, \sigma(E), \epsilon(E)\right)=\frac{1}{\sqrt{2 \pi} \sigma(E)} \cdot \exp \left(-\frac{1}{2}\left(\frac{E^{\prime}-E}{\sigma(E)}\right)^{2}\right) \cdot \epsilon(E)$

$$
J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right)=\int d E K\left(E, E^{\prime}, \sigma(E), \epsilon(E), \text { bias }(E)\right) \cdot J_{\text {unfol }}^{\text {theo }}(E)
$$

- Fit of $\mathbf{J}_{\text {raw }} \rightarrow$ Parameters that minimize $-\log (L)=\sum_{i} \mu_{i}-n_{i} \log \mu_{i}$

Bin $i: n_{i}$ observed number of events
Obtained inserting
μ_{i} expected number of events in $\left.J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right)\right\}$ parameters in $J_{\text {unfol }}^{\text {theo }}(E)$ and using K

$$
\rightarrow J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right) \quad J_{\text {unfol }}^{\text {theo }}(E)
$$

Unfolding procedure

Unfolding procedure to obtain the unfolded flux

$$
J_{\text {raw }}\left(E^{\prime}\right) \stackrel{\text { fit }}{\longrightarrow} J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right) \xrightarrow{\mathrm{K}} J_{\text {unfol }}^{\text {theo }}(E) \xrightarrow{\mathrm{C}(\mathrm{E})} J_{\text {unfol }}(E)
$$

Migration matrix : $\quad K\left(E, E^{\prime}, \sigma(E), \epsilon(E)\right)=\frac{1}{\sqrt{2 \pi} \sigma(E)} \cdot \exp \left(-\frac{1}{2}\left(\frac{E^{\prime}-E}{\sigma(E)}\right)^{2}\right) \cdot \epsilon(E)$

$$
J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right)=\int d E K\left(E, E^{\prime}, \sigma(E), \epsilon(E), \text { bias }(E)\right) \cdot J_{\text {unfol }}^{\text {theo }}(E)
$$

- Fit of $\mathbf{J}_{\text {raw }} \rightarrow$ Parameters that minimize $-\log (L)=\sum_{i} \mu_{i}-n_{i} \log \mu_{i}$

Bin $i: n_{i}$ observed number of events
Obtained inserting
μ_{i} expected number of events in $\left.J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right)\right\}$ parameters in $J_{\text {unfol }}^{\text {theo }}(E)$ and using K

$$
\rightarrow J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right) \quad J_{\text {unfol }}^{\text {theo }}(E)
$$

- Correction factor:

$$
C(E)=\frac{J_{\text {unfol }}^{\text {theo }}(E)}{J_{\text {raw }}^{\text {theo }}\left(E^{\prime}\right)}=\frac{J_{\text {unfol }}(E)}{J_{\text {raw }}\left(E^{\prime}\right)} \longrightarrow J_{\text {unfol }}(E)
$$

Unfolded spectrum

Correction factor: $C(E)=\frac{J_{\text {unfol }}(E)}{J_{\text {raw }}\left(E^{\prime}\right)}$

Unfolded spectrum:

Estimated parameters for the unfolded spectrum:

J_{0}	18.4 ± 0.3
$\log _{10}\left(\mathrm{E}_{\mathrm{a}} / \mathrm{eV}\right)$	$18.65_{-0.09}^{+0.08}$
γ_{1}	3.30 ± 0.01
γ_{2}	$2.85_{-0.15}^{+0.14}$

Systematic uncertainties

Energy dependent uncertainties:

- Systematic from unfolding correction :

the uncertainty on the correction factor $\mathrm{C}(E)$ propagates to the unfolded flux

$$
J_{\text {unfol }}(E)=J_{\text {raw }}\left(E^{\prime}\right) \times C(E)
$$

- Statistical and systematic uncertainties from calibration :
\rightarrow, From energy bias
. From comparison with an alternative calibration function
[A. Schulz. for the Pierre Auger Collaboration, Internal note 2016]

Vertical spectrum

- Data from SD-1500 (main array)
- Collected between January 2004 and February 2016
- $E>3 \cdot 10^{18} \mathrm{eV}, \theta<60^{\circ}$
- Good statistics at the highest energies
- Exposure:

$$
(48000 \pm 2000) \mathrm{km}^{2} \cdot s r \cdot y r
$$

- Systematic uncertainties:
, 5% from exposure
> 3.5% from weather and geomagnetic correction

Vertical spectrum

- Data from SD-1500 (main array)
- Collected between January 2004 and February 2016
- $E>3 \cdot 10^{18} \mathrm{eV}, \theta<60^{\circ}$
- Good statistics at the highest energies
- Exposure:

$$
(48000 \pm 2000) \mathrm{km}^{2} \cdot s r \cdot y r
$$

- Systematic uncertainties:
, 5% from exposure
> 3.5% from weather and geomagnetic correction

Combination of the two spectrum measurements

- Higher quality description below and above the ankle

Fit function :
Broken power law with a smooth suppression at high energies

$$
\begin{cases}J(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{1}} & E<E_{a} \\ J(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{2}}\left(1+\left(\frac{E_{a}}{E_{s}}\right)^{\Delta \gamma}\right)\left(1+\left(\frac{E}{E_{s}}\right)^{\Delta \gamma}\right)^{-1} & E>E_{a}\end{cases}
$$

Combination of vertical spectra

Maximimum likelihood method to take into account the statistical and systematic uncertainties Likelihood to maximize:

$$
L_{k}^{\text {Norm }}=\frac{1}{\sigma_{k} \sqrt{2 \pi}} \cdot e^{-\frac{\left(a_{k}-1\right)^{2}}{2 \sigma_{k}^{2}}} \quad \begin{aligned}
& \quad \sigma_{k} \rightarrow \text { energy independent systematic errors }
\end{aligned}
$$

$$
\begin{array}{ll}
L_{i k}^{\text {Poisson }}=\frac{v_{i k}^{n_{i k}} \cdot e^{-v_{i k}}}{n_{i k}!} & \begin{array}{ll}
& \\
L_{i k}^{\text {Nuisance }}=\frac{v_{i, k} \rightarrow \text { nuisance parameters }}{\sigma_{i k} \sqrt{2 \pi}} e^{-\frac{\left(v_{i k}-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}} & \begin{array}{l}
\text { • } \mu_{\mathrm{i}, \mathrm{k}} \rightarrow \text { ebserved number of events }
\end{array} \\
& \begin{array}{l}
\sigma_{\mathrm{i}, \mathrm{k}} \rightarrow \text { energy dependent systematic errors }
\end{array}
\end{array} .
\end{array}
$$

Combined vertical spectrum

Estimated parameters for the combined spectrum:

J_{0}	18.52 ± 0.04
$\log _{10}\left(\mathrm{E}_{\mathrm{a}} / \mathrm{eV}\right)$	18.68 ± 0.01
γ_{1}	3.33 ± 0.02
γ_{2}	2.53 ± 0.04
$\log _{10}\left(\mathrm{E}_{\mathrm{s}} / \mathrm{eV}\right)$	19.57 ± 0.03
$\Delta \gamma$	2.6 ± 0.2
$\mathrm{a}_{\text {SD- } 750}$	0.98 ± 0.04
$\mathrm{a}_{\text {SD-1500 }}$	1.03 ± 0.04

$$
\begin{array}{ll}
J(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{1}} & E<E_{a} \\
J(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{2}}\left(1+\left(\frac{E_{a}}{E_{s}}\right)^{\Delta \gamma}\right)\left(1+\left(\frac{E}{E_{s}}\right)^{\Delta \gamma}\right)^{-1} & E>E_{a}
\end{array}
$$

Conclusions and prospects

- Infill spectrum reconstruction :

Constant Intesity Cut
Energy calibration
Unfolding \rightarrow unfolded spectrum
new
parametrization already published new

- Combination of vertical spectra taking into account the systematic uncertainties
- energy spectrum from $\mathbf{3} \cdot \mathbf{1 0}^{17} \mathbf{e V}$ to few $\mathbf{1 0}^{\mathbf{2 0}} \mathbf{~ e V}$

. Describe the spectrum with a function with a smooth change of slope at the ankle energy
- Combination with the other data samples from Auger (inclined and hybrid spectra)
- Comparison with other experimental results (KG, IceTop, TA)

Conclusions and prospects

- Infill spectrum reconstruction :

Constant Intesity Cut
Energy calibration
Unfolding \rightarrow unfolded spectrum
new
parametrization already published new

- Combination of vertical spectra taking into account the systematic uncertainties
- energy spectrum from $\mathbf{3} \cdot \mathbf{1 0}^{17} \mathbf{e V}$ to few $\mathbf{1 0}^{\mathbf{2 0}} \mathbf{e V}$

- Describe the spectrum with a function with a smooth change of slope at the ankle energy
- Combination with the other data samples from Auger (inclined and hybrid spectra)
- Comparison with other experimental results (KG, IceTop, TA)
$E[\mathrm{eV}]$

Grazie per l'attenzione

The Pierre Auger Observatory

Surface Detector (SD)

\rightarrow Estimation of arrival direction, shower core position and shower size

- Duty cycle of $\sim 100 \%$
- SD calibration \rightarrow signals expressed in VEM (Vertical Equivalent Muon)

Fluorescence Detector (FD)

\rightarrow Estimation of calorimetric energy and $\mathbf{X}_{\text {max }}$

- Duty cycle of $\sim 15 \% \quad$ (clear and moonless nights)
- FD calibration : absolute and relative

Constant Intensity Cut method

The attenuation function $\operatorname{CIC}(\theta)$ is defined as third degree polynomial :

$$
\operatorname{CIC}(\theta)=1+a \cdot x(\theta)+b \cdot x^{2}(\theta) c \cdot x^{3}(\theta) \quad x=\cos (\theta)^{2}-\cos \left(\theta_{r e f}\right)^{2} \quad \theta_{r e f}=35^{\circ}
$$

- Events divided in $10 \boldsymbol{\operatorname { c o s }}^{2} \boldsymbol{\theta}$ bins of equal size
- A cut at 1500 events is chosen $\longrightarrow S_{450}^{\text {cut }}: 1500$ events with $S_{450}>S_{450}^{\text {cut }}$ in that bin

Errors on $S_{450}^{\text {cut }}$ in each bin obtained with the bootstrap method

- Values of S_{450} drawn from the measured distribution
- 500 simulated samples of S_{450}
- Cut at 1500 events for each sample $\rightarrow 500 S_{450}^{\text {cut }}$ values
- Variance $S_{450}^{\text {cut }}$ distribution

Constant Intensity Cut method

The $\cos ^{2} \theta$ distribution is uniform selecting events above any $S_{35}>S_{35}{ }^{\text {cut }}$

$$
\mathrm{S}_{35}{ }^{\text {cut }}=22.4 \mathrm{VEM}
$$

(~full trigger efficiency threshold)

- Rising slope below the threshold
- Uniformity above above the threshold
- Low statistics if x VEM is too large

Constant Intensity Cut method

The $\cos ^{2} \theta$ distribution is uniform selecting events above any $S_{35}>S_{35}{ }^{\text {cut }}$

- CIC performed at different cut values on the number of events
\rightarrow different energy ($=\mathrm{S}_{35}{ }^{\text {cut }}$) values
- $\cos ^{2} \theta$ distributions for selected events
- A constant is fitted to each $\cos ^{2} \boldsymbol{\theta}$ distribution $\rightarrow \chi^{2} / v$
$S_{35}^{\text {cut }}$ (VEM)

Constant Intensity Cut method

CIC parameters obtained with different cuts on the number of events ($=\mathrm{S}_{35}{ }^{\text {cut }}$)

Q

Estimated parameters of the $\operatorname{CIC}(\theta)$ function for different $S_{35}^{\text {cut }}$ values

Smaller fluctuations above the full efficiency threshold

Constant Intensity Cut method

CIC parameters obtained with different cuts on the number of events ($=\mathrm{S}_{35}{ }^{\text {cut }}$)

- Full trigger efficiency threshold:

$$
\mathrm{S}_{35}{ }^{\text {cut }}=22 \mathrm{VEM}
$$

- $\mathrm{S}_{35}{ }^{\text {cut }}=\mathbf{4 5}$ VEM is the chosen cut

Above the threshold NO large deviation from the one obtained at 45 VEM

Migration matrix parameters

$$
K\left(E, E^{\prime}, \sigma(E), \epsilon\left(E^{\prime}\right), \operatorname{bias}(E)\right)=\frac{1}{\sqrt{2 \pi}(\sigma(E)} \cdot \exp \left(-\frac{1}{2}\left(\frac{E^{\prime}-E}{\sigma(E)}\right)^{2}\right) \in(E)
$$

, Trigger efficiency:

$$
\epsilon(S, \theta)=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{\log S-a(\theta)}{b}\right)\right)
$$

$$
\operatorname{erf}(y)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} d x \mathrm{e}^{\frac{-x^{2}}{2}}
$$

$a(\theta)=a_{0}+a_{1} \cos ^{2}(\theta)+a_{2} \cos ^{4}(\theta)+a_{3} \cos ^{6}(\theta)$
Parameters from simulations:

a_{0}	2.39 ± 0.06
a_{1}	-4.86 ± 0.32
a_{2}	4.10 ± 0.56
a_{3}	-0.98 ± 0.31
b	0.249 ± 0.004

> Energy resolution: QGSJET-II. 04 simulations with a 50/50 mix of proton and iron primaries

$$
\frac{\sigma(E)}{E}=0.078+0.165 / \sqrt{\frac{E}{10^{17 e V}}}
$$

Raw and unfolded spectra

Infill spectrum: plots of residuals

$$
\begin{array}{ll}
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{1}} & E<E_{a} \\
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{2}} & E>E_{a}
\end{array}
$$

Unfolding correction factors

SD-1500

Combined spectrum: plots of residuals

$$
\begin{array}{ll}
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma} & E<E_{a} \\
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{2}}\left(1+\left(\frac{E_{a}}{E_{s}}\right)^{\Delta \gamma}\right)\left(1+\left(\frac{E}{E_{s}}\right)^{\Delta \gamma}\right)^{-1} & E>E_{a}
\end{array}
$$

Infille spectrum fit : residual plot

$$
\begin{array}{ll}
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{1}} & E<E_{a} \\
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{2}} & E>E_{a}
\end{array}
$$

Combined spectrum: comparison with previous analyses

$$
\begin{array}{ll}
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{1}} & E<E_{a} \\
J_{\text {theo }}(E)=J_{0}\left(\frac{E}{E_{a}}\right)^{-\gamma_{2}}\left(1+\left(\frac{E_{a}}{E_{s}}\right)^{\Delta \gamma}\right)\left(1+\left(\frac{E}{E_{s}}\right)^{\Delta \gamma}\right)^{-1} & E>E_{a}
\end{array}
$$

	This work	ICRC-2015	A. Schulz. for the Pierre Auger Collaboration, Internal note 2016]
Combination	SD-750 + SD-1500	All the four spectra	SD-750 + SD-1500
$\log _{10}\left(\mathrm{E}_{\mathrm{a}} / \mathrm{eV}\right)$	18.68 ± 0.01	18.683 ± 0.006	18.72 ± 0.01
γ_{1}	-3.33 ± 0.02	-3.29 ± 0.02	-3.20 ± 0.01
γ_{2}	-2.53 ± 0.04	-2.60 ± 0.02	-2.52 ± 0.03
$\log _{10}\left(\mathrm{E}_{\mathrm{s}} / \mathrm{eV}\right)$	19.57 ± 0.03	19.624 ± 0.017	19.56 ± 0.03
$\Delta \gamma$	2.6 ± 0.2	3.14 ± 0.2	2.6 ± 0.2

