

Università degli Studi di Torino Scuola di Scienze della Natura Dipartimento di Fisica

Tesi di Laurea Magistrale

Measurement of the energy spectrum of cosmic rays between 0.3 EeV and 30 EeV with data of the Infill array of the Pierre Auger Observatory

Aprile 2017

Relatore: Prof. Mario Bertaina Co-relatore: Dott.ssa Antonella Castellina

Candidata: Eleonora Guido

Outline

- Introduction about cosmic rays (CRs) and the energy spectrum
- The Pierre Auger Observatory (PAO) detectors
- SD event: energy reconstruction steps using Infill data of the PAO

 - Estimation of the shower size
 Correction for attenuation in atmosphere
 Energy Calibration

Measurement of the energy spectrum

- $\begin{cases} \cdot & \text{Exposure computation} \\ \cdot & \text{Unfolding procedure} \rightarrow \text{Unfolded spectrum} \end{cases}$
- Evaluation of systematic uncertainties
- Combination of vertical spectra measured with the PAO ۶
 - \rightarrow spectrum in the energy region of transition from galactic to extra-galactic CRs $(\sim 10^{17} \text{ eV} - \sim 10^{19} \text{ eV})$

Cosmic rays

Cosmic rays are particles that reach the Earth's upper atmosphere from outside

Primary cosmic rays:

- > p, e⁻, H⁺, He⁺⁺ and heavier elements, γ , ν
- > Accelerated at astrophysical sources
- Energies up to ~10²⁰ eV
- Interaction with atmospheric nuclei and production of secondary cosmic rays
 - Extensive Air Showers (EAS)

Cosmic rays

Cosmic rays are particles that reach the Earth's upper atmosphere from outside

Primary cosmic rays:

- > p, e⁻, H⁺, He⁺⁺ and heavier elements, γ , ν
- > Accelerated at astrophysical sources
- Energies up to ~10²⁰ eV
- Interaction with atmospheric nuclei and production of secondary cosmic rays
 - Extensive Air Showers (EAS)

Secondary cosmic rays:

- Electromagnetic component: electrons, positrons and photons from decays of charged and neutral mesons.
- Muonic component: muons and muonic neutrinos from decays of K[±] and π[±]
- Hadronic component : fragments like p, n, π, K (remnants of the primary CR).

Physical quantities

Information about sources and propagation of CRs obtained from 3 physical quantities

- Arrival direction : The flux is isotropic: charged CRs → deflected by magnetic fields in the interstellar medium (expecially at low energies)
- 2) <u>Mass composition</u>: Different abundances of light and heavy components at different energies
- 3) **Energy** : Energy spectrum reconstruction

The energy spectrum

- Transition region between galactic and extra-galactic origin
- Onset of the extra-galactic (EG) component
- Theoretical models: different predicted transition energies \rightarrow open astrophysical problem

The energy spectrum

- Transition region between galactic and extra-galactic origin
- Onset of the extra-galactic (EG) component
- Theoretical models: different predicted transition energies \rightarrow open astrophysical problem

Mixed composition model

Mixed composition E___=Z.10^{20.5} eV 10²⁵ E³Φ(E) (eV²m⁻²s⁻¹sr1) 10²⁴ Uniform B=2.3 10²³ SFR 6=2.1 19 20 20.5 18.5 19.5 17.5 18 17 log₁₀E eV

• EG component : mixed composition

- EG component : mainly protons (<10-15% of heavier nuclei allowed)
- Transition at ~ 7 · 10¹⁷ eV

• Transition at ~ $3 \cdot 10^{18} \text{ eV}$

(similar to the galactic one)

Hybrid detector located in Argentina, near Malargue, studying ultra-high energy cosmic rays (**UHECR**)

Surface detector (SD) + Fluorescence detector (FD)

Surface detector (SD) + Fluorescence detector (FD)

duty cycle ~100%

duty cycle ~15%

Observables in a hybrid detector:

Hybrid events : those observed by both detectors

SD event reconstruction

> EAS triggering the Infill array \rightarrow stations register sizes (S [VEM]) and times of signals

• Reconstruction of the Lateral Distribution Function (S vs radial distance from the core)

$$S(r) = S_{450} \frac{r}{450 m} \left(\frac{r + r_1}{450 m + r_1} \right)^{\beta} (\frac{r}{450 m + r_1})^{\beta}$$

signal at the optimal distance of r_{opt} = 450 m

SD event reconstruction

> EAS triggering the Infill array \rightarrow stations register sizes (S [VEM]) and times of signals

• Correction for attenuation in atmosphere:

Costant Intensity Cut $S_{450}(E,\theta) \longrightarrow estimator S_{35}(E)$

Energy calibration: S₃₅ → energy E

$$E(S_{35}) = A \cdot \left(\frac{S_{35}}{VEM}\right)^B$$
 A= 12.87 · 10¹⁵ eV
B= 1.0128

• Reconstruction of the Lateral Distribution Function (S vs radial distance from the core)

$$S(r) = S_{450} \frac{r}{450 m} \left(\frac{r + r_1}{450 m + r_1} \right)^{\beta} (\frac{r + r_1}{450 m + r_1})^{\beta}$$

signal at the optimal distance of r_{opt} = 450 m

Event selection

Data used for this analysis:

Events collected with SD-750 from 01/08/2008 to 29/02/2016

Criteria of data section:

- Good reconstruction level
 - \rightarrow well reconstructed lateral distribution function
- 6T5 trigger
 - → detector with the highest signal sourrounded by a working hexagon.

\mathbf{Cuts}	N. of events after cuts	
-	$2 \ 983 \ 081$	
RecLevel=3	$2 \ 976 \ 894$	
Τ4	$2 \ 976 \ 472$	
T5	1 814 083	
$\theta < 55^{\circ}$	1 771 158	
Bad Periods	1 695 363	

- Zenith angle θ lower than 55°
 - \rightarrow full efficiency above the $E_{_{thr}}$ = 3 $\cdot\,10^{17}\,eV$
- Rejection of events in bad periods

1 695 363 events for the updated Infill spectrum

Correction for attenuation in atmosphere

Attenuation of showers in atmosphere

Isotropy of cosmic ray flux \longrightarrow Above the full efficiency threshold E_{thr} : $\frac{dI}{dcos^2\theta} = const$

 $S_{\rm 450}~$ is the shower size estimator from the LDF fit

The attenuation function $CIC(\theta)$ is defined as third degree polynomial :

 $CIC(\theta) = 1 + a \cdot x(\theta) + b \cdot x^{2}(\theta) c \cdot x^{3}(\theta) \qquad x = \cos(\theta)^{2} - \cos(\theta_{ref})^{2} \qquad \theta_{ref} = 35^{\circ}$

- Events divided in 10 cos²θ bins of equal size
- A cut at **1500 events** is chosen $\longrightarrow S_{450}^{cut}$: 1500 events with $S_{450} > S_{450}^{cut}$ in that bin

Integral event distributions :

The attenuation function $CIC(\theta)$ is defined as third degree polynomial :

 $CIC(\theta) = 1 + a \cdot x(\theta) + b \cdot x^{2}(\theta) c \cdot x^{3}(\theta) \qquad x = \cos(\theta)^{2} - \cos(\theta_{ref})^{2} \qquad \theta_{ref} = 35^{\circ}$

- Events divided in 10 cos²θ bins of equal size
- A cut at **1500 events** is chosen $\longrightarrow S_{450}^{cut}$: 1500 events with $S_{450} > S_{450}^{cut}$ in that bin

Estimated parameters:

a	1.62 ± 0.04	
b	-1.486 ± 0.103	
С	-2.0 ± 0.5	
$\mathbf{S}_{35}^{ ext{ cut}}$	$(45.2 \pm 0.2) \text{ VEM}$	
χ^2/ u	0.69	

Measurement of the energy spectrum

Geometrical exposure

Above the energy threshold of full trigger efficiency $(3 \cdot 10^{17} \text{ eV})$:

• Hexagonal cell area (d=750 m) :

$$A = \frac{\sqrt{3}}{2}d^2$$

- Selection of events with zenith angle between 0° and 55° :

$$\Omega = \int_{0}^{2\pi} d\phi \int_{0^{\circ}}^{55^{\circ}} d\theta \cos(\theta) \sin(\theta)$$

• Effective cell area:

$$A_{6T5} = A \cdot \Omega = 1.02375 \ km^2 \cdot sr$$

• Integrating over time :

$$\Sigma = \int dt \, A_{6T5} \cdot N(t)$$

Total exposure:

$$(192\pm 6)$$
 km²·sr·yr

Observed energy spectrum

• Calibration : $S_{35} \rightarrow energy$

$$J_{raw}(E) = \frac{dN}{\Sigma \cdot dlog_{10}(E)}$$

[*The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)*]

Observed energy spectrum

14

Unfolding procedure to obtain the unfolded flux

Unfolding procedure to obtain the unfolded flux

 $J_{raw}^{theo}(E') = \int dE K(E, E', \sigma(E), \epsilon(E), bias(E)) \cdot J_{unfol}^{theo}(E)$

Unfolding procedure to obtain the unfolded flux

$$J_{raw}(E') \xrightarrow{\text{fit}} J_{raw}^{theo}(E') \xrightarrow{K} J_{unfol}^{theo}(E) \xrightarrow{C(E)} J_{unfol}(E)$$

$$Migration matrix: K(E,E',\sigma(E),\epsilon(E)) = \frac{1}{\sqrt{2\pi}\sigma(E)} \cdot \exp(-\frac{1}{2}(\frac{E'-E}{\sigma(E)})^{2}) \cdot \epsilon(E)$$

$$J_{raw}^{theo}(E') = \int dE K(E,E',\sigma(E),\epsilon(E),bias(E)) \cdot J_{unfol}^{theo}(E)$$

$$\bullet \text{ Fit of } J_{raw} \xrightarrow{} \text{Parameters that minimize } -\log(L) = \sum_{i} \mu_{i} - n_{i} \log \mu_{i}$$
Bin i: n_{i} observed number of events
$$\mu_{i} \text{ expected number of events in } J_{raw}^{theo}(E') \xrightarrow{} \text{Obtained inserting parameters in } J_{unfol}^{theo}(E)$$

$$\bullet J_{raw}^{theo}(E') = J_{unfol}^{theo}(E)$$

Unfolding procedure to obtain the unfolded flux

$$J_{raw}(E') \xrightarrow{\text{fit}} J_{raw}^{\text{theo}}(E') \xrightarrow{K} J_{unfol}^{\text{theo}}(E) \xrightarrow{C(E)} J_{unfol}(E)$$

$$Migration matrix: K(E,E',\sigma(E),\epsilon(E)) = \frac{1}{\sqrt{2\pi\sigma(E)}} \exp\left(-\frac{1}{2}\left(\frac{E'-E}{\sigma(E)}\right)^{2}\right) \cdot \epsilon(E)$$

$$J_{raw}^{\text{theo}}(E') = \int dE K(E,E',\sigma(E),\epsilon(E),bias(E)) \cdot J_{unfol}^{\text{theo}}(E)$$

$$Fit \text{ of } J_{raw} \longrightarrow \text{Parameters that minimize } -\log(L) = \sum_{i} \mu_{i} - n_{i} \log \mu_{i}$$
Bin i: n_i observed number of events
$$\mu_{i} \text{ expected number of events in } J_{raw}^{\text{theo}}(E') \xrightarrow{} D \text{ btained inserting parameters in } J_{unfol}^{\text{theo}}(E)$$

$$\longrightarrow J_{raw}^{\text{theo}}(E') = J_{unfol}^{\text{theo}}(E)$$

• <u>Correction factor</u>: $C(E) = \frac{J_{unfol}^{theo}(E)}{J_{raw}^{theo}(E')} = \frac{J_{unfol}(E)}{J_{raw}(E')} \longrightarrow J_{unfol}(E)$

Unfolded spectrum

Systematic uncertainties

Energy dependent uncertainties:

• Systematic from unfolding correction :

the uncertainty on the correction factor C(E) propagates to the unfolded flux

 $J_{unfol}(E) = J_{raw}(E') \times C(E)$

Statistical and systematic

uncertainties from calibration :

- From energy bias
 - From comparison with an alternative calibration function

[A. Schulz. for the Pierre Auger Collaboration, Internal note 2016]

Energy independent uncertainties:

- Systematic from exposure : 3%
- Systematic from weather and geomagnetic corrections : 3.5%

Quadratic sum : Total systematic uncertainty

Vertical spectrum

- Data from SD-1500 (main array)
- Collected between January 2004 and February 2016
- $E > 3 \cdot 10^{18} eV$, $\theta < 60^{\circ}$
- Good statistics at the highest energies
- Exposure:

۶

 $(48000 \pm 2000) \, km^2 \cdot sr \cdot yr$

- Systematic uncertainties:
 - 5% from exposure
 - 3.5% from weather and geomagnetic correction

Vertical spectrum

Fit function :

Broken power law with a smooth suppression at high energies

$$\int \begin{cases} J(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_1} & E < E_a \\ J(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_2} \left(1 + \left(\frac{E_a}{E_s}\right)^{\Delta \gamma}\right) \left(1 + \left(\frac{E}{E_s}\right)^{\Delta \gamma}\right)^{-1} & E > E_a \end{cases}$$

18

Combination of vertical spectra

Maximimum likelihood method to take into account the statistical and systematic uncertainties

Likelihood to maximize:

$$L = \prod_{k=1}^{2} \prod_{i=1}^{N_{k}} L_{k}^{Norm} \cdot L_{i,k}^{Poisson} \cdot L_{i,k}^{Nuisance} \qquad \begin{array}{c} \mathsf{k=1} & \mathsf{SD-750} \\ \mathsf{k=2} & \mathsf{SD-1500} \end{array}$$

$$L_k^{Norm} = \frac{1}{\sigma_k \sqrt{2\pi}} \cdot e^{-\frac{(a_k - 1)^2}{2\sigma_k^2}}$$

- $\sigma_{k} \rightarrow$ energy independent systematic errors
- $a_{\mu} \rightarrow normalization factor$

- $v_{i,k} \rightarrow$ nuisance parameters
- $n_{i,k} \rightarrow observed number of events$
- $\sigma_{i\,k} \rightarrow$ energy dependent systematic errors

Combined vertical spectrum

- Combined flux J : weighted mean
- Systematic uncertainty : weighted mean
- Statistical uncertainty : propagation

$$J(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_1} \qquad E < E_a$$
$$J(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_2} \left(1 + \left(\frac{E_a}{E_s}\right)^{\Delta\gamma}\right) \left(1 + \left(\frac{E}{E_s}\right)^{\Delta\gamma}\right)^{-1} \qquad E > E_a$$

Conclusions and prospects

• Infill spectrum reconstruction :

Constant Intesity Cut

Energy calibration

Unfolding \rightarrow unfolded spectrum

new parametrization already published

new

- Combination of vertical spectra taking into account the systematic uncertainties
 - energy spectrum from 3 · 10¹⁷ eV to few 10²⁰ eV

- Describe the spectrum with a function with a smooth change of slope at the ankle energy
- Combination with the other data samples from Auger (inclined and hybrid spectra)
- Comparison with other experimental results (KG, lceTop, TA)

Conclusions and prospects

• Infill spectrum reconstruction :

Constant Intesity Cut Energy calibration

Unfolding \rightarrow unfolded spectrum

new

parametrization already published

new

- Combination of vertical spectra taking into account the systematic uncertainties
 - energy spectrum from 3 · 10¹⁷ eV to few 10²⁰ eV

- Describe the spectrum with a function with a smooth change of slope at the ankle energy
- Combination with the other data samples from Auger (inclined and hybrid spectra)
- Comparison with other experimental results (KG, lceTop, TA)

Grazie per l'attenzione

Surface Detector (SD)

- \rightarrow Estimation of arrival direction, shower core position and shower size
- Duty cycle of ~100 %
- SD calibration → signals expressed in VEM (Vertical Equivalent Muon)

Fluorescence Detector (FD)

- \rightarrow Estimation of calorimetric energy and $\mathbf{X}_{_{max}}$
- Duty cycle of ~15 % (clear and moonless nights)
- FD calibration : absolute and relative

Hybrid events : those observed by both detectors

The attenuation function $CIC(\theta)$ is defined as third degree polynomial :

 $CIC(\theta) = 1 + a \cdot x(\theta) + b \cdot x^{2}(\theta) c \cdot x^{3}(\theta) \qquad x = \cos(\theta)^{2} - \cos(\theta_{ref})^{2} \qquad \theta_{ref} = 35^{\circ}$

- Events divided in **10 cos²θ bins** of equal size
- A cut at **1500 events** is chosen $\longrightarrow S_{450}^{cut}$: 1500 events with $S_{450} > S_{450}^{cut}$ in that bin

The $\cos^2\theta$ distribution is <u>uniform</u> selecting events above any $S_{35}^{>}>S_{35}^{cut}$

• CIC performed at different cut values on the number of events

 \rightarrow different energy (=S₃₅^{cut}) values

• $\cos^2\theta$ distributions for selected events

CIC parameters obtained with different cuts on the number of events (= S_{35}^{cut})

Migration matrix parameters

 Energy resolution: QGSJET-II.04 simulations with a 50/50 mix of proton and iron primaries

$$\frac{\sigma(E)}{E} = 0.078 + 0.165 / \sqrt{\frac{E}{10^{17 eV}}}$$

Raw and unfolded spectra

Infill spectrum: plots of residuals

$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_1} \qquad E < E_a$$
$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_2} \qquad E > E_a$$

Unfolding correction factors

SD-750

Combined spectrum: plots of residuals

$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_1} \qquad E < E_a$$
$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_2} \left(1 + \left(\frac{E_a}{E_s}\right)^{\Delta\gamma}\right) \left(1 + \left(\frac{E}{E_s}\right)^{\Delta\gamma}\right)^{-1} \qquad E > E_a$$

Infille spectrum fit : residual plot

$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_1} \qquad E < E_a$$
$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_2} \qquad E > E_a$$

Combined spectrum: comparison with previous analyses

$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_1} \qquad E < E_a$$
$$J_{theo}(E) = J_0 \left(\frac{E}{E_a}\right)^{-\gamma_2} \left(1 + \left(\frac{E_a}{E_s}\right)^{\Delta\gamma}\right) \left(1 + \left(\frac{E}{E_s}\right)^{\Delta\gamma}\right)^{-1} \qquad E > E_a$$

	This work	ICRC-2015	[A. Schulz. for the Pierre Auger Collaboration, Internal note 2016]
Combination	SD-750 + SD-1500	All the four spectra	SD-750 + SD-1500
$\log_{10}(\mathrm{E_a/eV})$	18.68 ± 0.01	18.683 ± 0.006	18.72 ± 0.01
γ_1	- 3.33 ± 0.02	- 3.29 ± 0.02	- 3.20 ± 0.01
γ_2	- 2.53 ± 0.04	- 2.60 ± 0.02	- 2.52 ± 0.03
$\log_{10}(\mathrm{E_s/eV})$	19.57 ± 0.03	19.624 ± 0.017	19.56 ± 0.03
$\Delta\gamma$	2.6 ± 0.2	3.14 ± 0.2	2.6 ± 0.2