

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

The use of ESAF software to simulate the performance of the future missions of the JEM-EUSO program

Alessandro Liberatore

University of Torino

Torino, 11/04/2018

(日)

Overview

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSC program

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

РОЕММА

Tilted configuration Reconstruction of events

Conclusions

Cosmic rays

- UHECRs and EECRs
- Extended Air Shower

2 JEM-EUSO program

- ESAF
- JEM-EUSO missions

3 EUSO-SPB2

- Vertical configuration
- Horizontal configurations

POEMMA

- Tilted configuration
- Reconstruction of events

Image: A marked black

Ultra-High Energy and Extreme Energy cosmic rays

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO missi

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

High-energy particles arriving from outer space.

UHECRs energy: $E_{CR} \ge 10^{18} \, \mathrm{eV}$ UHECRs flux: $\sim 1 \frac{particle}{\mathrm{km}^2 \, \mathrm{month}}$ EECRs energy: $E_{CR} \ge 5 \cdot 10^{19} \, \mathrm{eV}$ EECRs flux: $\sim 1 \frac{particle}{\mathrm{km}^2 \, \mathrm{century}}$

(on Earth: $\sim 1 \, {\rm EECR}/{\rm 5 seconds}$)

GZK limit: energy limit of protons with $E \gtrsim 5 \cdot 10^{19} \, \text{eV}$ due to the interaction with the γ of the Cosmic Microwave Background (CMB):

•
$$p + \gamma_{CMB} \rightarrow \Delta^+ \rightarrow n + \pi^+;$$

• $p + \gamma_{CMB} \rightarrow \Delta^+ \rightarrow p + \pi^0.$

Figure: Fluxes of cosmic rays; UHECRs and EECRs in blue.

(日)

Extended Air Shower (EAS)

Alessandro Liberatore (UNITO)

JEM-EUSO Program, Italy

Extreme Energy cosmic rays

Auger+TA $\approx 3000 + 700 \,\mathrm{km}^2 \rightarrow \sim 30 \,\mathrm{events/yr}$... we need more statistic! \Rightarrow JEM-EUSO.

(日)

Let's go to space!

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program

ESAF JEM-EUSO missio

EUSO-SPB2

Vertical configuration

Horizontal configuration

РОЕММА

Tilted configuratio Reconstruction of events

Conclusions

A super-wide-field telescope:

- research of EECRs;
- study of TLEs, lightning, meteors, ...;
- UV emissions from Earth;
- search for strange quark matter.

Figure: An EAS curve of light.

Figure: JEM-EUSO; a quick look.

イロト イヨト イヨト イ

Alessandro Liberatore (UNITO)

Telescopes main features

Daramotor

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program

ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Alessandro Liber

Conclusions

	rarameter	Value		
_	FoV	±30 °		•
	Resolution in ang	;le 0.075°		
	Time resolution	$2.5\mu{ m s}$ (1 GTU	-GateTimeUnit-)	_
Fresnel lens 3 Fresnel lens 2 Iris		4932 MAPMTs (8x8 pixels) Electronics Support of focal surface Focal surface	2.35m Distributed detector Difference in the second detector Difference in the second detector in the second detec	entaryCell (EC) PMTs = 256 pixels)
Fresnel lens 1			3M Pixels)4 pixels) igh Voltage / PDM
ratore (UNI)		ELISO Program Italy	나▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶ Torino, 11/04/2	E ∽ Q (~ 2018 7 / 38
	JLIVI	LOSO I Togram, Italy	101110, 11/04/2	1/30

Value

EUSO Simulation & Analysis Framework

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program

ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

ESAF: EUSO Simulation and Analysis Framework.

- Developed in the framework of EUSO missions ($\sim 10^5$ lines).
- Based on ROOT (CERN) realized with C++ object oriented.

Simu: Event generation, photons production and their transport to the detector, optics and electronics response. **Reco:** reconstruction of air shower parameters (energy, X_{max} , direction, etc...)

Alessandro Liberatore (UNITO)

Joint Experiments Mission: Extreme Universe Space Observatory (JEM-EUSO)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Several pathfinder have been performed, others are now at work and a lot of them will be carried out.

Studied in my Thesis:

・ロト ・ 一下・ ・ ヨト ・ ヨ

- Mini-EUSO (2018);
- EUSO-SPB2 (2021);
- POEMMA (> 2025).

EUSO-SPB1 (launched in 2017)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configurati Reconstruction of events

Conclusions

- From Wanaka (New Zealand);
- 100 days ightarrow 12 days flight;
- Altitude: 30 km.

EUSO-SPB2 (will be launched in 2021)

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration

POEMMA

Tilted configuration Reconstruction of events

Conclusions

- EAS fluorescence and Cherenkov photons.
- Possible to look nadir or tilted \rightarrow neutrino events! (ν_{τ})
- Just the EUSO-SPB1 features are implemented in ESAF.

Features	Value
Mirror area	$1\mathrm{m}^2$
FoV	$\pm6^{\circ}$
Altitude	$30\mathrm{km}$

Efficiency	Value	
Optics	50%	
Focal surface	10-40%	
Total	5-20%	

Image: A matrix and a matrix

DE PO BO

Vertical configuration

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Vertical configuration:

- Altitude Detector = 30 km;
- Mirror area = 1 m²;
- FoV = ± 6°;
- Tilt Detector: (x, y, z) = (0°, 0°, 0°).
- CR energy [eV] = $1 \cdot 10^{19}$; - CR₀ = 85°; - CR₀ = 150°.
- Optical Efficiency: 50%;
- Quantum Efficiency: 10%;
- \rightarrow Total Efficiency: 5%.

- Background: 0.25 counts/µs.

Image: A marked black

Trigger area for $1\cdot 10^{19}\,\mathrm{eV}$

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

(日)

First Horizontal configuration

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Horizontal configuration:

- Altitude Detector = 30 km;
- Mirror area = 1 m²;
- FoV = ± 6°;
- **Tilt Detector:** (x, y, z) = (85° ÷ 65°, 0°, 0°).
- CR energy $[eV] = 1.10^{18} \div 1.10^{20}$; - CR₀ = 85°;
- $CR_{\phi} = 180^{\circ}.$
- Optical Efficiency: 50%;
- Quantum Efficiency: 10%;
- \rightarrow Total Efficiency: 5%.

- **Background:** 0.25 counts/ μ s.

Image: A marked black

$\mathsf{Counts}/\mathsf{GTU} \text{ and } \mathsf{Trigger}$

Second, Third, Fourth Horizontal configuration

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUS(program

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Main features:

- Altitude detector: 30 km;
- Mirror area: $1 \, {
 m m}^2$;
- FoV: ±6°;
- Optical efficiency: 50%;
- Tilt detector (x, y, z): $(85^{\circ} \div 55^{\circ}, 0^{\circ}, 0^{\circ} \div 10^{\circ})$;
- CR energy $[eV] = 1 \cdot 10^{18} \div 1 \cdot 10^{20};$

•
$$CR_{\theta} = 85^{\circ}$$
.

Config.	${\it CR}_{\phi}$	Quantum eff.	Tot. eff.	$BG[(\mu s)^{-1}]$
First	180°	10%	5%	0.25
Second	180°	40%	20%	1
Third	180°	40%	20%	2.5
Fourth	$180^{\circ} \div 120^{\circ}$	40%	20%	2.5

Table: Main features for each configuration.

Image: A marked black

Trigger vs distance from detector

So... how many "trajectories" of cosmic rays?

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

- I would estimate how many "trajectories" of UHECRs cross above a given energy E within a given distance R_{max} per unit "observation time".
- Cosmic ray fluxes may be referred to Auger ICRC proceedings (Fenu et al. 2017).

< □ > < 同 >

So... how many "trajectories" of cosmic rays?

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Instantaneous aperture can be calculated in an approximate way. We have to consider the geometry:

EUSO-SPB2

We obtain that the instantaneous aperture is equal to:

$$\left| 0.41 R^2 \left[\mathrm{km}^2 \mathrm{sr} \right] \right|$$
 (for $lpha = 15^\circ$)

Alessandro Liberatore (UNITO)

So... how many "trajectories" of cosmic rays?

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

So, in the end, we have:

<i>E</i> [eV] <i>R</i> [km]	$\begin{array}{c} \sim 5\cdot 10^{18} \\ \sim 35 \end{array}$	$\begin{array}{c} \sim 1 \cdot 10^{19} \\ \sim 55 \end{array}$	$\begin{array}{c} \sim 5\cdot 10^{19} \\ \sim 95 \end{array}$
CRs/hour	0.04	0.03	0.009

For a 100 days flight: $\sim 24 \text{ hours} \cdot 100 \text{ days} \cdot 20\%_{DC} \longrightarrow 480 \text{ hours};$

$E [{ m eV}]$	$\sim 5\cdot 10^{18}$	$\sim 1\cdot 10^{19}$	$\sim 5\cdot 10^{19}$
CRs	≤ 20	≤ 15	\leq 5

 \Rightarrow we expect to detect about 20 events with $E > 5 \times 10^{18} \, \mathrm{eV}$.

POEMMA (after 2025)

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

- Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a "long-term project" (born in 2017).
- POEMMA consists of two telescopes; in ESAF just one telescope → no stereoscopic view.
- Parametric optics (Schmidt optics).

Parameter	Value	
Altitude	400 $\rm km$ and 525 $\rm km$	
FoV	$\pm 22.5^\circ~(pprox 0.08^\circ$ per pixel)	
Number of PDM	~ 80	
Focal surface radius	830 mm	
Pixels side	3 mm	
Quantum efficiency	0.27	
Time resolution	$2.5\mu{ m s}$	
Optics Radius	$1650\mathrm{mm}$	
Background (per pixel)	$1.54 \mathrm{counts}/\mu\mathrm{s}$	

Results by 20000 simulations

JEM-EUSO Program, Italy

Ranges

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF IEM-EUSO mis

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

20.000 events simulations with the following ranges:

- Energy: $5 \times 10^{18} \,\mathrm{eV} \leqslant E \leqslant 5 \times 10^{20} \,\mathrm{eV}$;
- Zenith angle: $0 \leq \theta \leq \pi/2$;
- Azimuth angle: $0 \leq \phi \leq 2\pi$;
- ... and with: Duty cycle= $20\% \cdot 72\%$ clouds $\approx 14\%$.

The simulated and field of view surfaces are:

h[km]	$S_{sim}[km^2]$	$S_{FoV}[km^2]$
400	160000	85530
525	271127	144935

Image: A matrix and a matrix

Exposure (altitude: $400 \,\mathrm{km}$ and $525 \,\mathrm{km}$)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSC program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Triggered spectrum at different altitude

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Image: A matrix and a matrix

Tilted configurations: Exposure (altitude: 525 km)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

The background increases with the tilted angle ϑ .

Tilted configurations: Triggered spectrum (altitude: 525 km)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEWI-EUSU missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

Reconstruction of events

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

I used the reconstruction chain developed for JEM-EUSO program to reconstruct the parameters of the primary particle.

Reconstruct energy, X_{max} , direction.

< □ > < 同 >

Automatic reconstruction

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR: Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO mis

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

The set of conditions that must be satisfy to start a reconstruction are:

- *DOF* > 4;
- $0.1 < \chi^2 < 3;$

• for Cherenkov method \rightarrow Cherenkov peak.

	Cherenkov method	Slant depth method
Events	11200	11200
Triggered	3879	3879
Reconstructed	1472	3253
	(38%)	(84%)

EAS maximum altitude (H)

		Cherenkov method	Slant depth method
($(H_{reco} - H_{real})$	0.28 km	$-0.18\mathrm{km}$
	Resolution	$1.4\mathrm{km}$	$1.2\mathrm{km}$
alon of the second	25 Cherenk Entries Mean Std Dev	kov method 1474 0.2816 1.371	Slant depth method Entries 3253 Mean -0.1758 Std Dev 1.198
	20		
	15		
	_		
	10		
	-5 -4 -3	-2 -1 0 1	2 3 4 5 H _{reco} -H _{real}
		4	

(x, y) position of EAS maximum

< □ > < 同 >

Energy resolutions $\left[\frac{E_{reco}-E_{real}}{E_{real}}\right]$

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

Cherenkov method

Slant depth method

Lower E

Lower F

Bias	9%
Resolution	30%
Higher E	
Bias	0.5%
Resolution	27%
Resolution	21/0

Manual reconstruction

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

Manual reconstruction to compare with the automatic ones. Procedure:

- *DOF* > 4;
- $0.1 < \chi^2 < 3;$
- background and fit interval;
- points exclusion.

Manual vs Automatic reconstruction

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

Results from the automatic and manual E and X_{max} reconstruction:

X_{max} Cherenkov method $[g/cm^2]$	Bias	σ
Automatic	12	128
Manual	-22	204
E Cherenkov method (%)	Bias	σ
Automatic	-10	25
Manual	-11	25
X_{max} Slant depth method [g/cm ²]	Bias	σ
Automatic	37	100
Manual	34	110
E Slant depth method (%)	Bias	σ
Automatic	8	21
Manual	11	21
	▲ 御 ト ▲ 国 ト	1 E 1

Focal plane observation

Gtus 0-73

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

After focal plane observation (removed 4 events)

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

New results from the automatic and manual reconstruction:

X_{max} Cherenkov method [g/cm ²]	Bias	σ
Automatic	12	128
Manual	-13	107
E Cherenkov method (%)	Bias	σ
Automatic	-10	25
Manual	-11	25
X_{max} Slant depth method [g/cm ²]	Bias	σ
Automatic	37	100
Automatic Manual	37 34	100 110
Automatic Manual E Slant depth method (%)	37 34 Bias	100 110 σ
Automatic ManualE Slant depth method (%)Automatic	37 34 Bias 8	100 110 σ 21
Automatic Manual E Slant depth method (%) Automatic Manual	37 34 Bias 8 11	$ \begin{array}{r} 100 \\ 110 \\ \sigma \\ 21 \\ 21 \end{array} $

Manual vs Automatic reconstruction

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

Comparing these preliminary results of reconstruction, it is possible to conclude that what is obtained from the automatic reconstruction algorithms is consistent with what would be expected to be obtained with the manually one.

	Cherenkov method	Slant depth method
Both	31	58
Just Manual	3	4
Just Automatic	7	12
Neither	4	11

Triggered: 91 \longrightarrow (31 + 7)/91 = 41%; (58 + 12)/91 = 77%.

It is possible to manually reconstruct each event during the real data acquisition.

< ロ > < 同 > < 回 > < 国

Reconstructed trigger spectrum

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration

Reconstruction of events

Conclusions

[log(E/eV) > 19.6]Cherenkov methodSlant depth methodTrigg. (per year)305305Reconstr. (per year)110 (36%)267 (88%)

Conclusions

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSC program

ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

РОЕММА

Tilted configuration Reconstruction of events

Conclusions

• Mini-EUSO

• Optimization of the second level of trigger parameters to the study of TLEs events.

• EUSO-SPB2

- Trigger distances for horizontal CRs in tilted configuration
 - $ightarrow R(1 imes 10^{19} \, \mathrm{eV}) pprox 55 \, \mathrm{km}; R(5 imes 10^{19} \, \mathrm{eV}) pprox 95 \, \mathrm{km}$.
- For a 100 days mission (altitude: $30 \, \mathrm{km}$)
 - $\rightarrow~$ 20 events with energy above 5 $\times~10^{18}\,{\rm eV}$.

• POEMMA

• Triggered events above $E = 4 \times 10^{19} \text{ eV}$ for one year data taking at an altitude of $525 \text{ km} \rightarrow \boxed{Events(>E) = 305}$.

- Triggered events in tilted simulations
 - \rightarrow *Events*(> *E*, 10°) = 330; *Events*(> *E*, 20°) = 350.
- Reconstructed \rightarrow 267 (slant depth); 110 (Cherenkov)

Thanks for your attentions!

Alessandro Liberatore (UNITO)

Backup Slides

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

<ロ> (日) (日) (日) (日) (日)

Backup Slides - Earth's magnetic field

< □ > < □ > < □ > < □ > < □ > < □ >

Backup Slides - Sunspots and CR counts

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECF Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Backup Slides - Fermi mechanism (2nd order)

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Second order Fermi acceleration (1949)

Fermi proposed that charged particles were reflected by "magnetic mirrors" associated to galactic magnetic filed irregularities. Is possible find that the variation of particles energy, for each collision, is equal to:

$$\frac{\Delta E}{E} \sim \frac{2V}{c} \cos \theta$$

If we consider all kind of collisions ("*Head on*": $\theta < \pi/2 \rightarrow \Delta E/E > 0$ and "*Following*": $\theta > \pi/2 \rightarrow \Delta E/E < 0$) is possible find that, in the end, we have a positive $\Delta E/E$:

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{8}{3} \left(\frac{V}{c} \right)^2$$

"...so there is an acceleration; but there are some problems! For example, this process is too *slow*.

θ

Backup Slides - Fermi mechanism (1st order)

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

First order Fermi acceleration (1979)

shock

ISM

Similar to the second order but, this time, the idea is that for each collision the energy increase (i.e. no difference between *head on* and *following* collisions). Is possible demonstrate that this mechanism is possible with *strong shock waves* with $v \gg v_{sound}$ (e.g. shock waves from Supernovae \rightarrow Super Novae Remnants (SNR)).

After a full tour around the shock waves, the increment of the particle energy is:

$/\Delta E$	\setminus		4	V
$\left\langle \overline{E} \right\rangle$	/	=	3	с

...this process is faster than the previous one; is better!

Image: A marked black

There are other models that consider also the magnetic field that the particle generate during his accelerations.

Ejecta

Backup Slides - JEM-EUSO vs other experiments

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO mis

EUSO-SPB2

Vertical configuration

Horizontal configuration

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Experiment	Aperture km² sr	Status	Start	Lifetime (years)	Duty cycle (incl. clouds)	Exposure (km² sr y)	Relative to Auger
Auger	7,000	Operations	2006	4 (16)	1.0	27,370 (110,000)	1
TA	1,200	Operations	2008	2 (14)	1.0	2400 (16.000)	0.1
TUS	30,000	developed	2012	5	0.14	18,750	0.2
JEM-EUSO (E~100 EeV) Nadir-Mode	470,000 (10xAuger including DC)	proposed	2017	5	0.14	330000 (5 years Nadir)	3
JEM-EUSO (highest Energies) Tilted-Mode	1,300,000 (26xAuger including DC)	proposed	2017	5	0.14	910000 (5 years tilted)	8

・ロト ・部ト ・ヨト ・ヨ

Backup Slides - JEM-EUSO: spatial exposure

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Figure: Vertical mode.

Figure: Tilted mode.

JEM-EUSO Exposure

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECF Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO mis

EUSO-SPB2

Vertical configuratio

Horizontal configurations

РОЕММА

Tilted configurati Reconstruction of events

Conclusions

Larger exposure \longrightarrow higher statistic.

JEM-EUSO Focal Surface (FS)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Pixel size: $2.9 \times 2.9 \text{ mm}^2$. UV filter for light in band $290 \div 430 \text{ nm}$.

PDM dimensions

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

R 2505 PDM Dimensions (mm) 28.7 Volume for Electronics 130 (167 x 128 x 130) 167 128 PDM Frame EC Base MAPMT 167

э

・ロト ・日 ・ ・ ヨ ・ ・

192.4

167

ESAF -Simu-

EUSO -Reco- (Cherenkov method)

JEM-EUSO Program, Italy

Alessandro Liberatore 1)

3)

FOV Angle under which

maximum is seen

Cosmic rays UHECRs and EECR: Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ >

EUSO -Reco- (Slant depth method)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO mis

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ >

Backup Slides - Impact point (2D)

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

・ロト ・部ト ・ヨト ・ヨ

Backup Slides - Impact point (3D)

EUSO-TA (working since 2013)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO mis

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

EUSO-TA is a pathfinder experiment for the space based JEM-EUSO mission for the detection of ultra-high energy cosmic rays; is an high-resolution fluorescence telescope installed Located in front of one of TA experiment, in Utah (USA). EUSO-TA points in the direction of the Electron Light Source and Central Laser Facility.

Main features:

- Two 1 m² Fresnel lenses
- FoV: $\sim 10.5^\circ$
- 1 Photo Detector Module (PDM)

Up to now 5 observation campaigns have been performed (for a total of 48 observation nights).

Image: A marked black

EUSO-Balloon (launched in 2014)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

- 1 PDM (2304 pixels);
- optical system: two Fresnel lenses (side of 1 m);
- \bullet field of view: $\pm 6\,^{\circ}.$

- Night of August 25, 2014 (Ontario, Canada).
- $\bullet~$ Altitude of $38\,\rm{km}$
- More than 5 hours before descending to ground.

Image: A marked black

EUSO-Balloon

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO missi

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

- 5 hours of flight
- All sub-systems successfully tested
- UV background map

Mini-EUSO (will be launched in 2018)

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Onboard of the ISS, Mini-EUSO will looks nadir in the near UV range: $290-430\,\mathrm{nm}.$

Main features

- FoV: ±19°
- Spatial resolution: $\sim 6.5\,{\rm km}$
- Temporal resolution: $2.5\,\mu{
 m s}$
- Multi-levels of trigger
- 2 Fresnel lens
- 1 PDM

Main scientific goals

- Study of UHECRs
- UV emissions from night-Earth
- Study of meteors

Mini-EUSO structure

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ >

э

Levels of trigger -L1 and L2-

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

- In L1, pixel signal are integrated over 8 consecutive GTU.
- Threshold independent for every pixel (8σ above the average of 128 GTU).
- If signal > threshold I have a trigger.
- The data integrated over $128 \,\mathrm{GTU} (320 \,\mu\mathrm{s})$ is also passed to the **L2** trigger $\rightarrow 1 \,\mathrm{GTU}_{\mathrm{L2}}$.

EECRs with Mini-EUSO

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration

POEMMA

Tilted configuration Reconstruction of events

Conclusions

(Plot carried out by Francesco Fenu)

 \implies go to the second level of trigger! \rightarrow TLEs (Traineeship at Royal Institute of Technology; Stockholm, Sweden).

TLEs with Mini-EUSO

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO mission

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

The Transient Luminous Events (TLEs) are short-lived phenomena that occur well above the altitudes of normal lightning and storm clouds. There are several types of TLEs. We'll consider 3 kinds of TLEs:

Blue Jet

Sprite

Elves

Image: A marked black

Typical duration: $\sim 1 \div 40\,\mathrm{ms.}$

Blue Jet

JEM-EUSO Program, Italy

Alessandro Liberatore

- Cosmic rays UHECRs and EECRs Extended Air Shower
- JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Example of one Blue Jet simulation result:

Coordinates: (x; y; h[km]) = (16; -20; 80)Direction: vertical $\rightarrow (0, 0, 1)$ Time step [s]: 0.0000025 = 1 GTU TLE step size [km]: 0.05 Jet speed [km/s]: 200 Absolute magnitude: +1 Jet angle: 15° Jet extension [km]: 2 Max Event Radius* [km]: 0.263

Event Duration^{**} [ms]: 10

ROYAL INSTITUTE OF TECHNOLOGY

<

* Max Event Radius = "Jet extension" $tan(("Jet angle"/2) \pi/180)$ ** Event Duration = "Jet extension" / "Jet speed"

Sprite

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Example of one Sprite simulation result:

Coordinates: (x; y; h[km]) = (16; -20; 80)Direction: vertical $\rightarrow (0, 0, 1)$ Time step [s]: 0.0000025 = 1 GTU TLE step size [km]: 0.02 Absolute magnitude: +1 TLE Radius [km]: 1 Event Duration [ms]: 10 Extension* [km]: 2

OYAL INSTITUTE

< □ > < 同 > <

Photons vs GTU

* Extension = 2 "TLE Radius"

Elves

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Example of one Elves simulation result:

Coordinates: (x; y; h[km]) = (16; -20; 80) Direction: vertical \rightarrow (0, 0, 1) Time step [s]: 0.0000025 = 1 GTU TLE step size [km]: 0.005 Absolute magnitude: -1 TLE Radius [km]: 25 Elves height [km]: 1 Event Duration [ms]: 10

ROYAL INSTITUTE OF TECHNOLOGY

< □ > < 同 > <

Second level of trigger

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missio

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Esaf give me a map of pixels GTU by GTU. But I need a sequence of BigGTU \rightarrow ROOT macros to sum 128 single GTU to create a sequence of "BigGTU".

・ロト ・ 一 ト ・ ヨト ・

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

For each GTU, I added a poissonian background (with an expected value = 1). I made a macro to put different files of "events + background" and "just background" in one bigger file. If we put these kinds of file in the L2 trigger algorithm file we obtain (changing "p" and "n" parameters in the best possible way):

< □ > < 同 >

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

EUSO-SPB2

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR: Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

We'll see some ESAF simulation results with these kind of informations:

Example of histograms and FS views $(1 \cdot 10^{19} \, {\rm eV})$

Vortical

configuration

Horizontal

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Alessandro Liberatore (UNITO)

Counts and GTUs with distance

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

< □ > < □ > < □</p>

Event duration vs distance from detector

JEM-EUSO Program, Italy

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Image: A marked black

Example of histograms and FS views $(1 \cdot 10^{19} \, {\rm eV})$

Alessandro Liberatore

Cosmic rays UHECRs and EECF Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Energy spectrum

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configuration:

POEMMA

Tilted configuration Reconstruction of events

Conclusions

From Auger spectrum (ICRC2017):

$$J(E) = J_0(\frac{E}{E_{ankle}})^{-\gamma_2} [1 + (\frac{E_{ankle}}{E_s})^{\Delta\gamma}] [1 + (\frac{E}{E_s})^{\Delta\gamma}]^{-1} \qquad (E > E_{ankle})$$

... where:
$$\gamma_2 = 2.53 \pm 0.02$$

 $\Delta \gamma = 2.5 \pm 0.1$
 $E_{ankle} = (5.08 \pm 0.06) \, \text{EeV}$
 $E_s = (39 \pm 2) \, \text{EeV}$

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Instantaneous aperture can be calculated in an approximate way. We have to consider the geometry:

EUSO-SPB2

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF JEM-EUSO miss

EUSO-SPB2

Vertical configuration

Horizontal configuration

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Five faces of entrances in to FOV:

Conclusions

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

・ロト ・ 一 ト ・ ヨ ト ・ ヨ

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

In case of 1 PDM:

$$2S_{Rw}\Omega_w = \frac{1}{2}\pilpha R^2 = 0.41R^2 \,[\mathrm{km}^2\mathrm{sr}]$$
 (for $lpha = 15^\circ$)

・ロト ・ 一 ト ・ ヨ ト ・ ヨ

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuratio

Horizontal configuration

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

 $S_F = \frac{1}{2} \alpha R^2$

Floor has solid acceptance for near-horizontal showers

Floor entrance to proposed to be neglected as "roof" solid acceptance overestimated

Image: A matrix and a matrix

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

$$S_D = \alpha^2 R^2$$

This time, it is proposed to omit the contribution from backdoor events

This contribution is irrelevant unless tiling angle large

Image: A marked black

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

• In case of 1 PDM:

$$S_R \Omega_R + 2 S_{Rw} \Omega_w = \pi \alpha R^2 = 0.82 R^2 \, [\mathrm{km}^2 \mathrm{sr}]$$
 (for $\alpha = 15^\circ$)

• In case of 2 PDMs horizontally aligned ("roof" must be two times larger):

 $2S_R\Omega_R + 2S_{Rw}\Omega_w = 1.5\pi\alpha R^2 = 1.23R^2 \,[\mathrm{km}^2\mathrm{sr}]$ (for $\alpha = 15^\circ$)

• Note:

the contribution from the "backdoor" $S_D\Omega_D$ in case of 1 PDM:

Image: A matrix and a matrix

$$< \frac{1}{2}\pi \alpha^2 R^2 = 0.1 R^2 \,[\text{km}^2 \text{sr}]$$
 for $\alpha = 15^\circ \;(\equiv 0.26 \,\text{rad})$
...so it is not comparable with $S_R \Omega_R \& S_{Rw} \Omega_w$.

POEMMA

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

- Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a "long-term project" selected by NASA in early 2017.
- It is a re-examination of the JEM-EUSO telescope but that, instead of being a single telescope on the International Space Station, consists of **two telescopes** in flight formation at an altitude of about 525 km above sea level.

<

Aperture A(E)(Altitude: 400 km)

JEM-EUSO Program, Italy

Alessandro Liberatore $A(E) = \int_{S_{sim}} dS \int_0^{2\pi} d\phi \int_0^{\frac{\pi}{2}} d\theta \cos \theta \cdot \sin \theta \cdot \epsilon$

Efficiency (Altitude: 400 km)

JEM-EUSO Program, Italy

Alessandro Liberatore

- Cosmic rays UHECRs and EE Extended Air Shower
- JEM-EUSO program ESAF
- JEM-EUSO missi

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

• • • • • • • • •

Exposure $\Psi(E)$ (Altitude: 400 km)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

< □ > < 同 > <

Exposure: JEM-EUSO (400 km) vs POEMMA (400 km)

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECR Extended Air Shower

JEM-EUSC program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Exposure: JEM-EUSO (400 km) vs POEMMA (525 km)

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missions

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Different spot size (JFKx2) -Exposure-

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

JEWI-E030 mission

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

< □ > < 同 > <

Different spot size (JFKx2) -Triggered spectrum-

JEM-EUSO Program, Italy

> Alessandro Liberatore

Cosmic rays UHECRs and EECRs Extended Air Shower

JEM-EUSO program ESAF

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Manual vs Automatic reconstruction

JEM-EUSO Program, Italy

Alessandro Liberatore

(Automatic)	Cherenkov method	Slant depth method
Events	300	300
Triggered	91	91
Reconstructed	38	74

(Manual)	Cherenkov method	Slant depth method
Events	300	300
Triggered	91	91
Reconstructed	34	66

Conclusions

・ロト ・ 一 ト ・ ヨ ト ・ ヨ

Manual vs Automatic reconstruction

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EEC Extended Air Shower

JEM-EUSO program ESAF

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuratio Reconstruction of events

Conclusions

Results from automatic reconstruction:

< □ > < 同 > <

Manual vs Automatic reconstruction

JEM-EUSO Program, Italy

Alessandro Liberatore

Cosmic rays UHECRs and EEC Extended Air Shower

JEM-EUSO program ESAF

JEM-EUSO missio

EUSO-SPB2

Vertical configuration

Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

Results from manual reconstruction:

Alessandro Liberatore (UNITO)

< 日 > < 同 >

Focal plane observation

Gtus 0-34

150

140

130

120

100 110 120 130

JEM-EUSO Program, Italy

- Alessandro Liberatore
- Cosmic rays UHECRs and EECRs Extended Air Shower
- JEM-EUSO program ESAF
- JEM-EUSO missions

EUSO-SPB2

- Vertical configuration
- Horizontal configurations

POEMMA

Tilted configuration Reconstruction of events

Conclusions

