Università degli studi di Torino

Corso di laurea in fisica

### Study on expected sky conditions during Super Pressure Balloon flights and observation of cosmic rays

Candidato: Andrea Veneziani

Relatori: Mario Edoardo Bertaina Roberto Cremonini

Correlatori: Francesco Fenu



# Outlook

- JEM-EUSO and EUSO-SPB;
- My work;
- Clouds climatological datasets\*;
- Expected sky conditions during balloon flights\*;
- Cosmic rays detection by EUSO-SPB;

\* stage presso Arpa Piemonte



# JEM-EUSO Program

Extreme Universe Space Observatory

>JEM-EUSO is a new type of highenergy astronomical observatory that uses the atmosphere as a `detector';

Fluorescence and Cherenkov light produced by air showers;

- Detection of Extreme Energy cosmic rays ( E > 5.10<sup>19</sup> eV);
- It will be housed on ISS.



Andrea Veneziani

### **EUSO-SPB**

- JEM-EUSO prototypes: to test JEM-EUSO instruments (16 countries engaged);
- EUSO-SPB is a scaling prototype of the JEM-EUSO experiment. It will measure showers using the fluorescence technique from the stratosphere. It will be placed on a super pressure balloon (Wanaka, March 2017).





### Influence of the clouds on cosmic rays showers





★ Fluorescence and Cherenkov light:

Clear sky;

- Low thick cloud;
- High thin cloud;

### My work

Cloud fraction along the super pressure balloon flights;

Cosmic rays simulations under different sky conditions;

Realistic estimate of dark sky conditions;

Estimation of EUSO-SPB performance;

# **Cloud classification**



• Low clouds: H < 2km ;

Middle clouds:
 2 km < H < 6 km ;</li>

• High clouds: H > 6 km ;

### New Zealand Operations: trajectories of Super Pressure Balloon Flights 2015-2016



\* I flight (March-April 2015) : 32d 5h 51m;

**# II flight** (May-July 2016) : 46d 20h 19m;

### New Zealand Operations: Super Pressure Balloon Flights 2015-2016

• The first balloon flight was a Nasa test flight;

• The second balloon flight was a NASA balloon which carried a science payload, the Compton Spectrometer and Imager (COSI).





(from SPB 2016)

Andrea Veneziani

# **Cloud Atlas 1/2**

#### CACOLO (Climatic Atlas of Clouds Over Land and Ocean);

- Ground data from 1954 to 1997;
- Land (SYNOP) and Ocean (SHIPS) observations;
- World coverage;
- 5 degree equal area grid;
- Monthly averages;



Number of Cloud Observations (hundreds)

# **Cloud Atlas 2/2**

- ISCCP (International Satellite Cloud Climatology Project);
- Geostationary satellites;
- Data from 1983 to 2009;
- ~ World coverage;
- 2.5 degree equal area grid;
- Monthly averages;



### Super Pressure Balloon Flight 2015



### Sky conditions along the first balloon path:

### CACOLO



### Sky conditions along the first balloon path:

### ISCCP



# Sky conditions along the first balloon path: ISCCP



### Sky conditions along the first balloon path: ISCCP

Highest occurrence for low clouds;

Higher occurrence of clear sky than high clouds;

| Cloud type | Average (%) | Variability (%) |
|------------|-------------|-----------------|
| low        | 37          | ± 5             |
| middle     | 25          | ± 4             |
| high       | 15          | ± 2             |
| clear sky  | 23          | ± 7             |

 $\mathbf{a}_{cs}$  clear sky fraction;

 $\equiv \alpha_{low}$  low clouds fraction ;

 $\mathbf{a}_{middl}$  middle clouds fraction ;

### Sky conditions along the second balloon path:

### CACOLO



### Sky conditions along the second balloon path:

### ISCCP



# Sky conditions along the second balloon path: ISCCP



# Sky conditions along the second balloon path: ISCCP

- Highest occurrence for clear sky conditions;
- Almost the same occurrence of low and middle clouds;

| Cloud type | Average (%) | Variability (%) |
|------------|-------------|-----------------|
| low        | 25          | ± 1             |
| middle     | 22          | ± 1             |
| high       | 13          | ± 2             |
| clear sky  | 40          | ± 2             |

- $\square \alpha_{cs}$  (Average of clear sky);
- $\equiv \alpha_{\text{low}}$  (Average of low clouds);
- $= \alpha_{middle}$ (Average of middle clouds);

### **Optical Depth**

A cloud with optical thickness lesser than 3 is a thin cloud: as this value increases, the cloud is thicker.

| OD  | variability |
|-----|-------------|
| 4,6 | ± 1,0       |

# Results

- As expected low clouds have highest occurrence (typical for sea weather);
- High clouds occurrence runs from 15% of the time;
- Probable underestimated percentage of low clouds from satellite observations;
- Probable underestimated percentage of high clouds from ground observations;
- There are missing data along the balloon trajectory from ground observations.

### **Cosmic Rays:**

### **Esaf (**EUSO SIMULATION AND ANALYSIS FRAMEWORK**)**

The ESAF package is a simulation software specifically designed for the performance assessment of space based cosmic ray observatories.

Cosmic ray event simulation;

Light propagation;

Detector simulation;

Trigger logic;

#### **Simulation Set-up**

**Cosmic rays energy** 

6.3·10<sup>17</sup> <= E <= 1.6·10<sup>19</sup> eV

#### **Simulations with ESAF:**

-detector parameters;-atmospheric conditions;-cosmic rays parameters;

### Atmospheric conditions:

-clear sky; -low clouds(2km); -middle clouds (5km);

Cloud optical depth = 5

Height of detector: -30 km; -38 km; Triggered events: -clear sky (low background); -low and middle-high clouds (high background); -uniform and non-uniform detector;

Andrea Veneziani

### **Uniform and Non-Uniform** detector



### Cosmic signals: Clear sky-low thick cloud(\*)



- Clear sky: longer event;
- Low thick cloud: detector sees the event's end on the top of the cloud;

### Light curves: Clear sky-low thick cloud(\*)



- Fluorescence light and Cherenkov for clear sky;
- Many Cherenkov events with low cloud;

### **Triggered spectra calculation**



Andrea Veneziani

### **Triggered spectra calculation**



### Spectrum of triggered events



Spectrum of triggered events in different sky conditions;

#### Highest peaks:

★ Clear sky: 2.82 · 10<sup>18</sup> eV
 ★ Cloud (2 km): 2.24 · 10<sup>18</sup> eV;

Andrea Veneziani

30 / 38

### Triggered Events: Uniform detector

#### Detector height: 38 km;

 $\geq$  10000 simulated events;

Number of triggered events;

▶118 hours: trial period for a moon phase (March-April 2017);

| detector height  |                |                 |                 |
|------------------|----------------|-----------------|-----------------|
| 38 km            | Low background | High background | High background |
| uniform detector | clear sky      | low (2km)       | Middle (5km)    |
| 118 h            | 5,2 ± 0,5      | 10,0 ± 0,6      | 7,3 ± 0,5       |

➤Weighted sum;

| detector height  | uniform detector |
|------------------|------------------|
| 38 km            |                  |
| 118 h            | weighted sum     |
| l flight (2015)  | 6,7 ± 0,8        |
| ll flight (2016) | 6,2 ± 1,3        |

### **Triggered Events:** Non-Uniform detector

Detector height: 38 km;

 $\geq$  10000 simulated events;

Number of triggered events;

▶118 hours: trial period for a moon phase (March-April 2017);

| Non-uniform detector |                |                 |                 |
|----------------------|----------------|-----------------|-----------------|
| 118 h                | Low background | High background | High background |
| detector height      | clear sky      | low (2km)       | Middle (5km)    |
| 38 km                | 3,8 ± 0,5      | 4,2 ± 0,5       | 3,2 ± 0,4       |

#### • Weighted sum

| Non-uniform detector | weighted sum    | weighted sum     |
|----------------------|-----------------|------------------|
| 118 h                | l flight (2015) | ll flight (2016) |
| detector height      |                 |                  |
| 38 km                | 3,2 ± 0,7       | 3,3 ± 0,7        |

### **Triggered Events:** Non-Uniform detector

Detector height: 38 km-30km;

➤10000 simulated events;

Number of triggered events;

▶118 hours: trial period for a moon phase (March-April 2017);

| Non-uniform detector |                |                 |                 |
|----------------------|----------------|-----------------|-----------------|
| 118 h                | Low background | High background | High background |
| detector height      | clear sky      | low (2km)       | Middle (5km)    |
| 38 km                | 3,8 ± 0,5      | 4,2 ± 0,5       | 3,2 ± 0,4       |
| 30 km                | 8,0 ± 0,6      | 6,4 ± 0,6       | 4,9 ± 0,5       |

#### Weighted sum

| Non-uniform detector | weighted sum    | weighted sum     |
|----------------------|-----------------|------------------|
| 118 h                | l flight (2015) | ll flight (2016) |
| detector height      |                 |                  |
| 38 km                | 3,2 ± 0,7       | 3,3 ± 0,7        |
| 30 km                | 5,4 ± 0,8       | 5,9 ± 1,3        |

### **February moon phase**

| detector height      | Non-uniform detector |
|----------------------|----------------------|
| 38 km                |                      |
| 90 h (february 2017) | weighted sum         |
| l flight (2015)      | 2,4 ± 0,5            |
| ll flight (2016)     | 2,5 ± 0,5            |

| detector height      | Non-uniform detector |
|----------------------|----------------------|
| 30 km                |                      |
| 90 h (february 2017) | weighted sum         |
| l flight (2015)      | 4,1 ± 0,6            |
| ll flight (2016)     | 4,5 ± 1,0            |

EUSO-SPB will be on the starting position in Wanaka in February 2017;

90 hours: it's the time of a moon phase in February 2017;

 comparison between the number of triggered events with the detector at two different heights;

when the detector is at 30 km there are more lower energy events;

#### June moon phase

| detector height   | Non-uniform detector |
|-------------------|----------------------|
| 38 km             |                      |
| 154 h (june 2017) | weighted sum         |
| l flight (2015)   | 4,2 ± 0,9            |
| ll flight (2016)  | 4,3 ± 0,9            |

| detector height   | Non-uniform detector |
|-------------------|----------------------|
| 30 km             |                      |
| 154 h (june 2017) | weighted sum         |
| l flight (2015)   | 7,0 ± 1,0            |
| ll flight (2016)  | 7,7 ± 1,7            |

154 hours: it's the time of a moon phase in June 2017;

- comparison between the number of triggered events with the detector at two different heights;
- when the detector is at 30 km there are more lower energy events;

### Triggered events: dark hours during the super pressure balloons 2015-2016

| l flight (2015)          |              | detector height | detector height |
|--------------------------|--------------|-----------------|-----------------|
| Non-uniform detector     |              | 38 km           | 30 km           |
| 138 h (March-April 2015) | weighted sum | 3,7 ± 0,8       | 6,3 ± 0,9       |

- **138 hours:** time without sunlight and moonlight during the balloon flight 2015;
- comparison between the triggered events with the detector at two different heights;

| ll flight (2016)      |              | detector height | detector height |
|-----------------------|--------------|-----------------|-----------------|
| Non-uniform detector  |              | 38 km           | 30 km           |
| 211 h (May-July 2016) | weighted sum | 5,9 ± 1,3       | 10,6 ± 2,3      |

- 211 hours: time without sunlight and moonlight during the balloon flight 2016;
  comparison between the triggered events with the detector at two different heights;
- the second balloon flought during the winter: more dark hours than the first balloon;

### Conclusions

Study of atmospheric conditions along two super pressure balloon flights;

- Average of cloud amount during the paths;
- Thick clouds (from the study of optical depth);

Simulations of cosmic rays with ESAF, changing detector and atmospheric parameters;

- Estimate of triggered events, changing detector and atmospheric parameters;
- N (30km) > N (38km);
- ♥ N (June) > N (February);
- N (I flight) ~ 6 ;
- ♦ N (II flight) ~ 10;

# Grazie per l'attenzione!

#### References

- CACOLO: http://www.atmos.washington.edu/CloudMap/WebO/index.html ;
- ISCCP: http://isccp.giss.nasa.gov/;
- http://jemeuso.riken.jp/en/;
- http://jem-euso.roma2.infn.it/?page\_id=1055;
- Simone Cambursano's thesis;
- http://www.free-online-private-pilot-ground-school.com/;