
COSMIC REVELATION
SHOWCASE

Candidato: Daniele D’Ago

Relatore: Mario Edoardo Bertaina

Università degli studi di Torino

Sessione di laurea ottobre 2016

This project is the
experience I did with
Erasmus+Traineeship at
KIT, Karlshrue in June and
July 2016 and in Stuttgart
in September 2016.

3

Cosmic revelation is an art project from Tim Otto Roth
which involves detection of cosmic showers.

COSMIC REVELATION

It aims to interest people in physics.
4

Cosmic rays are high energy
nuclei of various chemical
elements produced and
accelerated in astrophysical
environments.

Flux of cosmic rays on earth
strongly depends on energy.

COSMIC RAYS

5

Cosmic rays interact with earth atmosphere, giving birth to
«showers» of particles.

COSMIC RAYS

Arrays of detector allow us to reconstruct important
parameters, such as the direction of the primary particle.

6

Kascade was an extensive air shower array to study the cosmic
ray primary composition and the hadronic interactions in energy
range 1014 ÷ 8 ∙ 1016 𝑒𝑉. It was placed at KIT – CN in Karlsruhe,
Germany. The array consisted of 252 detector stations arranged
in a total surface of 40 000 𝑚2 (a square with 200 𝑚 side).

KASCADE

7

Detectors from KASCADE experiment have been placed on
the roof of Sparkasse Versicherung building in Stuttgart. As a
cosmic shower hits the roof, lights in the staircases flash and
a skybeamer point in the direction of the shower.

COSMIC REVELATION

8

WHY THE SHOWCASE?

COSMIC REVELATION
does not run during the

day

Explanation of the
project

SHOWCASE

?

9

SHOWCASE SCHEMATIC?

10

DETECTOR - SCHEMATIC

The detectors used are part of CosMo experiment kit,
developed at DESY.

We are not able to access the inner parts of the box.

The signal we get is not coming straight from the SiPM, but it
is filtered: we have to deal with it!

11

DAQ CARD

The DAQ card used is the
one provided by the
CosMO experiment kit.

SIGNAL INPUT is
managed through four
analog inputs (only three
used).

12

DAQ CARD

SETTINGS INPUT managed through the USB port. Allows the
user to manually set:

• THRESHOLDS for the three channels
• NUMBER of triggered channels
• WIDTH of coincidence gate

SIGNAL OUTPUT managed through the USB port. Required
information need to be extracted by the interface
programme.

13

RASPBERRY PI

A Raspberry PI works as the main
controller of the showcase.

• Communication with DAQ card
(input and output)

• LEDs control

• Arduino control

During testing and building phase directly controlled by the user.

In the final setting in autoplay mode.

14

RASPBERRY PI - code

Communication with the serial port is managed using the
python library «serial».

• Read

• Write

Communication with LEDs and Arduino are managed by
the GPIO pins.

15

RASPBERRY PI – DAQ inputs

User can directly handle some parameters by sending
strings to the DAQ (write function) :

• Thresholds

• Coincidence gate width

• Number of triggered channels

16

RASPBERRY PI – setting time

Since the DAQ board timer overflows at ~170s the raspberry

needs to count the additional cycles.

During running phase in the final setup, the time of capture

needs to be set to «infinity». This is provided by a infinite for-

loop.

17

RASPBERRY PI – DAQ outputs

The DAQ output is read by the raspberry Pi through the USB
port with the function «readline».

The function «readline» is called during the for loop once every
12 ms (time needed for executing instructions in loop).

[# events in ch 0, # events in ch 1, # events in

ch 2, events in ch 3, # coincidences, time]

18

DAQ CARD – THRESHOLDS

Thresholds had been chosen in order to get the
expected coincidence rate and to get the same rate in
each detector.

y = 70,053e-0,01x

0,0

10,0

20,0

30,0

40,0

50,0

60,0

0 50 100 150 200 250 300

ra
te

 (
H

z)

threshold (mV)

box 19

y = 77,573e-0,009x

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

0 50 100 150 200 250 300

ra
te

 (
H

z)

threshold (mV)

box 20

19

DAQ CARD – THRESHOLDS

According to data fit,
thresholds selected
are:

99 mV box 19
121 mV box 20
87 mV box 21

y = 64,37e-0,01x

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

0 50 100 150 200 250 300

ra
te

 (
H

z)

threshold (mV)

box 21

These values provide a rate r ≈ 20 Hz

20

DAQ CARD – THRESHOLDS

Expected flux for muons is ϕ𝑒 ≈ 200 Hz/m²

Since each scintillator has a surface S = 0.04 m², we expect to
have a rate 𝑟𝑒 ≈ 8 Hz

The rate selected according to fit is slightly higher. Anyway, this
is not a problem for measuring coincidences. We can estimate
the rate of accidental coincidence with selected single rates.

𝑟𝑎𝑐𝑐 = (2 Δt 𝑟1𝑟2)(Δt 𝑟3) = 1.6 10−9 Hz

Which is infinitesimal compared to measured coincidence rate
𝑟𝑐 = 0.02 Hz

21

DETECTOR - EFFICIENCY

To evaluate the efficiency of the detectors we measure rates of
double and triple coincidence.

22

PROBLEM: we can not measure double and triple coincidences
during the same data capture.

SOLUTION: 2h data capture time double, 2h triple.

DETECTOR - EFFICIENCY

𝑟𝑑 = 3.84 ± 0.02 Hz
𝑟𝑡 = 3.67 ± 0.02 Hz

ε20 = 0.956 ± 0.001

𝑟𝑑 = 3.80 ± 0.02 Hz
𝑟𝑡 = 3.68 ± 0.02 Hz

ε19 = 0.969 ± 0.001

𝑟𝑑 = 3.86 ± 0.02 Hz
𝑟𝑡 = 3.73 ± 0.02 Hz

ε21 = 0.967 ± 0.001

23

DETECTOR - EFFICIENCY

We can give an esteem of the efficiency as the mean
efficiency.

ε𝑡𝑜𝑡 = 0.964 ± 0.007

24

RASPBERRY PI – outputs

For every new DAQ outputlist, Raspberry checks if any of
the numbers had changed.

If one of the numbers had changed, no matter what is the
new value, Raspberry sets to HIGH the corresponding pin
for a 10 ms time, then it sets it back to LOW.

25

RASPBERRY PI - LEDs

LEDs are connected to the pins referred to the single
detectors.

26

RASPBERRY PI - code

27

import serial

import time

import sys

from gpiozero import LED

class DAQ():

def __init__(self, device):

self.port = serial.Serial(port=device, baudrate=115200, bytesize=8,

parity='N', stopbits=1, timeout=0.5, xonxoff=True)

time.sleep(0.5)

self.write("ST 0", 0.1)

self.write("VE 0", 0.1)

def read(self):

output = self.port.readline()

return output[:-2]

def write(self, message, wait=0):

self.port.write(str(message)+"\r")

time.sleep(wait)

def set_thresholds(self, t1=200, t2=200, t3=200):

print"\n\n"

for channel, threshold in zip(range(3), [t1,t2,t3]):

print "Threshold for channel %s: %smV" % (channel, threshold)

self.write("TL %s %s" % (channel, threshold))

def set_trigger(self, trigger=3):

self.write("WC 00 27")

if trigger == 3:

self.write("WC 00 27")

elif trigger == 2:

self.write("WC 00 1F")

else:

print "Trigger nust be 2 or 3"

sys.exit(0)

def set_coincidencegate(self):

self.write("CD",0.1)

self.write("WC 01 00",0.1)

self.write("WC 02 FF",0.1)

self.write("WC 03 FF",0.1)

self.write("CE",0.1) # Set coincidence window to 01*24ns

self.write ("WT 01 00")

self.write ("WT 02 32")

28

def measure(self, runtime):

print "\nStart measurement ... (%ss measurement time)" % runtime

self.write("CD", 0.1)

self.write("RB", 0.1) # Reset counter

start, counter, t, cycle, = 0, 0, 0, 0

outputlist = [0,0,0,0,0,0]

ledlist = [LED(2),LED(3),LED(17)]

coincled = LED(18)

coincflash = LED(15)

a,b = 1,0

if runtime == 0:

a = 0

while (t<runtime or a==b):

self.write("DS")

output = self.read()

while not (output.startswith("DS") and len(output) > 5):

time.sleep(0.01)

output = self.read()

else:

if output.startswith("DS") and len(output) > 5:

f_outputlist = outputlist

outputlist = [int(f[3:],16) for f in output.split(" ") if len(f)>3]

l_outputlist = outputlist

measuret = t

internal_count = outputlist[-1]

if internal_count<counter:

cycle +=1

l_outputlist = f_outputlist

if start == 0:

start = internal_count - 1

counter = internal_count

total_count = internal_count - start + cycle * 4294967296

for i in range(0,3):

if l_outputlist [i] - f_outputlist[i] != 0:

ledlist[i].on()

time.sleep(0.01)

ledlist[i].off()

if l_outputlist [4] - f_outputlist[4] != 0:

coincled.on()

time.sleep(0.01)

coincled.off()

t = total_count * 0.000000040

self.write("CE", 0.1)

return measuret, f_outputlist

ARDUINO

Arduino is used for
controlling strobe light
via DMX shield.

It is connected to Raspberry «coincidence» pin.

29

ARDUINO - code

Arduino code is basically a for-loop that switches on
strobe light if input pin (driven by Raspberry) is
HIGH.

It has also been provided a control structure that
avoids to trigger twice the same HIGH input.

30

31

32

33

GRAZIE
PER

L’ATTENZIONE

