

Cosmic ray science with EUSO-SPB1

December, 21st Alisson Michel

Supervised by: Prof. Mario Bertaina

Outline

- Cosmic rays & Atmosphere
 - Extensive Air Showers
 - Fluorescence light
 - Cherenkov light
- The Extreme Universe Space
 Observatory
- The EUSO's Super Pressure Balloon
- Tools & Theory
 - ESAF
 - Trigger
 - Aperture
- Simulations & Results
 - EAS study
 - Aperture study
 - SPB1 aperture
- Cloud condition
- Conclusions

Cosmic Rays & Atmosphere

- Extensive Air Showers
- Fluorescence light
- Cherenkov light

Extensive Air Showers (EAS)

- **Primary Cosmic Ray** (CR) : high energy particle produced in an astrophysical environment
- **Collision** with atmosphere nuclei
- Cascade of secondary particles
- In each collision :
 - Kinetic energy is converted into mass • energy + kinetic energy
- Chain reaction is finite :
 - Creation process is stopped
 - Shower maximun X_{max}

Fluorescence

- Fluorescence light production:
 - Particles (mostly e⁻) moving through the atmosphere excite metastable energy levels in molecules
 - * Ionizing excitation of mostly Nitrogen molecules
 - Spontaneous de-excitation
 - Isotropic emission of fluorescence light along the EAS

Cherenkov

- Numerous secondaries have velocities higher than the speed of light $\left(v > \frac{c}{n}\right)$
- Cherenkov emission :
 - Photons are beamed in a cone
 (~1,3°) along the trajectory
 - Scattering by the molecular and aerosol content of the atmosphere
 - Reflexion when particles reach land, sea or clouds

Light development in an EAS

The Extreme Universe Space Observatory

The Extreme Universe Space Observatory (EUSO)

• 16 Countries, 91 Institutions, more than 300 researchers

- EUSO's aim : JEM-EUSO **Space telescope** on the ISS **J**apanese **E**xperiment **M**odule
- Image the Nitrogen UV Fluorescence and Cherenkov track from above
- Aim to efficiently detect the highest CRs
- JEM-EUSO and its pathfinders:
 - EUSO-TA (2013-), EUSO-Balloon (2014), TUS (2014),
 EUSO-SPB1 (2017)
 - Mini-EUSO (2018), SPB2 (2021), K-EUSO (2023), POEMMA (2025)

Ultra-High Energy Cosmic Rays (UHECRs)

The EUSO-SPB1

The EUSO on a Super Pressure Balloon (SPB1)

- The EUSO-SPB1
 - 8 countries, 50 researchers
- Objectives
 - Establish techniques and methods for large scale UHECRs space observatory (JEM-EUSO)
 - Measure the terrestrial UV background light
 - Make the first observation of UHECRs
 - Launch : April, 24th 2017 at 23:51 UTC
- The super pressure balloon :
 - able to fly at 33km high up to 100 days
 - 1 football stadium carrying 2 cars
 - Field of view ~11°
- UV camera looking down at night

The EUSO on a Super Pressure Balloon (SPB1)

- The Photo-Detection Module (PDM)
 - 3x3 Elementary Cells (ECs)
 - 1 EC = 2x2 Multi-Anode Photo-Multipliers Tubes (MAPMTs)
 - 1 MAPMT = 8x8 pixels
 - * **2 304 pixels** (JEM-EUSO : 137 PDMs = 315 648 pixels)

→ 1 UHECR particle / 10 days

- Time integration : 2,5 μ s = 1 Gate Time Unit (GTU)
- Observational area : 40 km²

MAPMT

Tools & Theory

- ESAF
- Trigger
- Aperture

ESAF

- EUSO Simulation and Analysis Framework
- **Simu** executable : Simulation of the entire physical process (from shower to telemetry)
- Air shower
- Atmosphere
- · Optics
- PMT, Electronics
- Trigger

Trigger

- Trigger logic needed to save only significant EAS events
- Exploit peculiarities of the signal morphology with respect to the background
- Look for high concentration of photo-electron counts
 - in a limited region of the focal surface
 - within a certain time window
- MAPMT Threshold based on the average pixel count
- Massive screening to recognize an EAS signal

Light track produced by an EAS on the detector

oerture

• Trigger efficiency - Probability to trigger an event :

$$\epsilon = \frac{N_{\rm trig}}{N_{\rm sim}}$$

Geometrical aperture : • Simulated region $A = \epsilon \times k \times \Omega_0 \times S_{\text{sim}}$ on ground due to simulation Solid angle were selection events are injected **Exposure** : • $E = \int \mathrm{d}t \; A \times \lambda_i \longleftarrow \operatorname{Working\ status\ of\ the\ PDM}_{\operatorname{Clouds\ Steady\ or\ transient\ lights\ sources}}$

Simulations & Results

- EAS study
- Aperture study
- SPB1 aperture

Simulations & Results

• EAS study

- Aperture study
- SPB1 aperture

Simulations in ESAF

- Parameters :
 - * Cosmic Ray energy (E)
 - * EAS zenith angle (θ)
 - x, y of the EAS « impact »
 - * Balloon Altitude (H)
 - * Clouds (optical depth and altitude)

• Energy

- ✤ More the CR is energetic
- More photons are produced in the shower

Energy

- ✤ More the CR is energetic
- More photons are produced in the shower

• Zenith angle (θ)

More inclined is the shower, brighter is the signal

Energy

More the CR is energetic

More photons are produced in the shower

• Zenith angle (θ)

More inclined is the shower, brighter is the signal

• Altitude of the detector (H)

Higher is the detector, Less photons are collected

But wider is the field of view

Energy

More the CR is energetic

More photons are produced in the shower

• Zenith angle (θ)

More inclined is the shower, brighter is the signal

• Altitude of the detector (H)

Higher is the detector, Less photons are collected

But wider is the field of view

Clouds : Optical Depth (OD)

- Clouds induce greater Cherenkov emission
- Thicker are the clouds, brighter is the Cherenkov light

• Energy

✤ More the CR is energetic

More photons are produced in the shower

• Zenith angle (θ)

More inclined is the shower, brighter is the signal

• Altitude of the detector (H)

Higher is the detector, Less photons are collected

But wider is the field of view

- Clouds : Optical Depth (OD), altitude (h)

- Clouds induce greater Cherenkov reflexion
- Thicker are the clouds, brighter is the Cherenkov light
- Higher are the clouds, fainter is the light detected

Simulations & Results

- EAS study
- Aperture study
- SPB1 aperture

Aperture Study - Energy

- Energy
 - Efficiency maximum : ϵ_{max}
 - Energy threshold : E_{thr}

$$\delta \epsilon = \sqrt{\frac{\epsilon \times (1 - \epsilon)}{N}}$$

- Number of events
 - Better accuracy

$$(A = \epsilon \times \underbrace{k \times \Omega_0 \times S_{\text{sim}}}_{\text{constant}}$$

Aperture Study - Altitude

• Altitude of the balloon (H)

- Linear evolution with the altitude:
 - * Energy threshold ($E_{\rm thr}$)
 - * Efficiency maximum (ϵ_{max})

Aperture Study - Primary particle

- CR particle : Proton or Iron ?
 - No difference

Aperture Study - Number of working ECs

- Number of working Elementary Cells (ECs)
 - ✤ 9 ECs 2 possible configurations : ON/OFF
 - * Total number of PDM configurations : $2^9 = 512$
 - Compute efficiency for each configuration
 - Efficiency average for each set of same number of « OFF » ECs

• Efficiency proportional to the number of working EC :

Aperture Study - Non uniform PDM efficiency

• Different pixel efficiency in the PDM :

- Effect of the real SPB1 PDM:
 - The maximal aperture is reduced : 84%
 The energy threshold is 1,45 times greater

Aperture Study - Background level

• Background level :

average number of counts on PDM pixels

During the SPB1 flight :
 * Average : 0,85 counts / μs / pixel

• $A_{\max} \downarrow$ and $E_{thr} \uparrow \propto$ background level :

Simulations & Results

- EAS study
- Aperture study
- SPB1 aperture

- Simulated in flight conditions at **12 UTC** for the **8 first days**
- Altitude of the balloon + average background level
 + Non-uniform efficiency of the SPB1 PDM

- Simulated in flight conditions at 12 UTC for the 8 first days
- Altitude of the balloon + average background level
 + Non-uniform efficiency of the SPB1 PDM efficiency

- Simulated in flight conditions at 12 UTC for the 8 first days
- Altitude of the balloon + average background level
 + Non-uniform efficiency of the SPB1 PDM efficiency

• Average of the working PDM status on the whole flight

- Simulated in flight conditions at 12 UTC for the 8 first days
- Altitude of the balloon + average background level
 + Non-uniform efficiency of the SPB1 PDM efficiency

- Simulated in flight conditions at 12 UTC for the 8 first days
- Altitude of the balloon + average background level
 + Non-uniform efficiency of the SPB1 PDM efficiency
- Average of the daily PDM status (finer)

Clouds

Cloud MODIS satellite

- Database : NASA Earth Data Search
- Terra NASA's Satellite (700km)
 MODIS payload
- Date, 12 UTC , Location of SPB1
- Cloud fraction :
 - 1 : Total cloud coverage
 - 0: No clouds

SPB1 cloud coverage

SPB1 cloud coverage

- Cloud fraction average on a $\pm 1^{\circ}$ area : Cloudy !
- Significant parameters unknown :
 - Cloud top altitude or optical depth

Conclusions

Conclusions

• Aperture of EUSO-SPB1

- Studied and quantified the aperture dependency on :
 - The energy of the primary cosmic ray
 - The altitude of the balloon and background level
 - The status and real efficiency of the PDM
- Estimated of the aperture for each day at 12 UTC
- What can be done :
 - More precise estimation of the aperture by finer parameters
 - Repeat for times in the flight to get the expected number of events
 - Look for more significant data on clouds

Grazie mille a tutti per questa bella esperienza

