TEST OF THE ALGORITHM EMPLOYED IN THE 1ST TRIGGER LEVEL OF THE JEM-EUSO EXPERIMENT

ANIKE N. BOWAIRE IMAG2E 2013 UFR UNIVERSITÉ DE NICE FRANCE

The JEM-EUSO experiment

JEM-EUSO (Extreme Universe Space Observatory on Japanese Experiment Module) is a new type observatory to detect extreme-energy cosmic rays (EECR) and neutrinos as its main objective of exploration.

- To measure the cosmic rays energy spectrum $(10^{19.5} eV < E < 10^{21} eV)$
 - Orbit at the altitude ~400 km 🛛 🔴
 - Super-wide FoV $(\pm 30^{\circ})$ O
 - Viewing at night atmosphere in > $1.4x10^5 km^2$ area
 - One orbit is every 90 minutes 🛛 🥥

The JEM-EUSO observe cosmic rays

Air Shower Photo Detector Module (3,3) X-Time GTU 80 00 GTU Y-Time Light Curve (Photon) STU GTU Y **EUSO Focal Surface**

THE GTU COLLECTED FOR AN EVENT OF 1. 10²⁰ eV

$$N_{C2} = N_{C1} - n_{pix}^{thr} + 1$$

$$N_{C2} = N_{C1} - n_{pix}^{thr} + 1$$

List of threshold

No.	Average Background	n ^{thr}	N	n_{\star}^{thr}
	(photoelectron/pixel/GTU)	(photoelectron)	(GTU)	(photoelectron)
1.	0.1	0	5	18
18.	1.8	2	5	53
19.	1.9	45		
20.	2.0	40		
21.	2.1	35		
22.	2.2	30		
23.	2.3	25	전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	
		20		
63.	6.3			
		5		
	Map of uniform PI	DM 5 10	15 20 25 3	0 35 40 45

Experimental Setup

Time profile of the amount of light by telescope when pass an island

Time profile of the amount of light by telescope when EAS happen

CONCLUSION

- The threshold should be increase (~30%) compared to pure Poissonian fluctuation on a homogeneous layer of PMT
 - Cosmic rays events were succesfully triggered 🔎
- It is important in future controle some transient in which the number of trigger becomes very high such as island type measurement

Backup slide

Preparation of the data format for VHDL code implemented in the FPGA

c13c12c11c10c9c8	ଟ ଟ ଣ ଥ ମ ପ	0	c8 c9 c10 c11 c12 c13	17 16 15 14 13 12 11 10
1 A 🛱	2 8 4		P A	B
0 6,0 5,0 4,0 3,0 2,0 1,0 0,0 1 7 6 5 4 3 2 1	7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0 8 7 6 5 4 3 2 1	u0 Du	1 2 3 4 5 6 7 8	57 49 41 33 25 17 9 1
6,1 5,1 4,1 3,1 2,1 1,1 0,1 15 14 13 12 11 10 9	7,1 6,1 5,1 4,1 3,1 2,1 1,1 0,1 16 15 14 13 12 11 10 5	n n	9 10 11 12 13 14 15 16	58 50 42 34 26 18 10 2
62 52 42 32 22 12 02 23 22 21 20 19 18 17	7,2 6,2 5,2 4,2 3,2 2,2 1,2 0,2 24 23 22 21 20 19 18 17	12 12	17 18 19 20 21 22 23 24	58 51 43 35 27 19 11 3
6,3 5,3 4,3 3,3 2,3 1,3 0,3 31 30 29 28 27 26 25	7,3 6,3 5,3 4,3 3,3 2,3 1,3 0,3 32 31 30 29 28 27 26 25	B B	25 26 27 28 29 30 31 32	60 52 44 36 28 20 12 4
6,4 5,4 4,4 3,4 2,4 1,4 0,4 39 38 37 36 35 34 33	7,4 6,4 5,4 4,4 3,4 2,4 1,4 0,4		33 34 35 36 37 38 39 40	61 53 45 37 28 21 13 5
6,5 5,5 4,5 3,5 2,5 1,5 0,5 47 46 46 44 43 42 41	7,5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 48 47 46 45 44 43 42 41	15 15	41 42 43 44 45 46 47 48	62 54 46 38 30 22 14 6
6,6 5,6 4,6 3,6 2,6 1,6 0,6 55 54 53 52 51 50 49	7,6 6,6 5,6 4,6 3,6 2,6 1,6 0,6 56 55 54 53 52 51 50 48	16 16	49 50 51 52 53 54 55 56	63 95 47 39 31 23 15 7
6,7 5,7 4,7 3,7 2,7 1,7 0,7 63 62 61 60 59 58 57	7,7 6,7 5,7 4,7 3,7 2,7 1,7 0,7 64 63 62 61 60 59 58 57	17 17	57 58 59 60 61 62 63 64	64 56 48 40 32 24 16 8
a	a			
6,0 5,0 4,0 3,0 2,0 1,0 0,0 7 6 5 4 3 2 1	7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0 8 7 6 5 4 3 2 1	18	8 16 24 32 40 48 56 64	64 63 62 61 60 59 58 57
6,1 5,1 4,1 3,1 2,1 1,1 0,1 15 14 13 12 11 10 9	7,1 6,1 5,1 4,1 3,1 2,1 1,1 0,1 16 15 14 13 12 11 10 9	19	7 15 23 31 39 47 55 63	56 55 54 53 52 51 50 49
62 52 42 32 22 12 02 23 22 21 20 19 18 17	7,2 6,2 5,2 4,2 3,2 2,2 1,2 0,2 24 23 22 21 20 19 18 17	r10 c13	6 14 22 30 38 46 54 62	48 47 46 45 44 43 42 41
6,3 5,3 4,3 3,3 2,3 1,3 0,3 31 30 29 28 27 26 25	7,3 6,3 5,3 4,3 3,3 2,3 1,3 0,3 32 31 30 29 28 27 26 25	r11 c12	5 13 21 29 37 45 53 61	40 39 38 37 36 35 34 33
6,4 5,4 4,4 3,4 2,4 1,4 0,4 39 38 37 36 35 34 33	7,4 6,4 5,4 4,4 3,4 2,4 1,4 0,4 40 39 38 37 36 35 34 33	r12 c11	4 12 20 28 36 44 52 60	32 31 30 29 28 27 26 25
6,5 5,5 4,5 3,5 2,5 1,5 0,5 47 46 45 44 43 42 41	7,5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 48 47 46 45 44 43 42 41	r13 c10	3 11 19 27 35 43 51 58	24 23 22 21 20 19 18 17
6,6 5,6 4,6 3,6 2,6 1,6 0,6 95 54 53 52 51 50 49	7,6 6,6 5,6 4,6 3,6 2,6 1,6 0,6 56 55 54 53 52 51 50 49	C 9	2 10 18 26 34 42 50 58	16 15 14 13 12 11 10 9
6,7 5,7 4,7 3,7 2,7 1,7 0,7 63 62 61 60 58 58 57	7,7 6,7 5,7 4,7 3,7 2,7 1,7 0,7 64 63 62 61 60 59 58 57	C8 8	1 9 17 25 33 41 49 57	8 7 6 5 4 3 2 1
3 _D	4 c		D	c e
			5h Ch Hh 0h 9 8	16 6 4 3 0 d d