

Università degli Studi di Torino Facoltà di Fisica Corso di Laurea in Fisica

Tesi di Laurea

INFLUENZA DEL PROFILO DI DENSITÀ ATMOSFERICA SULLA DETERMINAZIONE DEI PARAMETRI FISICI DI METEORE BRILLANTI

Relatore: Prof. Mario Edoardo Bertaina

7 Aprile 2022

Correlatori: Dott. Daniele Gardiol Dott. Dario Barghini

Candidato: Martina Chiarella

Anno Accademico 2020/2021

Introduzione

Obiettivi della tesi di Stage

- Influenza della densità atmosferica sulle grandezze che descrivono le meteore;
- Studio del modello dell'atmosfera in diverse condizioni:
 - 1. fissando i parametri temporali;
 - 2. fissando i parametri spaziali;
- Studio della densità atmosferica giornaliera;
- Studio della densità atmosferica annuale;
- Studio della densità atmosferica giornaliera in tutta l'Italia.

PRISMA (2017)

- Prima Rete Italiana di Sorveglianza delle Meteore e dell'Atmosfera;
- Lo studio delle meteore è utile per conoscere la **composizione** degli asteroidi;
- Attraverso tecniche astrometriche e fotometriche si risale alla traiettoria dei bolidi;
- Determinata la traiettoria si passa allo studio del volo buio e all'eventuale ricerca di frammenti della meteora.

Traiettoria del bolide e volo buio

• Modello dinamico della meteora:

$$\frac{dv}{dt} = -\frac{\Gamma \rho_a v^2}{D_{\infty}} e^{-\frac{\sigma}{6} \left(v^2 - v_{\infty}^2\right)}$$

$$\frac{d\rho_a}{dt} = \frac{\rho_a v \cos z}{H}$$

IT20170530 - Velocity vs time

Traiettoria del bolide e volo buio

Modello dinamico della meteora: $\rho_{a} = e^{-y}$ $y = \ln \alpha + \beta - \ln \left(\frac{\int_{-\infty}^{\beta} \frac{e^{z} dz}{z} - \int_{-\infty}^{\beta v^{2}} \frac{e^{z} dz}{z}}{2} \right)$ • $\frac{d\rho_a}{d\rho_a} = \frac{\rho_a v \cos z}{\rho_a v \cos z}$ $\alpha = \frac{1}{2}c_d \frac{\rho_0 h_0 S_e}{M_e \sin \gamma}$ dt $\beta = (1 - \mu) \frac{c_h V^2_e}{2c_d H^*}$

Modello dell'atmosfera NRLMSIS 2.0

- Modello empirico che descrive le caratteristiche dell'atmosfera attraverso una formulazione parametrica analitica;
- Equazione che descrive il profilo atmosferico: $\rho(h) = \rho_0 e^{-\frac{h}{h_0}}$
- Utilizza come input longitudine, latitudine, giorno dell'anno e gli indici dell'attività geomagnetica e del flusso solare;
- Il fit del modello ritorna i valori di ho_0 , $h_0 \in
 ho$ fissando le **condizioni al contorno**.

Indice Kp

- Attività geomagnetica: variazione naturale nell'intensità del campo magnetico terrestre;
- Indice Kp: indice dell'attività geomagnetica, basato su misurazioni di 3 ore a magnetometri terresti dislocati in vari punti del globo terrestre, varia da 0 a 9;
- spaceweather.gfz-potsdam.de

Indice F10.7

- Flusso solare: fotoni gamma generati da una reazione a fusione nucleare all'interno Sole;
- Indice F10.7: misura dell'emissione totale delle sorgenti presenti sul disco solare alla λ = 10.7 cm;
- celestrak.com/SpaceData/

 Annuale: studio della densità e dell'altezza per l'anno 2020 alla latitudine di 45º N e longitudine di 7.5º E (Torino)

Studio "temporale" del profilo atmosferico

Studio "temporale" del profilo atmosferico

 Ciclo solare: studio del profilo atmosferico per il giorno 01/01 nell'anno del minimo solare e del massimo solare alla latitudine di 45º N e longitudine di 7.5º E (Torino)

Studio "spaziale" del profilo atmosferico

• Densità atmosferica e altezza per il giorno 01/01/2020:

Conclusione

Conseguenze dello studio di profili atmosferici sui parametri che descrivono le meteore:

- Variazione giornaliera di densità e altezza non significativa;
- Variazione spaziale di densità e altezza non significativa;
- Variazione di densità e altezza dovuta al ciclo solare non significativa;
- Variazione annuale di altezza e densità significativa.

Referenze

Bibliografia:

- Carbognani et al. (2020), A case study of the May 30, 2017, Italian fireball, European Physical Journal Plus;
- Gritsevich (2009), *Determination of parameters of meteor bodies based on flight observational data*, Advances in Space Research;
- Emmert et al. (2020), NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities, Advancing Earth and Space Science.

Sitografia:

- Sito PRISMA: prisma.inaf.it
- Indici Kp: spaceweather.gfz-potsdam.de
- Indici F10.7: celestrak.com/SpaceData/