

Università degli studi di Torino

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Fisica

Cloud detection by weather radar and satellites for JEM-EUSO mission

Candidato: Marco Del Giudice Relatore: Dott. Mario Edoardo Bertaina

Correlatore: Dott. Roberto Cremonini

JEM-EUSO

• It is an observatory, in orbit on the ISS at about 400 km, that will utilize very large volumes of the Earth's atmosphere as a detector of Extreme **Energy Cosmic Rays** $(> 5*10^{19} \,\mathrm{eV})$

• JEM-EUSO will capture the <u>fluorescent UV and</u> <u>Čerenkov photons</u>, produced by the cosmic ray particle approaching the Earth's atmosphere

International Space Station (ISS)

JEM-EUSO future position

from ESA

NEAR

A LAND THE

Interaction between EAS and clouds

The target of my study

- Define the accuracy of Cloud Top Height estimates and identify possible sources of uncertainty, by comparing <u>satellites data from</u> <u>radiative models</u> and <u>data from weather radars</u>
- Different sensors and different algorithms:

MSG:
$$T(\mathbf{v}) = \left[\frac{k}{h\mathbf{v}}\ln\left(R(\mathbf{v}) + \frac{2h\mathbf{v}^3}{c^2}\right)\right]^{-1} + offset$$

MODIS: $R(\mathbf{v}) = (1 - NE)R_{clr}(\mathbf{v}) + NE * R_{bcd}(\mathbf{v}, P_c)$

Atmosphere profile and cloud types

Cloud Coverage Climatology

Clear sky ~ 29% Green band ~ 60%

Dptical Depth

Cloud top

F.Garino et al., ID398

	<3 km	3-7 km	7-10 km	>10 km
OD>2	17.2	5.2	6.4	6.1
OD:1-2	5.9	2.9	3.5	3.1
OD:0.1-1	6.4	2.4	3.7	6.8
OD<0.1	29.2	<0.1	<0.1	1.2
CLEAR SKY				

Occurence of clouds (in %) between 50° N and 50° S

Data sources: SEVIRI MSG

• Sensor which operates in 12 spectral bands between visible and infrared, situated on board the Meteosat Second Generation geostationary satellites. It has a 3 km spatial resolution and a 15 minutes temporal resolution.

Data sources: MODIS Terra Aqua

 Sensor which operates in 36 spectral bands, situated on board the polar satellites Terra and Aqua, which have a "Sun-syncronous" orbit at about 705 km altitude. Both the satellites scan the entire Earth surface in 1-2 days. Spatial resolution variable depending on the product.

from LPDAAC USGS

Data sources: Weather Radar

• Both the instruments (Bric della Croce (TO) and Settepani (SV)) are polarimetric doppler radar. In my work I used the products of the VAD tecnique, with which I could determine the Cloud Top Height at radar's zenit. Temporal resolution: 10 minutes.

Starting conditions:

20-05-2012, 10:15 UTC

(hPa)

020 883 745

608

471-

BRIC DELLA CROCE

TO DO LIST:

- Reprojection
- Cutting
- Resampling
- Creation of the raster MSG – MODIS

MODIS

Visual analisys:

Scene 1, 05-05-2012, 10:55 UTC

Scene 2, 20-05-2012, 10:15 UTC

 Fractional cloud covering, high differences in the whole scene

 Almost uniform cloud covering, high differences in CLOUD – NO CLOUD transition regions

Statistical analisys:

Mean = 154.8 hPa

SD = 218.3 hPa

Mean = 61.9 hPa

SD = 145.9 hPa

 \overline{M} edian = 15.0 hPa

Median = 108.0 hPa

Reduction of Median

From a not uniform scene

to a uniform one:

Reduction of Mean and SD

Agreement between the two

satellite systems is better for

uniform scenes

There could not be a uniform BIAS, it depends on the type of the scene

Correlation: scatter plot

 BIAS stronger for high pressures and smaller for low pressures

 CLOUD – NO CLOUD transiton regions

Correlation: Optical Thickness

 r_{1} r_{2} r_{2

Optical Thickness histogram for scene 1 and 2

 Mean difference decreases when the cloud gets optically thicker

Physical quantity that help to characterize the cloud

Correlazione tra la differenza riscontrata e l'Optical Thickness

Radar and satellite data comparison:

 This results support the hypotesis of BIAS stronger for high pressures and weaker for low pressures

• Little VAD overestimate

it was expected

spatial variability

Spatial variability around the Radar

• More spatial variability means more difficulties in Cloud Top Pressure identification

The Spatial Variability criterion

- Extendig the last consideration I developed an **R** algorithm which calculates the spatial variability for each pixel of the raster
- The parameter used for spatial variability is:

SD

 $(a-i)^{2}$

Spatial Variability, Scene 2 (Logaritmic Scale)

where **a** is the pressure value in the central pixel and **i** is the pressure value of each adjacent pixel

Conclusions and Results

- The agreement between the different sensors and algorithms is better for low pressure values (high clouds)
- BIAS which depends on the scene

- Better agreement for optically thick clouds
- Worse agreement with high spatial variability of clouds

Next steps:

- Validation of the obtained results using other scenes
- Ocean scene: useful for JEM-EUSO

• Comparison with NWP Models

 Comparison with data from CALIPSO (LIDAR)

