\& SIMULATION OF METEORS FOR THE JEM-EUSO EXPERIMENT

CANDIBATO: Fabrizio Gola RELATORE: dott. Mario Édoardo Bertaina CORRELATORE: dott. Alberto Cellino

Meteor of the Perseids observed from ISS (Aug. 2011)

There are good reasons to study the so-called Near-Earth Objects (NEOs)

Log[Impact Energy, MT]

1 MT ~ 4.18 * $10^{15} \mathrm{~J}$

- Beginning point: $\sim 75 \div 120 \mathrm{~km}$

- End point: ~ $30 \div 70 \mathrm{~km}$
- Duration: $\sim 0.5 \div 3 \mathrm{~s}$
- Length: ~ $10 \div 20 \mathrm{~km}$
- Type: sporadic, showers ($\sim 25 \%$ obs. meteors)
- Frequency: $\sim 5 \div 100$ per hour (up to thousands during meteor storms)

The Peekskill fireball (Oct. 9, 1992)
$m<-8$ bolide or fireball (meteoroid mass $\mathbf{1 0} \div \mathbf{1 0 0} \mathbf{~ k g}$) $m<-17$ superbolide (meteoroid mass $>1000 \mathrm{~kg}$)

Fireball precursors, between 10 m and 100 m in size, are the least known population of minor bodies in our Solar system

What we need to know about meteoroids

- Mass
- Density \longrightarrow Luminosity, deceleration, ablation equations
- Structure \longrightarrow Beginning and terminal heights
- Composition $\longrightarrow \begin{aligned} & \text { Spectra }+ \text { analysis of recovered } \\ & \text { meteorites }\end{aligned}$
-Orbit \longrightarrow Velocity vector
- Flux \longrightarrow Direct observation

We want to obtain data on largest bodies observable in the atmosphere, filling in the missing data between 10^{3} and $10^{6} \mathrm{~kg}$ mass interval

FONT: JEM-EUSO Meteor Observation by Watanabe, Ishiguro, Sato (13/06/2009)

ABSOLUTE MAGNITUDE	$\begin{gathered} \text { U-BAND } \\ \text { FLUX } \\ \left(\mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2} / \mathrm{A}\right) \end{gathered}$	FLUX (ph/s)	```FLUX (phe/GTU) [1 GTU = 2.5 \mus]```	MASS (g)	COLLISIONS IN THE FIELD OF VIEW OF JEM-EUSO
+7	$6.7 * 10^{-12}$	$4.3 * 10^{7}$	11	0.002	1/s
+5	$4.24 * 10^{-11}$	$2.7{ }^{* 10^{8}}$	68	0.01	6/min
0	$4.24 * 10^{-9}$	$2.7 * 10^{10}$	6750	1	0.27/orbit
-5	$4.24 * 10^{-7}$	$2.7 * 10^{12}$	675000	100	6.3/year (duty cycle 0.2)

flux=flux from Magnitude/Flux Density Converter of Spitzer Science
Center (photometric system Johnson UBVRI+ in the U-band)

$$
\text { ph }=\text { photons } \quad \text { phe }=\text { photoelectrons }
$$

What is JEM-EUSO telescope

MISSION PARAMETERS

- Time of launch: year 2017
- Operation period: 3 years (+2 years)
- Launching Rocket: H2B
- Transportation to ISS: un-pressurized Carrier of H2 Transfert Vehicle (HTV)
- Site to Attach: Japanese Experimental Module/Exposure Facility \#2
- Height of the Orbit: $\sim 400 \mathrm{~km}$
- Inclination of the Orbit: 51.64°
- Latitude and longitude: $51.6^{\circ} \mathrm{N}-51.6^{\circ} \mathrm{S}$ (for all longitudes)
- Power: 926 W (operative), 352 W (nonoperative)
- Mass: 1983 kg
- Data Transfert Rate: 285 kpbs + on-board storage
- Period of the Orbit: 90 mins

INSTRUMENT PARAMETERS

- Field of view: $\pm 30^{\circ}$
- Aperture diameter: 2.5 m
- Optical bandwidth: $330 \div 400 \mathrm{~nm}$
- Angular resolution: 0.07°
- Pixel size: 2.9 mm
- Number of pixels: $\sim 3.0 \times 10^{5}$
- Pixel size at ground: 560 m
- Event time sampling: $2.5 \mu \mathrm{~s}=1$ GTU
- Observational area: $>1.9 \times 10^{5} \mathrm{~km}^{2}$ (depending on the pointing angle)
- PMT Gain: 10^{6} ($0.16 \mathrm{pC} / \mathrm{phe}$)
- Detector efficiency: 0.12
- KI partition: rectangular (4×2 pixels)

Optics and electronics

Figure 4.3.1-1. Focal surface detector and its structure.
Working mode:
ANALOG (charge integration) KI pixels = 4 X 2 MAPMT pixels
single KI pixel

Meteor simulation

Reference system

Time of beginning of the meteor event: $\mathrm{t}=0$

The origin ($\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$) is at the nadir, on the ground, at $\mathrm{t}=0$

Meteor simulation: magnitude

Absolute magnitude

$$
\begin{aligned}
& M=-2.5 * \log _{10}(\text { flux })+C \\
& C=2.5 \log _{10}(6750) \sim 9.57
\end{aligned}
$$

Apparent magnitude

$$
m=M-10+5 * \log _{10}(\text { dist })
$$

$1 \mathrm{GTU}=2.5 \mu \mathrm{~s}$

[flux] = phe / GTU
[dist] = km

Our assumptions for a meteor profile (input parameters)

All simulated meteors have a secondary burst

- Height of the ISS: 400 km
- Velocity of the ISS : $7.8 \mathrm{~km} / \mathrm{s}$
- Beginning height of the meteor: 100 km
- Duration of the main event: 1.5 s
- Duration of the secondary burst: 0.8 s
- Beginning time of secondary burst: 1 s
- Duration of meteor: 1.8 s
- Shape of the light curve: $8^{\text {th }}$ degree polynomial (the same for both the main event and the secondary burst)
- Event time sampling: $1 \mathrm{GTU}=2.5 \mu \mathrm{~s}$

The signal is modulated for every ms and integrated for a single GTU, in a single KI

Approximations:
NO PERSISTENCE
NO DECELERATION
NO ABSORPTION COEFFICIENT OF THE AIR

POINT- LIKE SOURCE
LIGHT CURVE = UV LIGHT CURVE

METEOR LIGHT CURVE (M=0)

photoelectrons (with background)

From meteor simulation to the recorded signal

METEOR SIMULATOR and signal propagation in atmosphere

ELECTRONICS RESPONSE phe/GTU \square charge/GTU Ω counts/GTU

OPTICS RESPONSE (Point Spread Function)

CONVERTER pixels \qquad Kls
$1 \mathrm{GTU}=2.5 \mu \mathrm{~s}$

HV protection logic for intense signals

To avoid too strong currents in the MAPMT, a KI should not have more than $250 \mathrm{pC} / \mathrm{GTU}$. The switch-logic elaborated by P. Gorodetzky reduces the gain within 2 GTUs of a factor 100 as soon as the threshold is exceeded in just one KI of the PDM. Only when every KI receives less than 2.5 pC the gain can be increased again.

Level	Gain
0	10^{6}
1	10^{4}
2	10^{2}
3	1

COMPLETE METEOR PROFILE

$\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{z}}=0 \mathrm{~km} / \mathrm{s}$
$\mathrm{v}_{\mathrm{y}}=20 \mathrm{~km} / \mathrm{s}$
$\mathrm{M}=-5$

projection of the signal on the focal surface

maximum number of photoelectrons

$1 \mathrm{GTU}=2.5 \mu \mathrm{~s}$

Cities

ASSUMPTIONS (INPUT PARAMETERS)

Turin

64 phe/(pix*GTU)

CITY = METEOR with:

- Beginning height $=0$ km
- Constant light curve
- Circular shape
- No secondary burst
- M ~ 5.06
(flux = 64 phe/(pix*GTU))
- $\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{z}}=0 \mathrm{~km} / \mathrm{s}$

1 phe/(pix*GTU)

SIMULATION OF CITIES: PSF

SIMULATIONS

Cities vs vertical meteor ($\mathrm{M} \sim 5.06$; $\mathrm{v}_{\mathrm{z}}=-11.2 \mathrm{~km} / \mathrm{s}$)

Village

projection of the signal on the focal surface

$r=3 \mathrm{~km}$
projection of the signal on the focal surface

Vertical meteor

projection of the signal on the focal surface

PDM size: 48 X 48 pixels

projection of the signal on the focal surface

Cities vs meteors: criteria

Meteors with zenith angle $\theta<45^{\circ}$ and villages look similar

Possible criteria to distinguish them :

- shape of the light curve
- number of enlightened PDMs
- threshold on the magnitudle

Meteors with zenith angle $\theta>45^{\circ}$ are easily detectable

Fireballs and HV protection logic

$$
M<-13.5
$$

number of events on Earth:

$$
<2 * 10^{-3} / \text { day } \sim 0.73 / \text { year }
$$

Number of events on JEM-EUSO FoV at ground

> (duty cycle 0.2):
> $<5.4^{* 10-5} /$ year

HV switch-logic protects the telescope from very luminous fireballs

Conclusions

Main results:

1) a simulator of meteors has been developed;
2) a simple simulator of the response of JEM - EUSO detector has been developed.

By - products of the work:

1) simulations of cities;
2) a first criterion to distinguish meteors from cities;
3) an analysis of the switch-logic that confirms its capability to protect the telescope from extremely bright objects such as fireballs.

APPENDIX

Cumulative number of collisions of meteoroids with the Earth's atmosphere in JEM-EUSO FoV

DRAW / VARIABLE	SYMBOL	CONDITION	KIND OF DRAW	MEAN VALUE	STANDARD DEVIATION	COMPUTATION
Integer simulated flux	ncts	$m<\left(\begin{array}{c} \text { flux }-i n t ~ \\ (\text { flux })) \end{array}\right.$	Random (m; 0-1)	I	I	int (flux)+1
I/	I/	$\underset{\text { int (flux)) }}{\substack{m \\>}}$	II	I	/	int (flux)
Radius of the PSF	r	I	Gauss	0 mm	1.25 mm	abs (r)
Angle of the PSF	angle	I	Random $(0-2 \pi)$	I	I	I
x in KI of the single photoelectron	xKI	I	I	I	I	int (Xpix/2) + C
y in KI of the single photoelectron	yKI	I	I	I	I	int (Ypix/4) + C
Flux of photoelectrons in (xKI, yKI)	ICount	I	I	I	I	Sum of all the photoelectrons spreaded in (xKI, yKI)

Switch-logic and PMT potentials

DRAW I VARIABLE in (xKI, yKI)	SYMBOL	CONDITIONS	KIND OF DRAW	MEAN VALUE	STANDARD DEVIATION	$\underset{\mathrm{N}}{\text { COMPUTATIO }}$
Flux of photoelectrons with background	ICOUNT	ICount > 0	Poisson (nphebkg)	$\begin{gathered} 16 \text { (960) } \\ \text { phel } \\ \text { (K) }{ }^{*} \text { GTU) } \\ \text { [new } \\ \text { (full) } \\ \text { moon] } \end{gathered}$	Square root of the mean value	ICount + nphebkg
Gain	GKI	I	$\begin{gathered} \text { Random } \\ \text { (0.152- } \\ 0.168 \\ \text { pC/phe) } \end{gathered}$	I	I	I
Drawn flux of photoelectrons	pheest	$\begin{gathered} 0<\text { ICOUNT<50 } \\ \text { phe/GTU } \end{gathered}$	Poisson	ICOUNT	Square root of the mean value	I
//	//	ICOUNT>=50 phe/GTU	Gauss	ICOUNT	Square root of the mean value	I
I/	II	ICOUNT<=0	1	I	1	0

DRAW / VARIABLE in (xKl,yKI)	SYMBOL	CONDITIONS	KIND OF DRAW	MEAN VALUE	STANDARD DEVIATION	COMPUTATION
Charge	ca	pheest < 50 phe/GTU	I	I	I	Subsequent gaps
I/	II	$\begin{gathered} \text { pheest }>=50 \\ \text { phe/GTU } \end{gathered}$	Gauss	pheest*GKI	$\begin{aligned} & 0.5^{*} \mathrm{GKI}^{*} \\ & \text { sqrt(pheest } \end{aligned}$	I
Gain (switchlogic)	G	gu value (integer 0-3; indicates the level of switch)	I	I	I	GKI* $10^{-2^{*} \mathrm{gu}}$
Charge (switchlogic)	caatt	I	I	I	I	ca*G
Charge (control)	ca	ca<0	I	I	I	0
Charge (switchlogic; control)	caatt	caatt<0	I	I	I	I/

Cariche alte

DRAW / VARIABLE in (xKl,yKI)	SYMBOL	CONDITIONS	COMPUTATION
Counts	cts	0 < caatt <= $10 \mathrm{pC} / \mathrm{GTU}$	$-2.644+1.839^{*}$ caatt
I/	//	$10 \text { pC/GTU < caatt <= } 300$ pC/GTU	Polynomial curve in the previous slide
I/	II	caatt > 300 pC/GTU	100
ADC counts	CTS	cts-int (cts) > $=0.5$	cts+1
II	II	cts-int (cts) <0.5	cts
ADC counts (control)	I/	CTS < 0	0

S127E011186

