SIMULATION OF METEORS FOR THE JEM-EUSO EXPERIMENT

CANDIDATO: Fabrizio Gola RELATORE: dott. Mario Edoardo Bertaina CORRELATORE: dott. Alberto Cellino

Meteor of the Perseids observed from ISS (Aug. 2011)

JEM-EUSO on ISS

There are good reasons to study the so-called Near-Earth Objects (NEOs)

Log[Impact Energy, MT]

Diameter, Km

1 MT ~ 4.18 * 10¹⁵ J

- Beginning point: ~ 75 ÷ 120 km
- End point: ~ 30 ÷ 70 km
- **Duration:** ~ 0.5 ÷ 3 s
- Length: ~ 10 ÷ 20 km
- **Type:** sporadic, showers (~ 25% obs. meteors)

Visual meteors

• **Frequency:** ~ 5 ÷ 100 per hour (up to thousands during meteor storms)

The Peekskill fireball (Oct. 9, 1992)

m < - 8 bolide or fireball (meteoroid mass 10 ÷ 100 kg)
 m < - 17 superbolide (meteoroid mass > 1000 kg)

Fireball precursors, between 10 m and 100 m in size, are the least known population of minor bodies in our Solar system

What we need to know about meteoroids

We want to obtain data on largest bodies observable in the atmosphere, filling in the missing data between 10³ and 10⁶ kg mass interval

FONT: JEM-EUSO Meteor Observation by Watanabe, Ishiguro, Sato (13/06/2009)

ABSOLUTE MAGNITUDE	U-BAND FLUX (erg/s/cm²/A)	FLUX (ph/s)	FLUX (phe/GTU) [1 GTU = 2.5 μs]	MASS (g)	COLLISIONS IN THE FIELD OF VIEW OF JEM-EUSO
+7	6.7*10 ⁻¹²	4.3*10 ⁷	11	0.002	1/s
+5	4.24*10 ⁻¹¹	2.7*10 ⁸	68	0.01	6/min
0	4.24*10 ⁻⁹	2.7*10 ¹⁰	6750	1	0.27/orbit
-5	4.24*10 ⁻⁷	2.7*10 ¹²	675000	100	6.3/year (duty cycle 0.2)

flux=flux from Magnitude/Flux Density Converter of Spitzer Science Center (photometric system Johnson UBVRI+ in the U-band) ph = photons phe = photoelectrons 7

What is JEM-EUSO telescope

MISSION PARAMETERS

- Time of launch: year 2017
- **Operation period:** 3 years (+2 years)
- Launching Rocket: H2B
- Transportation to ISS: un-pressurized Carrier of H2 Transfert Vehicle (HTV)
- Site to Attach: Japanese Experimental Module/Exposure Facility #2
- Height of the Orbit: ~ 400 km
- Inclination of the Orbit: 51.64 °
- <u>Latitude and longitude: 51.6° N 51.6° S</u> (for all longitudes)
- **Power:** 926 W (operative), 352 W (non-operative)
- Mass: 1983 kg
- Data Transfert Rate: 285 kpbs + on-board storage
- Period of the Orbit: 90 mins

INSTRUMENT PARAMETERS

- Field of view: ± 30°
- Aperture diameter: 2.5 m
- Optical bandwidth: 330 ÷ 400 nm
- Angular resolution: 0.07°
- Pixel size: 2.9 mm
- Number of pixels: ~ 3.0 × 10⁵
- Pixel size at ground: 560 m
- Event time sampling: 2.5 µs = 1 GTU
- Observational area: > 1.9 × 10⁵ km²
 (depending on the pointing angle)
- **PMT Gain:** 10 ⁶ (0.16 pC / phe)
- Detector efficiency: 0.12
- KI partition: rectangular (4 x 2 pixels)

Optics and electronics

Meteor simulation

Reference system

Meteor simulation: magnitude

<u>Absolute magnitude</u> $M = -2.5 * \log_{10}(flux) + C$

C = 2.5 log₁₀(6750) ~ 9.57

<u>Apparent magnitude</u> $m = M - 10 + 5 * \log_{10}(dist)$

<u>1 GTU = 2.5 µs</u>

[flux] = phe / GTU [dist] = km

Our assumptions for a meteor profile (input parameters)

All simulated meteors have a secondary burst

- · Height of the ISS: 400 km
- Velocity of the ISS : 7.8 km/s
- Beginning height of the meteor: 100 km
- Duration of the main event: 1.5 s
- Duration of the secondary burst: 0.8 s
- · Beginning time of secondary burst: 1 s
- Duration of meteor: 1.8 s
- Shape of the light curve: 8th degree polynomial (the same for both the main event and the secondary burst)
- Event time sampling: 1 GTU = 2.5 µs

The signal is modulated for every ms and integrated for a single GTU, in a single KI

Approximations:

- **NO PERSISTENCE**
- **NO DECELERATION**
- NO ABSORPTION COEFFICIENT OF THE AIR
- **POINT-LIKE SOURCE**
- LIGHT CURVE = UV LIGHT CURVE

METEOR LIGHT CURVE (M=0)

From meteor simulation to the recorded signal

HV protection logic for intense signals

To avoid too strong currents in the MAPMT, a KI should not have more than 250 pC/GTU. The *switch-logic* elaborated by P. Gorodetzky reduces the gain within 2 GTUs of a factor 100 as soon as the threshold is exceeded in just one KI of the PDM. Only when every KI receives less than 2.5 pC the gain can be increased again.

Level	Gain
0	106
1	104
2	10 ²
3	1

<u>COMPLETE</u> <u>METEOR PROFILE</u>

- $v_x = v_z = 0$ km/s
- $v_y = 20 \text{ km/s}$

M = -5

projection of the signal on the focal surface

1 GTU = 2.5 μs

Cities

<u>ASSUMPTIONS</u> (INPUT PARAMETERS)

CITY = METEOR with:

- Beginning height = 0 km
- Constant light curve
- Circular shape
- No secondary burst
- M ~ 5.06 (flux = 64 phe/(pix*GTU))
- $v_x = v_y = v_z = 0$ km/s

1 phe/(pix*GTU)

Cities vs vertical meteor (M \sim 5.06; v_z = -11.2 km/s)

r = 10 km

Village

r = 3 km

Vertical meteor

r = 10 km

r = 3 km

Village

Vertical meteor

PDM size: 48 X 48 pixels

Cities vs meteors: criteria

Fireballs and HV protection logic

HV switch-logic protects the telescope from very luminous fireballs

Conclusions

Main results:

- 1) a simulator of meteors has been developed;
- 2) a simple simulator of the response of JEM EUSO detector has been developed.
- By products of the work:
- 1) simulations of cities;
- 2) a first criterion to distinguish meteors from cities;
- 3) an analysis of the switch-logic that confirms its capability to protect the telescope from extremely bright objects such as fireballs.

APPENDIX

Cumulative number of collisions of meteoroids with the Earth's atmosphere in JEM-EUSO FoV

DRAW / VARIABLE	SYMBOL	CONDITION	KIND OF DRAW	MEAN VALUE	STANDARD DEVIATION	COMPUTATION
Integer simulated flux	ncts	m < (flux-int (flux))	Random (m; 0-1)	1	1	int (flux)+1
11	11	m >= (flux- int (flux))	11	1	1	int (flux)
Radius of the PSF	r	/	Gauss	0 mm	1.25 mm	abs (r)
Angle of the PSF	angle	Ι	Random (0 - 2π)	Ι	Ι	Ι
x in KI of the single photoelectron	хKI	1	1	1	1	int (Xpix/2) + C
y in KI of the single photoelectron	уКІ	1	1	1	1	int (Ypix/4) + C
Flux of photoelectrons in (xKI, yKI)	ICount	1	/	1	1	Sum of all the photoelectrons spreaded in (xKI, yKI)

Switch-logic and PMT potentials

DRAW / VARIABLE in (xKI, yKI)	SYMBOL	CONDITIONS	KIND OF DRAW	MEAN VALUE	STANDARD DEVIATION	COMPUTATIO N
Flux of photoelectrons with background	ICOUNT	ICount > 0	Poisson (nphebkg)	16 (960) phe/ (KI*GTU) [new (full) moon]	Square root of the mean value	ICount + nphebkg
Gain	GKI	1	Random (0.152- 0.168 pC/phe)	1	1	1
Drawn flux of photoelectrons	pheest	0 <icount<50 phe/GTU</icount<50 	Poisson	ICOUNT	Square root of the mean value	1
11	11	ICOUNT>=50 phe/GTU	Gauss	ICOUNT	Square root of the mean value	1
11	11	ICOUNT<=0	1	I	1	0

DRAW / VARIABLE in (xKl,yKl)	SYMBOL	CONDITIONS	KIND OF DRAW	MEAN VALUE	STANDARD DEVIATION	COMPUTATION
Charge	са	pheest < 50 phe/GTU	1	1	1	Subsequent gaps
II	11	pheest >= 50 phe/GTU	Gauss	pheest*GKI	0.5*GKI* sqrt(pheest)	1
Gain (switch- logic)	G	gu value (integer 0-3; indicates the level of switch)	/	1	1	GKI*10 ^{-2*gu}
Charge (switch- logic)	caatt	1	1	1	1	ca*G
Charge (control)	са	ca<0	/	1	1	0
Charge (switch- logic; control)	caatt	caatt<0	1	1	1	11

DRAW / VARIABLE in (xKl,yKl)	SYMBOL	CONDITIONS	COMPUTATION	
Counts	cts	0 < caatt <= 10 pC/GTU	-2.644 + 1.839*caatt	
ll	11	10 pC/GTU < caatt <= 300 pC/GTU	Polynomial curve in the previous slide	
II	II	caatt > 300 pC/GTU	100	
ADC counts	СТЅ	cts-int (cts) >= 0.5	cts+1	
II	II	cts-int (cts) < 0.5	cts	
ADC counts (control)	11	CTS < 0	0	

